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Abstract

The aim of collaborative clustering is to make different clustering methods collaborate, in

order to reach at an agreement on the partitioning of a common dataset. As different clus-

tering methods can produce different partitioning of the same dataset, finding a consensual

clustering from these results is often a hard task. The collaboration aims to make the me-

thods agree on the partitioning through a refinement of their results. This process tends to

make the results more similar.

In this paper, after the introduction of the collaboration process, we present different

ways to integrate background knowledge into it. Indeed, in recent years, the integration of

background knowledge in clustering algorithms has been the subject of a lot of interest.

This integration often leads to an improvement of the quality of the results. We discuss

how such integration in the collaborative process is beneficial and we present experiments

in which background knowledge is used to guide collaboration.

Key words: collaborative clustering, unsupervised learning, classification, pattern

recognition, knowledge-guided clustering

1 Introduction

Clustering is an important machine learning tool for discovering hidden patterns,

structures and relationships between data objects in an unsupervised way. It has

been widely used in pattern recognition fields, mainly to classify groups of mea-

surements or observations. It finds applications in bioinformatics, information re-

trieval, medicine, image analysis or financial markets, to structure information and

discover hidden knowledge.
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Over the last fifty years, a huge number of new clustering algorithms have been

developed, and existing methods have been modified and improved [1, 2, 3, 4, 5].

This abundance of methods can be explained by the ill-posed nature of clustering.

Indeed, each clustering algorithm is biased by the objective function used to build

the clusters. Consequently, different methods can, from the same data, produce

very different clustering results. Furthermore, even the same algorithm can produce

different results, according to its parameters and initialization. A relatively recent

approach to circumvent the problem is based on the idea that the information of-

fered by different sources and different clustering, are complementary [6]. Thus,

the combination of different clusterings may increase their efficiency and accuracy.

A single classification is produced from results of methods having different points

of view: each individual clustering opinion is used to find a consensual decision.

Each decision can be processed from a different source or media.

In the same way, we address the problem of the collaboration between different

clustering methods. Collaboration is a process where two or more actors work

together to achieve a common goal by sharing knowledge. In our collaborative

clustering method, called SAMARAH [ANONYMOUS REF], different clustering

methods work together to reach an agreement on their clustering. Each clustering

modifies its results according to all the other clusterings until all the clusterings

proposed by the different methods are strongly similar. Thus, they can be more

easily unified, for example, through a voting algorithm.

Different studies showed that this method provides interesting results on artificial

data sets and on real life problems [ANONYMOUS REF]. However, a lot of work

is currently focusing on integrating background knowledge into the clustering pro-

cess. This work highlights the benefits of knowledge integration into this process by

showing that the use of such knowledge to drive the process leads to more accurate

results. The aim of this paper is to present an extension of SAMARAH, which takes

into account background knowledge during the collaboration of the methods. The

background knowledge is used to drive the collaboration between the clustering

methods and allows an improvement of the final results.

To evaluate benefits of using the collaborative clustering method SAMARAH with

(and without) background knowledge integration, we used classical approaches

based on quality indexes and a more recent approach called cascade evaluation.

Cascade evaluation [7] is a new approach to evaluate the quality and the interest

of clustering results. The method is based on the enrichment of a set of labeled

datasets by the results of clusterings, and the use of a supervised method to evalu-

ate the benefit of adding such new information to the data sets.

The cascade evaluation of the SAMARAH method highlights that collaboration in-

creases the quality of the refined results in both cases: with and without the use of

background knowledge during the collaboration
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This paper is organized as follows. First, we describe work related to our approach

(Section 2). In particular, we introduce clustering methods using background know-

ledge (Section 2.4). Section 3 describes the collaborative clustering method SAMA-

RAH and presents the knowledge integration into it. Then, in Section 4, after a brief

introduction to cascade evaluation principles, the evaluations of the collaborative

clustering on various datasets from the UCI repository are detailed and discussed.

Finally conclusions and perspectives are drawn in Section 5.

2 Related works

In recent years, a lot of work has focused on the use of multiple clusterings to im-

prove the unsupervised classification process. Indeed, many different algorithms

exist and may provide different results from the same dataset. Consequently, it is

often difficult to design a single algorithm whose results reflect what users need

and expect. To cope with this problem, the ensemble clustering approaches (Sec-

tion 2.1) consist in designing function which summuarize several clustering into

a single one. The aim is to find the average partition which is the most similar to

all the results of the ensemble. However, the ensemble clustering methods only fo-

cus on the creation of the consensus and do not modify or create new partitions.

Consequently, they consider that the initial provided partititions are the only ones

necessary.

Alternatively, the multiobjective approaches (Section 2.2) see the clustering process

as an optimization of different objectives. In this methods, a vast amount of differ-

ent clustering results are explored, and the ones which best match the objectives

are keept. A genetic algorithm is generaly used and new clusterings are created by

mixing different results together. However, the objective use in the optimization are

not always the objetive of the algorithm used to create the initial partation, and thus

induce a new bias.

In the fuzzy collaborative clustering approaches (Section 2.3), the fuzzy c-means

alogrithm is use to cluster different views of the data in a collaborative way. This

work only focuses on the fuzzy c-means algorithm which limits its use. However, its

prodive strong theorical basis which better highlight the benefit of the collaboration

in specific environement.

The use of different clusterings result often require a strong implication of the user,

as there is a lot of parameter to choose. To reduce the need of the user and improve

the quality of the results, a lot of work has also focused on the use of background

knowledge (Section 2.4). Background knowlegde has many different representa-

tions like a set of labeled patterns, link between patterns, the number of expected

clusters, the expected size of the clusters, etc.
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2.1 Ensemble clustering

The aim of ensemble clustering is to generate multiple clusterings and to merge

them to produce a final consensus clustering. The initial clusterings are generally

generated by applying different algorithms, using different parameters of the same

algorithm, or by random sampling of the dataset. Ensemble clustering is often used

to improve the accuracy of the data clustering or to find complex shaped clusters.

Indeed, using multiple clusterings allows ensemble clustering algorithms to better

grasp the underlying distribution of the data space.

Strehl et al. [8] formulated the consensus clustering as the partition that maximize

the shared information among the ensemble of initial clusterings. This information

is measured through the Average Normalized Mutual Information (ANMI) which

uses the information theory framework. Three different clustering ensemble strate-

gies based on graph theory are presented : Cluster-based Similarity Partitioning

Algorithm (CSPA), Hyper Graph Partitioning Algorithm (HGPA), and Meta Clus-

tering Algorithm (MCLA). Further work reveals that these approaches are sensitive

to cluster sizes and seek only for balanced-size clusters (i.e. all the clusters tend to

have the same number of data objects).

Another approach, called evidence accumulation, is presented by Fred et al. [9].

The main idea is to produce a co-association matrix from the different initial clus-

terings. This matrix gives the information of the number of times that two data

objects have been put together in the same cluster. A hierarchical clustering is then

used, using the co-association matrix as a distance matrix, to cluster the objects

into the final partition. Various approaches using the co-association matrix have

been presented in the literature and seem to outperform the graph based methods.

Topchy et al. [10] described how to create a new feature space from an ensemble

clustering by interpreting the multiple clusterings as a new set of categorical fea-

tures. The KMEANS algorithm is applied on this new standardized feature space

using a category utility function to evaluate the quality of the consensus. Topchy et

al. [11] also demonstrated the efficiency of combining partitions generated by weak

clustering algorithms that use data projections and random data splits.

Hadjitodorov et al. [12] presented an evaluation of different heuristics to produce

the initial set of clusterings. The most often selected heuristics were random feature

extraction, random feature selection and random number of clusters assigned to

each member of the ensemble.

Ayad and Kamel [13] present a cumulative voting method to come to a consensus

from partitions with a variable number of clusters. They described several cumula-

tive vote weighting schemes and corresponding algorithms, to compute an empiri-

cal probability distribution summarizing the partitions. The empirical study shows

the efficiency of the method compared to others consensus clustering algorithms.
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More voting methods are given by Nguyen et al. [14]. Three iterative algorithms are

presented: Iterative Voting Consensus (IVC), Iterative Probabilistic Voting Consen-

sus (IPVC) and Iterative Pairwise Consensus (IPC). These algorithms use a feature

map built from the set of base clusterings and apply an EM-like consensus clus-

tering.

To directly address the correspondence problem (among the clusters of different

clusterings) in combining multiple clusterings, Zhang et al. [15] introduced a new

framework based on soft correspondence. The proposed algorithm provides a con-

sensus clustering method as well as correspondence matrices that give the relations

between the clusterings of the ensemble.

Hu et al. [16] proposed a method which uses Markov random fields and maximum

likelihood estimation to define a metric distance between clusterings. They present

two combining methods based on this new similarity to find a consensus.

More recently, Pedrycz et al. [17] proposed a consensus-driven fuzzy clustering

method. The authors consider the proximity matrices induced by the corresponding

partition matrices. An optimization scheme is presented in detail along with a way

of forming a pertinent criterion. This criterion governs an intensity of collaboration

to guide the process of consensus formation.

The ensemble clustering approaches do not generally address the problem of the

generation of the initial results, and the algorithms used to create the initial re-

sults are not used in the combination process. Consequently, ensemble clustering

approaches introduce a new bias, relative to the objective function chosen when

merging the different clusterings.

2.2 Multiobjective clustering

The aim of multiobjective clustering is to optimize simultaneously several clus-

tering criteria. The idea is to have a better grasp of the notion of cluster by explicitly

defining them with different objective functions. Algorithms are able to produce a

set of trade-off solutions between the different objectives. These solutions corres-

pond to different compromises of the objectives used.

Thus, the method MOCK (Multi-Objective Clustering with automatic K-determination)

[18] uses two objectives: the first one is to maximize the compactness of the clus-

ters, and the second one their connectivity. A multiobjective evolutionary algorithm

is used to optimize these two criteria simultaneously. The method uses a Pareto

based approach [19] which consists in selecting the non-dominated solutions of the

Pareto front. At the end of the evolution, the solutions on the Pareto front are the

set of solutions provided by the algorithm. A heuristic is then used to select the best

potential solution by using the number of clusters of the solutions on the front. In
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[20], the authors present how to integrate background knowledge through a third

objective optimization which uses a subset of labeled samples. This semisupervised

version outperformed the solution without background knowledge.

Faceli et al. [21] described the multiobjective method called MOCLE (Multi-Objective

Clustering Ensemble) which integrates the same objective function (maximization

of compactness and connexity of the clusters) as MOCK. But a special crossover

operator which uses ensemble clustering techniques is added: the purpose of the

MOCLE method is to produce a set of solutions which are a trade-off of the differ-

ent objectives, while the MOCK method produces a single solution.

Law et al. [22] proposed a method which uses different clustering methods using

different objectives. The final result is produced by selecting clusters among the

results proposed by the different methods. A resampling method is used to estimate

the quality of the clusters.

A semisupervised extension of MOCLE has also been proposed recently [23]. The

prior knowledge about a known structure of the data is integrated by means of an

additional objective function that takes external information into account. The new

objective aims at creating pure clustering according to known object class label.

The objective is optimized along with the previous one on the data and the use of

background knowlege improved the result of the method.

An evolutionary version of the KMEANS algorithm is used by [24], driven by a

semisupervised objective. This objective is a weighted sum of the mean squared er-

ror (MSE) and the purity of the clusters according to a subset of available samples.

Different criteria are investigated to quantify this purity.

In [22], the authors proposed a method which uses different clustering methods

using different objectives. The final result is produced by selecting clusters among

the results proposed by the different methods. A resampling method is used to

estimate the quality of the clusters.

2.3 Fuzzy collaborative clustering

A fuzzy clustering architecture is introduced by Pedrycz et al. [25], in which sev-

eral subsets of patterns can be processed together to find a common structure to

all of them. In this system, different subsets of the initial data are processed inde-

pendently. Then, each partition matrix is modified according to the other matrices

found: each result produced on a subset is modified according to results found on

the other subsets. Extensive experiments of the method are also proposed in [26]

along with algorithmic details. An application of this collaborative fuzzy clustering

method to semantic web content analysis has be proposed in [27]. The authors dis-

cuss of a collaborative proximity-based fuzzy clustering and show how this type
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of clustering is used to discover a structure of web information in the spaces of

semantics and data.

A fuzzy collaborative framework is also proposed [28], where rough sets are used

to create a collaborative paradigm in which several subsets of patterns are processed

together to find a common structure. A clustering algorithm is developed by inte-

grating the advantages of both fuzzy sets and rough sets. A quantitative analysis of

the experimental results is also provided for synthetic and real-world data.

To tackle the problem of distributed data, [29] proposed a framework to cluster

distributed classifier. They show that clustering distributed classifiers as a pre-

processing step for classifier combination enhances the achieved performance of

the ensemble.

2.4 Clustering with background knowledge

Many approaches have been investigated to use background knowledge to guide

the clustering process.

In constrained clustering, knowledge is expressed as must-link and cannot-link

constraints and is used to guide the clustering process. A must-link constraint gives

the information that two data objects should be in the same cluster, and cannot-link

means the opposite. This kind of knowledge is sometimes easier to obtain than a

classical subset of labeled samples. Wagstaff et al. [30] presented a constrained ver-

sion of the KMEANS algorithm which uses such constraints to bias the assignment

of the objects to the clusters. At each step, the algorithm tries to agree with the

constraints given by the user. These constraints can also be used to learn a distance

function biased by the knowledge about the links between the data objects [31].

The distance between two data objects is reduced for a must-link and increased

for a cannot-link. Huang et al. [32] presented an active learning framework for

semi-supervised document clustering with language modeling. The approach uses

a gain-directed document pair selection method to select cleverly the constraints.

In order to minimize the amount of constraints required, Griga et al. [33] defined

an active mechanism for the selection of candidate constraints. The active fuzzy

constrained clustering method is presented and evaluated on a ground truth im-

age database to illustrate that the clustering can be significantly improved with few

constraints. Recent works on constrained clustering are focused on evaluating the

utility (i.e the potential interest) of a set of constraints [34, 35].

Kumar and Kummamuru [36] introduced another kind of knowledge through a

clustering algorithm that uses supervision in terms of relative comparisons, e.g. x

is closer to y than to z. Experimental studies on high-dimensional textual data sets

demonstrated that the proposed algorithm achieved higher accuracy and is more ro-

bust than similar algorithms using pairwise constraints (must-link and cannot-link)
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for supervision.

Klein et al. [37] allowed instance-level constraints (i.e. must-link, cannot-link) to

have space level inductive implications in order to improve the use of the cons-

traints. This approach improved the results of the previously studied constrained

KMEANS algorithms and generally requires less constraints to obtain the same ac-

curacies.

Basu et al. [38] presented a pairwise constrained clustering framework as well as

a new method for actively selecting informative pairwise constraints, to get im-

proved clustering performance. Experimental and theoretical results confirm that

this active querying of pairwise constraints significantly improves the accuracy of

clustering, when given a relatively small amount of supervision.

Another way to integrate background knowledge is to use a small set of labeled

samples. Basu et al. [39] used a set of samples to seed (i.e. to initialize) the clus-

ters of the KMEANS algorithm. Two algorithms, Seeded KMEANS and Constrained

KMEANS, are presented. In the first one, the labeled samples are used to initialize

the clusters and the clusters are updated during the clustering process such as in the

KMEANS algorithm. In the second one, the labeled samples used during the initial-

ization stay in their assigned cluster, and only the unlabeled samples can change of

cluster during the cluster affectation step of KMeans. The choice between these two

approaches must be done according to the knowledge about noise in the dataset.

To tackle the problem of incorporating partial background knowledge into clus-

tering, when the labeled samples have moderate overlapping features with the un-

labeled data, Gao et al. [40] formulated a new approach as a constrained optimiza-

tion problem. The authors introduced two learning algorithms to solve the problem,

based on hard and fuzzy clustering methods. An empirical study shows that the pro-

posed algorithms improve the quality of clustering results despite a limited number

of labeled samples.

Basu et al. [41] also proposed a probabilistic model for semisupervised clustering,

based on Hidden Markov Random Fields (HMRF), that provides a principled frame-

work for incorporating supervision into prototype-based clustering. Experimental

results on several text data sets demonstrate the advantages of this framework.

Another approach, called supervised clustering [42], uses the class information

about the objects as an additional feature, to build clusters with a high class-based

purity. The goal of supervised clustering is to identify class-uniform clusters hav-

ing high probability densities. Supervised clustering is used to create summaries of

datasets and for enhancing existing classification algorithms.

Different kinds of background knowledge are introduced by Pedrycz et al. [43],

namely partial supervision, proximity-based guidance and uncertainty driven know-

ledge hints. The authors discuss about different ways of exploiting and effectively
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incorporating these background knowledge (known as knowledge hints) in the fuzzy

c-means algorithm. In [44], Bouchachia and Pedrycz presented an extention of

the fuzzy collaborative clustering which takes into account background knowledge

through labeled objects. One of the advantages of the method is to take into ac-

count the classes splitted in several clusters. During the collaboration step, the me-

thod identify if a class correspond to various clusters and add or remove clusters

according to this information. More recentely, Pedrycz [45] presented some con-

cepts and algorithms to collaborative and knowledge-based fuzzy clustering. The

fuzzy c-means algorithm (FCM) was used as an operational model to explain the

approach. Interesting linkages between information granularity, privacy and secu-

rity of data in collaborative clustering were also discussed. The problem of data

privacy when clustering multiple datasets was also recently discussed in [46]. An

application of fuzzy clustering with partial knowledge to organize and classify dig-

ital images is also proposed in [27]. The author present an operational frameork of

fuzzy clustering using the fuzzy c-means algorithm with an augemented objective

function using background knowledge. Experiments are carried out on collections

of images composed of 2000 images.

In this Section, we presented different works on using multiple clusterings: ensem-

ble clustering (Section 2.1), multi-objective clustering (Section 2.2) and collabo-

rative fuzzy-clustering (Section 2.3). The ensemble clustering approaches do not

generally address the problem of the generation of the initial results, and the al-

gorithms used to create the initial results are not used in the combination process.

Consequently, ensemble clustering approaches introduce a new bias, relative to the

objective function chosen when merging the different clusterings. The same prob-

lem appears with multi-objective clustering approaches where the optimized ob-

jectives are not the objectives of the methods used to generate the initial results.

Collaborative fuzzy-clustering offers strong theorical basis on collaborative clus-

tering but is only developped for fuzzy c-means which limit its use.

Finaly, we presented several work on the integration of background knowledge in

clustering algorithm (Section 2.4). Different kinds of representation of the know-

ledge and different kinds of integration exist. However, every work claims that

using background knowledge improves substancialy the results of clustering algo-

rithms. The challenge task is to design methods able to leverage different kinds

of knowledge. We prorpose such a method in the next section, where the collabo-

rative clustering method SAMARAH is presented along with the different ways to

integrate background knowledge into it.

3 Knowledge-guided collaborative clustering

As seen in Section 2, many techniques for combining clusterings exist. Unfortu-

nately, only a few of them can handle the combination of clusterings having differ-

9



ent numbers of clusters, because there is no obvious correspondence between the

clusters of the different results.

Moreover, the proposed methods almost always aim to build a consensus among

an ensemble of partitions or clusterings, without casting doubt on their quality. We

think that a first step of collaboration of the clustering method before the consensus

computation can help to obtain better results.

Thus, we propose a method consisting of a collaborative clustering process, based

on an automatic and mutual refinement of several clustering results.

In this section, we first present the existing unsupervised collaborative clustering

method called SAMARAH. Then, we present how we integrate knowledge into this

collaborative clustering process.

3.1 Collaborative process overview

Computing a consensual result from clustering results having different numbers of

clusters is a difficult task. This is mainly due to the lack of a trivial correspondence

between the clusters of the different results. To address this particular problem,

we present a framework where different clustering methods work together, in a

collaborative way, to find an agreement about their proposals.

This collaborative process consists of an automatic and mutual refinement of the

clustering results, until all the results have almost the same number of clusters, and

all the clusters are statistically similar with a good internal quality. At the end of

this process, as the results have comparable structures, it is possible to define a

correspondence function between the clusters, and to apply a unifying technique,

such as a voting method [47].

Before the description of the collaborative method, we introduce the correspon-

dence function and the similarity measure used in the system.

There is no problem to associate classes of different supervised classifications, as

a common set of class labels is given for all the classifications. Unfortunately, in

the case of clustering, the results may not have a same number of clusters, and

no information is available about the correspondence between different clusters of

different clusterings.

To address this problem, we have defined an intercluster correspondence function,

which associates to each cluster from a result, a cluster from each of the other

results. This cluster, in each result, is called the corresponding cluster.

Let R̆ = {Ri}1≤i≤m be the set of results given by the m different algorithms. Let
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{Ci
k}1≤k≤ni

be the clusters of the result Ri.

The corresponding cluster CC(Ci
k,R

j) of Ci
k in the result Rj , i 6= j, is defined as

CC
(

Ci
k,R

j
)

= arg max
C
j

l
∈Rj

S
(

Ci
k, C

j
l

)

(1)

where S is the intercluster similarity which evaluates the similarity between two

clusters of two different results.

A large number of criteria exists to evaluate the similarity between two clustering

results, like the Kappa index [48] or the Rand index [49], and more recently the

Jaccard index[50] or the Fowlkes-Mallows index [51]. However, these criteria only

give a global evaluation of the similarity between two partitions. In order to find

the most similar cluster of one result in another one, we have to use an index based

on the similarity between the two results and the similarity between each cluster of

each result. To achieve this goal, we introduced the intercluster similarity between

two clusters of two different results, which takes into account both aspects: the

similarity through the confusion matrix between the two results (α in Eq.3), and the

distribution of the cluster into the clusters of the second result through a distribution

coefficient (ρ in Eq.3).

The confusion matrix (or matching matrix) is commonly used to compare two par-

titions or clustering results. The confusion matrix Ωi,j between two results Ri and

Rj is a ni × nj matrix defined by:

Ωi,j =















α
i,j
1,1 . . . α

i,j
1,nj

...

α
i,j
ni,1 . . . αi,j

ni,nj















where α
i,j
k,l =

∣

∣

∣Ci
k

⋂

Cj
l

∣

∣

∣

|Ci
k|

(2)

The intercluster similarity between two clusters Ci
k and Cj

l is evaluated by observing

their intersection (Eq. 2) and by taking into account the distribution ρ (Eq. 4) of the

cluster Ci
k in all the clusters of Rj as follows:

S
(

Ci
k, C

j
l

)

= ρ
i,j
k α

j,i
l,k (3)

where

ρ
i,j
k =

nj
∑

r=1

(αi,j
k,r)

2 (4)

The entire collaborative clustering process is broken down in three main phases:
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(1) Initial clusterings - Each method computes its result independently.

(2) Results refinement - A phase of convergence of the results, which consists of

conflict evaluations and resolutions, is iterated as long as the quality of the

results and their similarity increase:

(a) Detection of the conflicts, by evaluating the dissimilarities between cou-

ples of results;

(b) Local resolution of some conflicts;

(c) Global management of the local modifications in the global result (if they

are relevant).

(3) Consensus computation - The refined results are unified using a voting algo-

rithm.

The entire algorithm of the method is detailed and explained in Algorithm 1.

Algorithm 1 Collaborative clustering process

1: Let R̆ = {Ri}1≤i≤m be the initial set of clusterings

2: Let K̆ = conflicts(R̆) be the set of conflicts in R̆ as defined in Eq.5

3: Let R̆best := R̆ be the best temporary solution

4: Let K̆best := K̆ be the conflicts of the best temporary solution

5: while |K̆| ≥ 0 do

6: Ki,j
k := argmaxKr,s

l
∈K̆ CI (Kr,s

l )

7: R̆ := conflictResolution
(

R̆,Ki,j
k

)

(Alg.2)

8: if Γ(R̆) > Γ(R̆best) then

9: R̆best := R̆

10: K̆best := K̆ := conflicts(R̆)
11: bt := 0
12: else if R̆t+1 = R̆t then

13: K̆ := K̆ \ Ki,j
k

14: else

15: bt := bt + 1
16: K̆ := K̆ \ Ki,j

k

17: if bt > |K̆| then

18: R̆ := R̆best

19: K̆ := K̆best \ Ki,j
k

20: end if

21: end if

22: end while

23: consensus computation
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3.1.1 Initial clusterings

Each clustering method computes a clustering of the data using its initial param-

eters: all data objects are grouped into different clusters. According to the base

method selected, different parameters need to be set.

3.1.2 Results refinement

(a) Detection of the conflicts - The detection of the conflicts consists in seeking in

R̆ all the couples (Ci
k,R

j), i 6= j, such as S (Ci
k, CC (Ci

k,R
j)) < 1, which means

that the cluster Ci
k can not be exactly found in the result Rj .

conflicts(R̆) =
{

(Ci
k,R

j) : i 6= j, S
(

Ci
k, CC

(

Ci
k,R

j
))

< 1
}

(5)

Each conflict Ki,j
k is identified by one cluster Ci

k and one result Rj . Its importance,

CI
(

Ki,j
k

)

, is computed according to the intercluster similarity:

CI
(

Ki,j
k

)

= 1− S
(

Ci
k, CC

(

Ci
k,R

j
))

(6)

(b) Local resolution of some conflicts - The conflict resolution algorithm is de-

tailed precisly in Algorithm 2.

The most important conflict (i.e. having the greatest conflict importance) is selected

in the set of existing conflicts according to the conflict importance coefficient (Eq.

6).

The local resolution of a conflict Ki,j
k consists in applying an operator on each result

involved in the conflict, Ri and Rj , to try to improve their similarity. The operators

which can be applied to a result are the following:

• merging of clusters: some clusters are merged together,

• splitting of a cluster into subclusters: a clustering is applied to the objects of a

cluster to produce subclusters,

• reclustering of a group of objects: one cluster is removed and its objects are

reclassified in all the other existing clusters.

The operator to apply is chosen according to the number of clusters involved in the

conflict, i.e. the number of clusters such as S(Ci
k, C

j
l ) > pcr, where 0 ≤ pcr ≤ 1

is given by the user. The pcr parameter represents the percentage above which the

intersection between the two clusters is considered as significant. For example,

pcr = 0.2 means that if Ci
k ∪ Cj

l represents less than 20% of the objects of Ci
k, Cj

l is

not considered as a significant representative of Ci
k.
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However, the application of the two operators (each one on a different result) is

not always relevant. Indeed, it does not always increase the similarity of the results

involved in the processed conflict. Moreover, the iteration of the conflict resolutions

step may lead to a trivial but consensual solution. For example, the clusterings can

converge towards a solution where all the results have only one cluster, including

all the objects to classify, or towards a solution where all the results have one cluster

for each object. These two solutions are not relevant and must be avoided.

So, we defined a criterion γ, called local similarity criterion, to evaluate the simi-

larity between two results and their quality. It is based on the intercluster similarity

S (Eq. 3) and a quality criterion δ (detailed in Section 3.2, Eq. 23 ). The criterion δ

evaluates the quality of the clustering (e.g. inertia, number of clusters, . . . ) to avoid

that the method ends up with a trivial solution as those presented before:

γi,j =
1

2

(

ps.

(

1

ni

ni
∑

k=1

ω
i,j
k +

1

nj

nj
∑

k=1

ω
j,i
k

)

+ pq.
(

δi + δj
)

)

(7)

where

ω
i,j
k = S

(

Ci
k, CC

(

Ci
k,R

j
))

(8)

and, pq and ps are given by the user (pq + ps = 1).

Let Ri′ (resp. Rj′) be the result Ri (resp. Rj) after having applied the opera-

tors. The local similarity criterion is computed on each of the 4 couples of results:

(Ri,Rj), (Ri′ ,Rj′), (Ri′,Rj), (Ri,Rj′). The best couple is accepted as the local

solution of the conflict.

Algorithm 2 Conflict resolution

Require: R̆ the ensemble of clusterings

Require: Ki,j
k the conflict to solve

Ensure: R̆⋆ = conflictResolution
(

R̆,Ki,j
k

)

the new ensemble after the

resolution

let κ = {Cj
l , ∀1 ≤ l ≤ nj : S(C

i
k, C

j
l ) > pcr}

if |κ| > 1 then

Ri′ = Ri \ {Ci
k} ∪ split(Ci

k, |κ|)
Rj′ = Rj \ κ ∪ merge(κ,Rj)

else

Ri′ = recluster(Ri \ {Ci
k})

end if

{Ri⋆,Rj⋆} = argmax γI,J for I ∈ {i, i′}, J ∈ {j, j′}
R̆⋆ = R̆ \ {Ri,Rj} ∪ {Ri⋆,Rj⋆}
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(c) Global management of the local modifications - After the resolutions of the

local conflicts, a global application of the modifications proposed by the refinement

step is decided if their application improve the quality of the global result. The

global agreement coefficient Γ is evaluated according to all the local similarities

between each couple of results as follows:

Γ =
1

m

m
∑

i=1

Γi (9)

where

Γi =
1

m− 1

m
∑

j=1
j 6=i

γi,j (10)

Three cases can occur:

• The resolution step gives a better solution than all previous ones (line 8). In this

case, the best temporary solution is the one proposed by the conflict resolution

step. As the global results have changed, the conflicts list is recomputed (line

10).

• The resolution step proposes the same solution which means that no operators

application is relevant to solve this conflict (line 12). Then, the conflict is re-

moved from the list and the algorithm iterates.

• If the solution proposed by the conflict resolution gives a worth global agreement

coefficient, it is accepted to avoid to fall in a local maximum (line 14). But, if no

conflict resolution enables to find a better solution (after having resolved the first

half part of the conflicts list), all the results are reinitialized to the best temporary

solution (line 17).

The process is iterated until some conflicts still remain in the conflicts list (line 5).

3.1.3 Consensus computation

After the refinement step, all the results tend to have the same number of clusters,

which should be similar. Thus, in a final step, we use an original voting algorithm

to compute a consensus result from the different results. This multi-view voting

algorithm enables to combine in one unique result, many different clusterings that

do not have necessarily the same number of clusters.

The basic idea is that for each object to cluster, each result Ri votes for the clus-

ter it has found for this object, Ci
k for example, and for its corresponding cluster

CC(Ci
k,R

j) in each other result Rj . The maximum of these values indicates the

best cluster for the object, for example Cj
l . It means that this object should be in the

cluster Cj
l according to the opinion of the majority of the methods.
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For each object p a voting matrix is computed as:

V(p) =
{

(vi1(p), . . . , v
i
ni
(p)), 1 ≤ i ≤ m

}

(11)

where

vik(p) =
m
∑

j=1

vote(p, Ci
k,R

j) (12)

and

vote(p, Ci
k,R

m) =



























1 if (i = m and p ∈ Ci
k)

or p ∈ CC(Ci
k,R

m)

0 else

(13)

The object p is then assigned to the cluster V̆ , defined as:

V̆(p) = argmax
Ci
k

vik(p) (14)

3.2 Background knowledge integration

In this section we explain how we integrated background or domain knowledge

into our collaborative clustering process. The aim is to make the method able to

deal with two types of constraints: class label-based constraints and relationship be-

tween objects-based constraints (also called link-constraints). In class label-based

constraints, a small subset of labeled samples is available. The goal is to try to have

only one class represented in each cluster. In link-constraints, the goal is to respect

the constraints provided on the objects.

Firstly (Section 3.2.1) , we will see some examples of background knowledge in-

tegration present in the literature and then (Section 3.2.2) we will see how we inte-

grated it into the SAMARAH method.

3.2.1 Examples of knowledge integration

In the literature, different methods have already been proposed to take into account

background knowledge. For example, to integrate link-constraints in the algorithm

Pairwise Constrained K-means, Basu et al. [41] defines the following objective

function:
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objpckm =

ni
k
∑

j=1

dispersion(Ci
j)+

∑

(xi,xj)∈M

[li 6= lj ]

+
∑

(xi,xj)∈C

[li = lj] (15)

where M is the set of must-link constraints and C is the set of cannot-link cons-

traints. This objective function includes a dispersion measure computed as the clas-

sical mean squared error (first term), but also two other components (second and

third terms) reflecting the agreement according to the sets of available constraints

(M and C). The functions [li 6= lj ] and [li = lj ] return 1 if the constraint between

the couple of objects (xi, yi) is respected, and 0 else.

An approach is proposed by Demiriz et al. [24] to integrate class label-based cons-

traints. This method uses a genetic algorithm to minimize an objective function,

which is a geometric mean between cluster dispersion and cluster impurity accord-

ing to available samples. It is defined as:

objgen =

ni
k
∑

j=1

(

α× dispersion(Ci
j) + β × impurity(Ci

j)
)

(16)

where the cluster dispersion is usually the mean squared error, and the cluster im-

purity is a measure of the impurity of a cluster according to its composition of

available labeled samples. This impurity measure is low if all the known samples

of a cluster are from the same class. On the contrary, the value increases as the

cluster contains objects from various classes (and the cluster will be considered as

impure). This impurity is evaluated thanks to the Gini index:

gini(Ci
k) = 1−

nc
∑

l=0

(

Pkl

ni
k

)2

(17)

where Pkl is the number of objects belonging to the lth class in the cluster Ci
k, and

ni
k is the number of objects in the cluster Ci

k. The weights α and β in Eq. 16 allow

the user to choose if he prefers to give more or less importance to the available

knowledge.

In supervised clustering [42], a similar idea is used. A penalty measure is added

to the impurity measure to deal with the case of various number of clusters in the

results and avoid results with very high or very low number of clusters:

objsc =

ni
k
∑

j=1

(

α× impurity(Ci
j) + β × penalty(Ci

j)
)

(18)
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where the impurity measure is defined by:

impurity(Ci
k) =

1

n

nc
∑

l=0
l 6=cmax

Pkl (19)

where Pkl is the number of objects belonging to the lth class in the cluster Ci
k, ni

k is

the number of objects in the cluster Ci
k, and cmax is the most represented class in

the cluster Ci
k

cmax = argmax
l

(Pkl) (20)

The penalty is defined as

penalty(Ck) =



























√

nk−nc

n
if nk ≥ nc

0 otherwise

(21)

where nc is the number of classes in the known samples. Here again, the weights α

and β in Eq. 18 are chosen by the user.

3.2.2 Knowledge integration in the SAMARAH method

In the SAMARAH method, during the refinement step, the local similarity criterion

γi,j (Eq. 7) is used to evaluate if the modifications of a couple of results is relevant.

This criterion includes a quality criterion δi which represents the quality of the re-

sult Ri. This criterion is used to balance the refinement step between the similarity

and the quality of the expected results. It is computed for two aspects of the results:

the internal and external qualities. The internal evaluation consists in evaluating the

quality of the result through a unsupervised measure. The external evaluation con-

sists in evaluating the quality of a result thanks to external knowledge, such as an

estimation of the number of clusters, some labeled samples or some constraints.

The previous version of SAMARAH already includes internal knowledge but only

includes an estimation of the number of clusters as external knowledge. To take

into account more external knowledge, we have extended the quality criterion by

integrating an evaluation of the agreement of the results with different kinds of

constraints as follows:
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δi =
Nc
∑

c=1

qc(R
i)× pc (22)

where Nc is the number of constraints to respect, qc is the criterion used to evaluate

the result according to the c-th constraint (qc(.) ∈ [0, 1]) and pc is the relative

importance given by the user to the c-th constraint (p1 + p2 + · · ·+ pNc
= 1). By

default, each constraint is given with a weight of 1
Nc

.

Thus, any constraint can be integrated in the process if it can be defined as a func-

tion taking its values in [0, 1]. We described below some frequently encountered

constraints that can be used.

Cluster quality-based constraints - These constraints are based on the intrinsic

quality of the clusters such as inertia or predictivity and also take into account

the number of clusters. Indeed criterion such as inertia or compacity need to be

balanced with an evaluation of the number of clusters. An example of a criterion

which includes quality of the clusters and the number of clusters is given below:

qqb(R
i) =

pi

ni

ni
∑

k=1

τ ik (23)

where ni is the number of clusters of Ri, τ ik defines the internal quality of the k-th

cluster and pi is the external quality of the result. The internal quality of the k-th

cluster is given as:

τ ik =















0 if 1
ni
k

∑ni
k

l=1

d(xi
k,l

,gi
k
)

d(xi
k,l

,gi)
> 1

1− 1
ni
k

∑ni
k

l=1

d(xi
k,l

,gi
k
)

d(xi
k,l

,gi)
else

(24)

where ni
k is the cardinal of Ci

k, gik is the gravity center of Ci
k, gi is the gravity center

of another cluster, the closest from xi
k,l and d is the distance function. The measure

is computed on each cluster to evaluate the overall quality of the clustering result.

To take into account the number of clusters ni, the criterion pi is defined as:

pi =
nsup − ninf

|ni − ninf|+ |nsup − ni|
(25)

where [ninf, nsup] is given by the user, as the range of expected number of clusters.

Class label-based constraints - These constraints correspond to the case where

a few sets of labeled samples are available. To evaluate the agreement between

results and such constraints, we can use any index which enables us to evaluate the
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similarity between a clustering and a labeled classification (where all the classes

are known, and each object belongs to one of these classes). In our case, we only

compare results with a given partial partition R which represents the known labeled

objects. In the implementation of the SAMARAH method, we mainly used the Rand

index [49] and another index known as WG agreement index [52]. Information

theoric measures could also be used [53].

The Rand index is a measure of the similarity between two data partitions defined

by:

Rand(Ri,R) =
a+ b
(

n

2

) (26)

where n is the number of objects to classify, a is the number of pairs of objects

which are in the same cluster in Ri and in the known result, and b is the number

of pairs of objects which are not in the same cluster in the proposed result Ri and

in the known result Rj . The sum of these two measurements (a and b) can been

seen as the number of times that the two partitions are in agreement. This index

takes values in [0, 1]: 1 indicates that the two partitions are identical. The defined

constraint is:

qrand(R
i) = Rand(Ri,R) (27)

The WG agreement index is defined by

WG(Ri,R) =
1

n

ni
∑

k=1

S
(

C i
k,R

j
) ∣

∣

∣C i
k

∣

∣

∣ (28)

where n is the number of objects to classify and Rj is the reference partition (e.g.

labeled classification, another clustering, etc.). This index takes values in [0, 1]: 1
indicates that all the objects in the clustering Ri are well classified according to the

class label of the objects in Rj . The defined constraint is:

qwg(R
i) = WG(Ri,R) (29)

Link-based constraints - These constraints correspond to the case where know-

ledge is expressed as must-link and cannot-link constraints between objects (see

[30, 31]). In this case, the ratio of respected constraints against violated constraints

can easily be computed as

qlink(R
i) = 1

nr

nr
∑

j=1

v(Ri, lj) (30)

where nr is the number of constraints between the objects, lj is a must-link or
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cannot-link constraint and v(Ri, lj) = 1 if Ri respects the constraint lj , 0 other-

wise.

Note that such constraints can be extracted from class-label constraints. For exam-

ple, a must-link constraint could be created for all the couples of objects belonging

to the same cluster, and a cannot-link constraint could be created for all the couples

of objects belonging to different clusters.

3.3 Example

In this section, we present a simple example on a 2D dataset. The aim is to illustrate

how the different kinds of knowledge presented in the previous section can improve

the collaboration between the clustering methods. We used the 9-Diamonds dataset

(Fig. 1) from [54] which is available for download on the website of the machine

learning group of the University of Houston 1 .

We used the KMeans algorithm to cluster this dataset in various number of clusters

ranging from 2 to 18 (9 being the actual number of cluster). Then we considered

couple of clustering results and we computed for each couple a value of agreement

between the two clustering results. The goal is illustrate the search space of the dif-

ferent possible solutions (i.e. couple of clustering results). In the followings figures

(Fig. 2, 3, 4, 5) the higher the values are, the higher the agreement is. We illustrated

here how different kinds of knowlege can modify the shape of the search-space and

consequently, help the collaboration.

The Fig. 2 presents the local agreement using only the similarity of the result (7).

One can see that using only the similarity creates several local minima in this search

space as the results with a low number of clusters are strongly similar. To reduce

this problem, the knowledge of the range of expected number of clusters can be

used.

The Fig. 3 presents the local agreement using the similarity along with some know-

ledge about the number of clusters (25) (i.e set here to [7; 11]). One can see that the

search space leverages this information and that the value for the number of cluster

outsite the range are strongly reduced.

If some labeled patterns are available, a measure of quality of the clustering can

be added to the evaluation to guide the collaboration. This is illustrated on Fig. 4

where the WG index (29) is computed assuming 5% of labeled objects. On can see

that this information improves substantialy the shape of the search space.

Finaly, different kinds of knowledge can be used together as in Fig. 5 where the

1 http://www.tlc2.uh.edu/dmmlg/
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Fig. 1. 9-Diamonds dataset

range of expected number of clusters along with the knowlege of some labeled

objets are used. The resulting search-space is cleary easier to explore and contains

less local minimas, the optimal solution (9 clusters) being strongly highlighted.
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Fig. 2. The search-space using only the similarity.
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Fig. 3. The search-space using the similarity and the range of expected number of clusters.
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Fig. 4. The search-space using the knowlege of some labeled patterns.
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Fig. 5. The search-space using the range of expected number of clusters and the knowledge

of labeled patterns.

4 Evaluation of the proposed method

4.1 Protocol of experiments

In this section, we present two evaluations of the method proposed in this paper.

The aim of these experiments is twofold. Firstly, we want to show the relevance of

collaborative clustering to improve the quality of a set of clustering results, thanks

to our collaborative process. Secondly, we want to show the interest in integrating

background knowledge in this collaboration, to produce even better results.

Two kinds of experiment have been carried out:

(1) The first one consisted in the evaluation of the quality of a set of clustering

results, first, without collaboration, then with collaboration, and finally, with

collaboration integrating background knowledge. Different classical quality

indexes were used to evaluate the quality of these sets of clustering results.

The details of these experiments are described in Section 4.3.

(2) The second one consisted in the evaluation using the Cascade Evaluation ap-

23



proach [7]. This approach is based on the enrichment of a set of datasets by

the clustering results, and the use of a supervised method to evaluate the in-

terest of adding such new information to the datasets. The details of these

experiments are described in Section 4.4.

For all the experiments with SAMARAH, we used the KMEANS algorithm [55] as

base clustering method (Section 3.1). Five methods were randomly initialized with

a number of clusters randomly picked in [2; 10]. The refinement step was set up to

find results with a number of clusters in [2; 10] (i.e. ninf = 2, nsup = 10 in Eq. 25).

To evaluate benefits of the background knowledge integration in the refinement step

as presented in Section 3.2, we randomly picked up 10% of the datasets as a subset

of available samples. This subset was used to drive the refinement step through

the quality evaluation of the results. The datasets used in both the experiments are

presented in the next section.

4.2 Data sets

Seven different datasets from the UCI machine learning repository [56] were used

in the experiments:

(1) Iris data set, which contains 3 classes of 50 instances, where each class refers

to a type of iris plant;

(2) Wine database, which contains 3 classes of wines, characterized by 13 chem-

icals attributes (178 instances);

(3) Ionosphere database, which consists in 351 information about 16 high-frequency

antennas classified into 2 classes;

(4) Pima Indians Diabetes database, referred as Pima, which consists in 768 pa-

tients discriminated into 2 classes according to World Health Organization

criteria;

(5) Sonar, which has been used to learn to discriminate between sonar signals

bounced off a metal cylinder and those bounced off a roughly cylindrical rock

(2 classes, 307 instances), using 60 real attributes (each attribute represents

the energy within a particular frequency band);

(6) Vehicle data set, which contains 4 classes of 946 vehicles to classify given a

set of 18 features extracted from their silhouette at different angles;

(7) Segment database, composed of 2500 instances of 3×3 regions extracted from

7 images of texture; each region is characterized by 19 attributes.
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4.3 Comparison using quality indexes

In this first experiment, we evaluated the quality of the sets of clustering results,

without collaboration (referred as ¬col), refined with collaboration (referred as col),

and refined with collaboration using background knowledge (referred as kcol). We

used six different quality indexes to evaluate the quality of each set:

• the Rand index [49]

• the Jaccard index [50]

• the Falks-Mallow index [51]

• the Wemmert-Gançarski index [52]

• the F-Measure index [51]

• the Kappa index [48]

For each set of clusterings (¬col, col and kcol), the mean of the quality of each

element of the set was computed, to define the quality of the set. We carried out

100 runs computing at each run the set of initial clusterings (with the parameters

defined in Section 4.1) and the refined set through the collaborative process and

through the collaborative process using background knowledge. The evaluation of

the results are given in Table 1, where the values correspond to the means, the

standard deviations and the maximum accurary of the results on the 100 runs. On

Fig. 6, we illustrate the results for the Rand index for all the experiments and all

the datasets.

As one can see, the quality of the refined set (col) is almost always better than the

quality of the unrefined set (¬col). Indeed, for each dataset the quality is better

according to at least 5 out of the 6 quality indexes. Furthermore, the quality of

the sets provided by the collaboration process using background knowledge (kcol)

gives even better results.

All these results show, firstly, that the refinement step of our collaborative clustering

method improve the quality of the results, and secondly, that the use of background

knowledge in the collaboration helps the process to produce better results.

4.4 Comparison using cascade evaluation

The cascade evaluation [7] is a new approach to evaluate the quality and the interest

of clustering results. The method is based on the enrichment of a set of datasets by

the results of clustering, and the use of a supervised method to evaluate the interest

of adding such new information to the datasets.

The method consists in evaluating and comparing the result of a supervised clas-

sifier when it is helped or not by the information issued from a clustering. If the
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result of the classifier is improved by the information added by the clustering, the

authors assume that the clustering embeds a meaningful information. Furthermore,

different clustering results can be compared, the one improving the most the result

according to the classifier accuracy is consequently the one embedding the most

interesting information.

We used this paradigm to conduct a cascade evaluation of the collaborative clus-

tering. The aim of this evaluation is to show the relevance of the refinement step

presented above. We want to see if the refinement improves the different results

through the collaborative step. We are consequently interested to show that the set

of refined results contains a more accurate knowledge compared to the initial unre-

fined set of results.

To evaluate the benefits of using the information provided by our method in su-

pervised algorithms, we created different datasets from the initial one, and then

we classified them with a supervised algorithm. Let D be the initial dataset to

classify : D = {oi}1≤i≤l where the object oi is characterized by the m attributes
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A1(oi), . . . , Am(oi). Let Cj(oi) be the cluster of the object oi in the j th initial clus-

tering result. Let Rj(oi) be the cluster of the object oi in the j th refined clustering

result. Let Kj(oi) be the cluster of the object oi in the j th refined with knowledge

clustering result. From each initial dataset D, three datasets were created to inte-

grate knowledge provided from the different clusterings:

• D1 = {O1
i }1≤i≤l

where O1
i = (A1(oi), . . . , Am(oi), C1(oi), . . . , Cn(oi))

• D2 = {O2
i }1≤i≤l

where O2
i = (A1(oi), . . . , Am(oi),R1(oi), . . . ,Rn(oi))

• D3 = {O3
i }1≤i≤l

where O3
i = (A1(oi), . . . , Am(oi),K1(oi), . . . ,Kn(oi))

As supervised algorithm, we chose the tree-based classifier C4.5 [57] for his ability

to handle numeric and categorical attributes, and we made 100 runs of 10-fold cross

validations, each on the three versions of each dataset.

The results of this evaluation are presented in Table 2 where the values are the

average values, the standard deviations and the maximum values of the accuracy for

the four versions of each dataset (i.e. the normal dataset D, the one embedded with

the clustering D1, the one embedded with the refined clustering D2, and the one

embedded with the refined clustering integrating background knowledge D3). The

histograms of the accuracies are presented on Fig. 7. One can see that the datasets

embedded by the refined clusterings gives the best results on 6 of the 7 datasets.

One can notice that the refinement step degrades the results without clustering only

when the initial clustering results also degrade the result. This can be explained by

the lack of concordance between the class of the objects and their distribution in

the data space. Consequently, adding the clustering information just added noise to

the dataset.

Furthermore, one can observe an increase of the stability, as the standard deviation

significantly decreases, when the refined results are used instead of the initial ones.

The results refined using background knowledge are better in means than the results

obtained without it. However the results are less stable (higher standard deviation)

on the half of the datasets. This can be explained by the high degree of randomness

in the selection of the samples used as background knowledge. If these samples are

well distributed on the data space and among the different clusters, they will carry

a better information and will make helping the collaboration easier. We assume that

this issue can be solved if the samples are actually provided by the expert itself (and

not selected randomly). The expert should be able to provide high quality examples.

An active learning approach could also be used where the expert could, during the

collaboration, gives information about the clusters involved in strong conflict.
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Table 1

Quality of the results of the different sets of results ¬col, col and kcol.
Rand Jacc FM WG F-M

iris (¬col) 0.73 (±0.03) ⋄ 0.78 0.44 (±0.02) ⋄ 0.46 0.64 (±0.02) ⋄ 0.65 0.54 (±0.03) ⋄ 0.59 0.60 (±0.01) ⋄ 0.62

(col) 0.85 (±0.00) ⋄ 0.87 0.64 (±0.01) ⋄ 0.67 0.78 (±0.00) ⋄ 0.80 0.69 (±0.03) ⋄ 0.72 0.78 (±0.01) ⋄ 0.80

(kcol) 0.86 (±0.01) ⋄ 0.87 0.65 (±0.02) ⋄ 0.68 0.79 (±0.01) ⋄ 0.81 0.71 (±0.03) ⋄ 0.74 0.79 (±0.02) ⋄ 0.81

wine (¬col) 0.68 (±0.09) ⋄ 0.76 0.46 (±0.05) ⋄ 0.55 0.66 (±0.03) ⋄ 0.72 0.59 (±0.04) ⋄ 0.66 0.62 (±0.04) ⋄ 0.69

(col) 0.88 (±0.04) ⋄ 0.94 0.71 (±0.09) ⋄ 0.83 0.83 (±0.06) ⋄ 0.91 0.75 (±0.06) ⋄ 0.83 0.83 (±0.06) ⋄ 0.91

(kcol) 0.90 (±0.02) ⋄ 0.94 0.76 (±0.05) ⋄ 0.83 0.86 (±0.03) ⋄ 0.91 0.79 (±0.07) ⋄ 0.87 0.86 (±0.03) ⋄ 0.91

ionosphere (¬col) 0.56 (±0.01) ⋄ 0.58 0.34 (±0.03) ⋄ 0.38 0.53 (±0.03) ⋄ 0.57 0.30 (±0.03) ⋄ 0.32 0.50 (±0.04) ⋄ 0.55

(col) 0.59 (±0.03) ⋄ 0.61 0.34 (±0.08) ⋄ 0.41 0.53 (±0.07) ⋄ 0.59 0.21 (±0.05) ⋄ 0.28 0.50 (±0.09) ⋄ 0.58

(kcol) 0.59 (±0.01) ⋄ 0.60 0.37 (±0.03) ⋄ 0.39 0.55 (±0.02) ⋄ 0.57 0.22 (±0.03) ⋄ 0.26 0.54 (±0.03) ⋄ 0.56

pima (¬col) 0.48 (±0.00) ⋄ 0.49 0.22 (±0.02) ⋄ 0.25 0.38 (±0.02) ⋄ 0.41 0.17 (±0.01) ⋄ 0.18 0.35 (±0.03) ⋄ 0.39

(col) 0.49 (±0.00) ⋄ 0.50 0.29 (±0.00) ⋄ 0.30 0.46 (±0.00) ⋄ 0.46 0.20 (±0.01) ⋄ 0.21 0.45 (±0.01) ⋄ 0.46

(kcol) 0.50 (±0.00) ⋄ 0.50 0.29 (±0.01) ⋄ 0.30 0.46 (±0.01) ⋄ 0.47 0.20 (±0.01) ⋄ 0.20 0.45 (±0.01) ⋄ 0.46

sonar (¬col) 0.51 (±0.01) ⋄ 0.52 0.25 (±0.04) ⋄ 0.27 0.41 (±0.04) ⋄ 0.47 0.22 (±0.04) ⋄ 0.29 0.39 (±0.05) ⋄ 0.45

(col) 0.51 (±0.00) ⋄ 0.51 0.26 (±0.02) ⋄ 0.28 0.42 (±0.02) ⋄ 0.44 0.20 (±0.01) ⋄ 0.021 0.41 (±0.02) ⋄ 0.43

(kcol) 0.51 (±0.01) ⋄ 0.52 0.31 (±0.05) ⋄ 0.37 0.47 (±0.06) ⋄ 0.54 0.16 (±0.03) ⋄ 0.18 0.47 (±0.06) ⋄ 0.54

vehicle (¬col) 0.57 (±0.06) ⋄ 0.65 0.21 (±0.01) ⋄ 0.22 0.37 (±0.02) ⋄ 0.40 0.25 (±0.05) ⋄ 0.31 0.35 (±0.01) ⋄ 0.36

(col) 0.58 (±0.07) ⋄ 0.69 0.22 (±0.01) ⋄ 0.24 0.38 (±0.02) ⋄ 0.40 0.25 (±0.06) ⋄ 0.22 0.35 (±0.01) ⋄ 0.39

(kcol) 0.65 (±0.02) ⋄ 0.66 0.22 (±0.01) ⋄ 0.24 0.37 (±0.01) ⋄ 0.39 0.16 (±0.01) ⋄ 0.17 0.37 (±0.01) ⋄ 0.39

segment (¬col) 0.65 (±0.06) ⋄ 0.71 0.30 (±0.03) ⋄ 0.34 0.49 (±0.03) ⋄ 0.53 0.46 (±0.03) ⋄ 0.49 0.45 (±0.04) ⋄ 0.49

(col) 0.83 (±0.02) ⋄ 0.85 0.38 (±0.03) ⋄ 0.41 0.56 (±0.03) ⋄ 0.59 0.48 (±0.05) ⋄ 0.54 0.55 (±0.03) ⋄ 0.58

(kcol) 0.84 (±0.03) ⋄ 0.87 0.39 (±0.03) ⋄ 0.42 0.58 (±0.03) ⋄ 0.60 0.52 (±0.07) ⋄ 0.60 0.56 (±0.03) ⋄ 0.60

Table 2

Evaluation of the integration of background knowledge using cascade evaluation
D D1 D2 D3

iris 93.33% 94.67% (±0.47) ⋄ 94.67 95.47% (±0.30) ⋄ 96.00 96.40%(±0.60) ⋄ 96.67

wine 92.13% 93.48% (±1.52) ⋄ 95.51 95.73% (±0.50) ⋄ 96.07 96.18%(±0.73) ⋄ 97.19

ionosphere 88.03% 89.00% (±1.25) ⋄ 90.60 89.40% (±0.93) ⋄ 90.88 90.94%(±0.31) ⋄ 91.17

pima 63.41% 64.35% (±0.57) ⋄ 65.23 64.92% (±0.76) ⋄ 65.89 65.89%(±0.95) ⋄ 67.45

sonar 71.15% 70.58% (±0.79) ⋄ 71.63 71.44% (±0.87) ⋄ 71.63 72.50%(±0.86) ⋄ 74.04

vehicle 69.47% 69.17% (±0.87) ⋄ 70.35 69.77% (±0.91) ⋄ 71.23 70.55%(±0.82) ⋄ 71.61

segment 95.93% 95.79% (±0.17) ⋄ 96.02 95.77% (±0.15) ⋄ 95.97 95.79% (±0.14) ⋄ 95.97

5 Conclusion

In many clustering problems, the user is able to provide some background know-

ledge which can be used to guide the algorithm to obtain more accurate results.

Moreover, it has been accepted that ensemble clustering algorithms give more ro-

bust results to such problems. Unfortunately, no ensemble clustering method that

includes information given by the user has been defined yet.

In this article, we have presented a new method of collaborative clustering, that

integrates and benefits from background knowledge on the given problem. The user

can express the knowledge through different kinds of constraints. To illustrate this,

we have proposed a formalization of three main types of constraints: cluster quality,

class label and link-based constraints. Then, we presented how this information can

be used during the collaboration step, to guide the different methods in their search

for a better solution.

Finally, we have shown by different experiments that the collaboration between
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the clustering methods provides better results than the single classical method, and

that introducing knowledge to control the collaboration gives even more accurate

results.
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