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Abstract. Surgery is one of the riskiest and most important medical
acts that is performed today. The desires to improve patient outcomes,
surgeon training, and also to reduce the costs of surgery, have motivated
surgeons to equip their Operating Rooms with sensors that describe the
surgical intervention. The richness and complexity of the data that is
collected calls for new machine learning methods to support pre-, peri-
and post-surgery (before, during and after).
This paper introduces a new method for the prediction of the next
task that the surgeon is going to perform during the surgery (peri).
Our method bases its prediction on the optimal matching of the current
surgery to a set of pre-recorded surgeries.
We assess our method on a set of neurosurgeries (lumbar disc herniation
removal) and show that our method outperforms the state of the art by
providing a prediction (of the next task that is going to be performed by
the surgeon) more than 85% of the time with a 95% accuracy.

1 Introduction

More than half a million surgeries are performed every day worldwide [1], which
makes surgery one of the most important component of global health care.

This has motivated the growing interest in Computer Assisted Surgery (CAS)
tools. More and more Operating Rooms (ORs) are getting equipped systems with
sensing devices that can capture the surgeon’s activities and environment. For
example, using cameras in pituitary surgery, both the phases of the surgery [2]
and the low-level surgical tasks [3] can be detected and recorded automatically.
The task performed by the surgeon can also be automatically inferred by com-
bining RFID chips on instruments (for identification) with accelerometers [4].
The collected information is very precise and rich, because it corresponds to the
low-level actions and tools that are performed and used by the surgeon. Because
it is so precise, the data is however extremely challenging to analyze. For ex-
ample, two surgeons performing the same surgery on the same patient might
exhibit a very different course of specific actions, while being surgically very
similar: they might use the same technique, have the same patient outcome, etc.
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However, from the low-level point of view (the sequence of low-level tasks like
cut, suture, etc.), these surgeries will look very different from each other.

Extracting useful high-level knowledge from this low-level data has been one
of the research themes targeted by the field of Surgical Process Modeling (SPM)
[5,6], which aims at understanding surgeries to improve the quality of care. The
above-mentioned sensors capture the surgical tasks performed in real-time, which
opens the door to using artificial intelligence methods to provide real-time in-
formation to the surgical team.

This paper seeks the prediction of the surgeon’s subsequent actions, using
low-level information only. Such a prediction system is critical for OR manage-
ment: it will provide useful real-time information to the surgical team (nurses,
anesthetist, junior surgeon), while allowing the surgeon to focus on more de-
manding tasks. Because predicting the next surgical task is central, such a pre-
diction system will also be a keystone to the development of many other systems.
Learning to predict the future from past observations is one of the key compo-
nents that make it possible to bring value to the massive data stores that have
been collected in medicine [7].

In this paper, we focus on predicting the next surgical actions from the low-
level information that can be captured during the surgery (e.g., [3,8,9]). We use
the series of surgical activities performed by the surgeon to represent the course
of the surgery. We capture the activity of both hands for three different elements:
used instrument, performed action and targeted anatomical structure [10]. Learn-
ing to predict the next activity of the surgeon from such low-level information is
extremely challenging, because the next surgical action depends upon high-level
information (phase of the surgery, technique used, patient-specific information,
so-far reaction of the patient to the surgery, etc.), while a surgery is represented
by a series of actions like “cut,scalpel,skin”.

Intuitively, our approach matches the on-going surgery to every surgery of a
reference set of surgeries, and use the next actions that have been performed in
the reference set of surgeries to draw a prediction about the next action that will
be performed in the current surgery. Our approach includes the three following
features:
1. Optimal registration of a partial surgery: We propose a method to

optimally register the on-going surgery (partial surgery) to any complete
pre-recorded surgery. Our approach is based on the Dynamic Time Warping
similarity measure [11], which is consistent with surgical processes [12].

2. Voting for high-confidence prediction: Using the optimally registered
reference set of surgeries, we use voting to draw a high-confidence prediction
about the next action that going to be performed by the surgeon.

3. Detecting when to predict with high-confidence: Using the agreement
rate among multiple predictors, we are able to detect when to perform a
prediction and when it is not possible to draw an accurate prediction.
Our framework is assessed using clinical data of lumbar disc herniation surg-

eries. Dr. L. Riffaud recorded 24 surgeries performed by multiple surgeons as
part of a stay at the Neurosurgery Department of the Leipzig University Hos-



Automatic prediction of surgical tasks 3

pital, Germany. We show that our method outperforms the state of the art by
providing a prediction more than 85% of the times with a 95% accuracy.

This paper is organized as follows. In Section 2, we present our solution
for high-confidence prediction of the next surgical activity that is going to be
performed. In Section 3, we conduct experiments that demonstrate the quality
and performance of our approach compared to the state of the art. Finally, we
conclude this work and describe future research in Section 4.

2 High-confidence prediction of the next surgical activity

We present our proposed approach in this section. We start by presenting our
method for optimal sub-sequence matching in Section 2.1. We then present how
we use this method to draw high-confidence predictions about the next surgical
action in Section 2.2.

2.1 Optimal sub-sequence matching

Let S = {S1, · · · , SN} be the reference set of N sequences (surgeries),
S = 〈s1, · · · , sl〉 be one sequence of this set (a complete surgery), and S? =
〈s?

1, · · · , s?
k〉 be a partial sequence (the ongoing surgery). Let us denote S1,l′ a sub

sequence 〈s1, · · · , sl′〉 of S. Our objective is to find the sub-sequence S′ = S1,l′

so that the cost of optimally registering the partial sequence S? onto the subse-
quence S′ of the reference sequence S is minimal.

Finding the cost of an optimal registration of one sequence onto another has
been studied by the literature. The Dynamic Time Warping (DTW) similarity
measure [11] makes it possible to find the optimal alignment of two sequences
(and thus register them) in Θ(l1 · l2) operations (with l1 and l2 the respective
lengths of the realigned sequences). The consistency of this measure has been
demonstrated for surgical processes in [12,13].

In this section, we 1) introduce a new objective function for finding the sub-
sequence S′ that best matches S?, and 2) introduce a new algorithm, based on
DTW, that can find S′ in Θ(k · l) operations only.

Objective function Our goal is to find the matching point l′ in S that mini-
mizes the optimal alignment between S? and the sub-sequence S1,l′ :

match(S?, S) = arg min
16l′6l

DTW(S?, S1,l′) (1)

Figure 1 presents the intuition about our objective function, compared to DTW’s
one. Figure 2 presents the trend of this objective function versus the value taken
by l′ on an example.
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Fig. 1. Illustration of the difference between a full (left) and partial (right) matching.
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Fig. 2. Illustration of the matchPoint resulting of the partial matching.

Efficient algorithm An exhaustive search among all the possible matching
points for l′ will take Θ( l·(l+1)

2 · k) = Θ(l2 · k) operations. Such a cubic com-
plexity with the length of the matched sequences is incompatible with real-time
matching, because a typical surgery will often have more than 10,000 elements
long.

We now show how to modify the Dynamic Time Warping (DTW) algorithm
to obtain an exact solution in Θ(l·k) operations without sacrificing the soundness
of the process. Note that with 10,000 elements, the difference in the complexity
corresponds to an algorithm running 4 orders of magnitude faster than the naive
solution. Our solution is presented in Algorithm 1, where we adapted the orig-
inal DTW algorithm to identify the optimal matchPoint (l′) during sequences
registration. In this algorithm, we kept the core of DTW and we added a con-
dition (i.e., the if statement) allowing to store the optimal matchPoint during
the computation of the matrix storing the partial costs.

Note that although this algorithm can be further optimized depending on δ
(i.e., the distance function between elements of the sequences), we chose here
to give the algorithm for the general case. Furthermore, this adaptation of the
algorithm did no alter the properties of optimality of DTW.

2.2 A voting approach to draw high-confidence predictions

Our method uses the proposed optimal sub-sequence matching to draw predic-
tions about the next surgical activity that will be performed. We will use the
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Algorithm 1 Optimal sub-sequence matching
Require: S? = 〈s?

1, · · · , s?
k〉

Require: S = 〈s1, · · · , sl〉
Let δ be a similarity between the elements of the sequences
Let m[k, l] be a matrix storing partial costs
Let l′ ← 1 be the matching point to find
m[1, 1]← δ(s?

1, s1)
for i← 2 to k do {m[i, 1]← m[i− 1, 1] + δ(s?

i , s1)}
for j ← 2 to l do {m[1, j]← m[1, j − 1] + δ(s?

1, sj)}
for j ← 2 to l do

for i← 2 to k do {m[i, j]← δ(s?
i , sj)+min(m[i−1, j],m[i, j−1],m[i−1, j−1])}

if m[k, j] < m[k, l′] then l′ ← j
end for
return l′

optimal sub-sequence matching from the on-going surgery S? to every sequence
Si of S. We can then use this information to draw a probability distribution p̂next
over the next possible state of the current surgery. More formally, the maximum
likelihood estimate p̂next for the next activity to be s given the previous activities
S? is:

p̂next(s|S?) = |{S(match(S?, S) + 1) = s}S∈S|
|S|

(2)

Finally, we draw a prediction from the maximum a posteriori estimate of p̂next
using a majority vote [14], i.e., select s for which p̂next(s|S?) > 0.5. In order to
ensure and confer high-confidence to the system, we do not draw a prediction if
no s obtains a majority or in case of ties. Note that p̂next(s|S?) can be seen as an
agreement rate on the prediction: a high value indicates an important agreement
amongst the recorded surgeries about the next action that is going to be per-
formed and conversely. The threshold on the agreement rate (0.5 in this paper)
can be tuned according to need for a system performing very accurate predic-
tions but in limited number or a large number of predictions with an increased
probability of errors. We have developed a web application 1 to allow the reader
to try this prediction system easily. An open-source standalone implementation
of the method is accessible at the same URL.

3 Experiments

3.1 Clinical data

Figure 3 presents the dataset. The framework is evaluated using clinical data
composed of 24 lumbar disc herniation surgeries recorded at the Neurosurgery
Department of the Leipzig University Hospital, Germany. Surgeries contain on
average 680 actions. The surgeries involved 10 male and 14 female patients, with
1 http://germain-forestier.info/src/aime2015/ (Accessed: 30 March 2015)
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a median age of 52 years. These lumbar disc surgeries are divided into three main
steps: (1) approach of the disc, (2) discectomy and (3) closure. The herniated disc
is approached via a posterior intermyolamar route. The patients were operated
on by five junior and five senior surgeons. Senior surgeons have performed at
least a hundred removals of lumbar disc herniation. All the junior surgeons have
passed more than two years of their residency program but have only performed
a few removals of lumbar disc herniation. In this paper, we focused on the closure
phase, because it allows us to ensure that the main surgeon is the one operating
(for a junior surgery, his or her senior sometimes takes over the surgery).
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Fig. 3. The dataset of 24 surgeries used for the experiments and the legend for the six
most frequent actions.

3.2 Methodology

We compare three configurations: using only the senior surgeries, using only the
junior surgeries and using all surgeries. Our aim is to observe the influence of
the available surgeries (training data) on the quality of the predictions that are
drawn. A leave-one-out cross-validation approach was used for each configura-
tion: we select one surgery out of the set of surgeries, and use it as the on-going
intervention (this surgery is then removed from the set of reference surgeries).
The left-out surgery is used to test our predictions, as if it was progressively dis-
covered. Predictions are made every 5% of the progression of the intervention.
We can then compare every prediction with the actual activity of the surgery.
Every surgery is in turn considered as the on-going intervention.

We evaluate our system using the precision P (i.e., number of good predic-
tions / total number of predictions), the recall R (i.e., number of predictions
/ total number of expected predictions). We also use the F-measure F (har-
monic mean between prediction and recall) to provide an overall evaluation. We
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compare the results of our method to the one of the Euclidean state-of-the-art
method. We use the exact same process, but replace the optimal sub-sequence
matching with uniform scaling [15]. Uniform scaling performs a linear transfor-
mation that increases or decreases sequences by a scale factor so that they have
the same length.

3.3 Results

Figure 4 presents the general results of the F-measure comparing the two meth-
ods and the three configurations. We can see that our approach outperforms the
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Fig. 4. Results on the three configurations (Junior+Senior, Junior, Senior) for the two
methods (DTW in white, Euclidean in gray).

state-of-the-art Euclidean approach, regardless of the considered configuration.
The compact dispersion of the results for the senior case (compared the junior
case) suggests that seniors have a more homogeneous behavior than junior sur-
geons, which is consistent with previous studies comparing junior and senior
practices [12]. This result also illustrates the influence of the set of available
recordings in the quality of the prediction. Even though mixing all the surgeries
together provides very good results, the best results are obtained for senior sur-
geons, whose surgical practice is usually more standardized and homogeneous.
This supports our intuition that the more dedicated the training data is to the
operating surgeon, the more accurate the predictions will be.

Table 1 details the prediction results for every one of the 24 surgeries (using
the 23 remaining surgeries as the training set). A sparkline (e.g.,
) presents, for each sequence, the evolution of the agreement rate among the pre-
dictions over the course of the surgery. The gray rectangle represents the interval
(0.5, 1] for which a majority is obtained. The blue dots represent the cases where
our system did not provide a prediction (because no majority was obtained),
while the red dots represent the inaccurate predictions. The precision of our
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Table 1. Detailed results for every surgery; results with F > .9 are shown in boldface.

Junior
Surg. P R F Agreement

S1 1.00 0.94 0.97
S2 0.94 0.89 0.91
S3 0.85 0.72 0.78
S4 1.00 0.94 0.97
S5 0.94 0.94 0.94
S6 1.00 0.94 0.97
S7 0.88 0.94 0.91
S8 0.94 0.94 0.94
S9 0.88 0.89 0.88
S10 1.00 0.83 0.91
S11 1.00 1.00 1.00
S12 0.93 0.78 0.85

Senior
Surg. P R F Agreement

S13 1.00 0.89 0.94
S14 0.94 0.94 0.94
S15 1.00 0.83 0.91
S16 1.00 0.72 0.84
S17 1.00 0.83 0.91
S18 1.00 0.89 0.94
S19 1.00 0.94 0.97
S20 0.93 0.83 0.88
S21 1.00 0.94 0.97
S22 0.94 0.94 0.94
S23 1.00 1.00 1.00
S24 0.75 0.89 0.81

system is very high: no mistakes are committed for more than half. Overall, our
systems exhibits an average precision of 95%: our predictions do not eventuate
only 5% of the times.

Moreover, our system provides a prediction 89% of the times (recall). This
means that for the vast majority of cases, an agreement can be reached and
a decision made. Furthermore, the consistency of our voting procedure is con-
firmed: for all the cases where the MAP (maximum a posteriori) estimate was
below the majority threshold, and for which we thus did not provide a prediction
(i.e., blue dots in Table 1 – Agreement column), the MAP estimate was actu-
ally wrong. This confirms the relevance of our approach, by showing that we
actually do not provide a prediction when no reliable choice can be made from
the training set. This corresponds to the case where not enough similarity can
be found between the on-going surgery and the reference set, which can be the
case if specific activities are required during the surgery. The highest number of
errors are committed in S24 with a sequence of four wrong predictions in a row.
This corresponds to the green activity in Figure 3, where the surgeon installs
the retractors on the skin without stopping, while all the other surgeries exhibit
several pauses. Finally, every prediction is made in less than 200ms, which is
compatible with real-time prediction in the OR.

Note that the current system is dependent of the heterogeneity of the se-
quences inside the reference database. If the reference sequences are highly het-
erogeneous, the system could have difficulties to perform the partial matching.
As the size of the available reference set is limited, we are currently matching
all the sequences of the reference database with the target sequence. However, a
threshold on DTW score could be used to select only the most similar sequences
to perform the prediction.
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4 Conclusion

We have presented a method for the prediction of the next surgical task that is
going to be performed during the surgery. Our contributions include:
1. definition of the objective function for the registration of a partial sequence

to a complete reference sequence.
2. an efficient algorithm, based on DTW, to optimally minimize the above-

mentioned objective function.
3. a prediction system that combines our optimal sub-sequence matching with

MAP estimation and filtering.
The experiments have shown that our method outperforms the state of the art
and provides a prediction more than 85% of the times with a 95% accuracy.

Because the prediction of surgical tasks is central to computer assisted
surgery, this work naturally opens up a number of clinical applications. We have
mentioned in the introduction how this information can help ensuring a smooth
running of the surgery. Another application concerns the training of junior sur-
geons, where our system could be integrated in a simulation environment in order
to provide help and feedback to the junior surgeon [16]. Our system could, on
demand, provide a warning to the surgeon about his or her deviation from the
standard practice of his or her colleagues. The agreement rate would then inform
about the importance of the deviation. In future work, we want to validate this
method on a more important dataset (> 300 surgeries) and use our recent work
on Dynamic Time Warping [17] to improve the predictions.

Supplementary materials

Prediction package: Java package containing the source code for the pro-
posed method. (Java ARchive file) – http://germain-forestier.info/
src/aime2015/source-code-aime-2015.jar (Accessed: 30 March 2015)
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