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Abstract. Image mining and interpretation is a quite complex process.
In this article, we propose to model expert knowledge on objects present
in an image through an ontology. This ontology will be used to drive a
segmentation process by an evolutionary approach. This method uses a
genetic algorithm to find segmentation parameters which allow to iden-
tify in the image the objects described by the expert in the ontology. The
fitness function of the genetic algorithm uses the ontology to evaluate the
segmentation. This approach does not needs examples and enables to re-
duce the semantic gap between automatic interpretation of images and
expert knowledge.

1 Introduction

Automatic interpretation of images becomes a more and more complex data
mining process. For example, in the field of remote sensing, the rapid evolution in
terms of spatial resolution (image size) and spectral resolution (number of bands)
increases the complexity of available images. Automatic analysis methods are
needed to avoid a manual processing which is often costly. The most promising
and the most studied approach is the object oriented approach which consists in
identifying objects composed of several connected pixels and having an interest
for the domain expert, by using a segmentation algorithm.

There exists many algorithms of segmentation like the watershed transform
[1] or region growing [2]. These algorithms need a complex parametrization like
the selection of thresholds or weights which are usually meaningless for the user.
Thus, a difficult task for the user is to find the link between his knowledge
about the objects present in the image and the appropriate parameters for the
segmentation allowing to create and identifying these objects.

The use of genetic algorithm [3] is a solution to find an optimal (at least near-
optimal) parameters set. They can be used to optimize a set of parameters if
an evaluation function of these parameters is available. The existing methods of
segmentation optimization with genetic approaches [4–7] are based on evaluation
function where examples of segmented objects provided by the expert are needed.
If examples are not available, it is possible to use some unsupervised criteria [5, 7],
which evaluate the intrinsic quality of a segmentation (e.g. region homogeneity).



Nevertheless these unsupervised criteria are often insufficient to produce a good
quality segmentation, especially for the analysis of complex images.

In this article, we propose to use domain knowledge to evaluate the quality
of a segmentation. Indeed, with the oriented object approach the expert is able
to express his knowledge about objects of the image. It allows a natural and
intuitive description of the objects potentially present in an image. Thus, an
ontology (i.e. a knowledge base) can be used to define the different objects (i.e.
concepts) and their characteristics. Then, the coherence of a segmentation can
be evaluated thanks to the concepts defined in the ontology. This approach does
not needs examples and uses the knowledge defined in the ontology.

The outline of this paper is the following. In Section 2, we introduce the used
segmentation algorithm and a description of the needed parameters. In Section 3,
we present the formalization of the knowledge through an ontology. In Section 4,
we study the proposed evolutionary approach used to find the set of parameters
for segmentation thanks to an evaluation using the ontology. Finally, we present
experimentations on the interpretation of images for Earth observation.

2 Image segmentation

The watershed segmentation is a well-known segmentation method which con-
siders the image to be processed as a topographic surface. In the immersion
paradigm from Vincent and Soille [1], this surface is flooded from its minima
thus generating different growing catchment basins. Dams are built to avoid
merging water from two different catchment basins. A example of a cut of an
elevation image and its minima is presented in figure 1 (a).

The segmentation result is defined by the locations of the dams (i.e. the
watershed lines). In this approach, an image gradient is most often taken as the
topographic surface, since object edges (i.e. watershed lines) are very probably
located at pixels with high gradient values (high heterogeneity areas). To build
the gradient image, each pixel is replaced by the difference between the maximal
value and the minimal value of a 3× 3 windows centered on the pixel. The final
elevation image is obtained by combining the elevation of the different spectral
bands thanks to an Euclidean norm.

The watershed has the advantage to be a completely unsupervised method
without parameters. Nevertheless, it produces generally an over-segmented re-
sult, which means an image where each object (e.g. a house) is represented by
several regions (e.g. the two sides of its roof). To resolve this problem, many
methods can be used independently or simultaneously.

When the gradient image is computed, a threshold of the gradient [8] can be
made. Every pixel having an inferior value to the threshold is set to zero. Thus,
the small variations within the homogeneous region are deleted. On figure 1 (b),
the line hmin represents a threshold, and the value beside its are considers as
null. Another method consists in using the depth of the basins [9]. Let mr be the
elevation of a local minimum of the basin r and dr be the minimal elevation when
it will be separated of an another basin by a watershed. Every local minimum



(a) Immersion of a elevation map. (b) Illustration of over-segmentation
reduction method for the watershed
transform.

Fig. 1. Example of a watershed segmentation (a) and effect of over-segmentation re-
duction methods (b).

where dr − mr < d, with d a given threshold, will not be considered during
the basin immersion step. On the figure 1 (b), the local minimum A will not
be taken into account during the immersion because its dynamic, the difference
between mr and dr, is too small. Finally, it is also possible to use a region
merging technique [8]. Two regions can be separated by an heterogeneous area
(implying a generation of a frontier by the watershed) but they can be spectrally
similar (using the average value). To solve this problem, it is possible to use a
filter which merge adjacent regions having an euclidean distance between their
means lower than a threshold ft.

These different techniques can be used simultaneously to reduce over seg-
mentation caused by the watershed and need the selection of three parameters
(the level hmin, the threshold d and the fusion threshold ft). The optimal values
of these parameters are difficult to find because the value for a given parameter
depends heavily of the values selected for the other ones. Moreover, there exists
a lot of local optima which increase the difficulty to find the best solution.

3 Geographical objects ontology

We propose here a model allowing the representation of geographic objects
through an ontology and a matching process which allows to compare a region
build during a segmentation and the different concepts defined in the ontol-
ogy. The matching process has been fully described in [10], we remain here the
principal functionalities.

3.1 Ontology description

The proposed ontology is composed of a hierarchy of concepts (an extract is
given on figure 2). In this hierarchy each node corresponds to a concept. Each
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Fig. 2. Excerpt of the ontology.

concept has a label (e.g. house) and is defined by its attributes. Each attribute is
associated to an interval of accepted values (e.g. [50; 60]) and a weight (in [0; 1])
representing its importance to recognize the geographical object corresponding
to this concept (1 meaning that the attribute is very relevant). The values of
these concepts have been filled by geographers experts thanks to their knowledge
about the morphology of urban objects and machine learning tools [11].

3.2 Region matching

A matching mechanism of the region allows to evaluate the similarity between
a region built during a segmentation and the concepts defined in the hierarchy
of the ontology. The region matching consists in verifying the validity of feature
values of a region (spectral response, size, elongation, . . . ) according to the prop-
erties and the constraints defined in the concepts of the ontology. The measure
of matching computes the similarity between the characteristics vr

1 . . . vr
n of a

region r and the attribute ak
1 . . . ak

n of a concept k is composed of a local compo-
nent (dealing with the inner properties of the concept) and a global component
(evaluating the pertinence in the hierarchy of concepts).

The degree of validity V alid(vr
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k
i ) evaluates the validity between the ex-

tracted characteristics vi of a region r and the boundaries of accepted values of
the attribute ai of the concept k.
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The measure of local similarity Sim(r, k) compares all the common charac-
teristics of the region r with the attributes of the concept k. The value λk

i is the
weight of ak

i and represents the importance of ak
i to identify k.
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The matching score Score(r, k) evaluates the relevance of the matching be-
tween the region r and the concept k within the hierarchy of concepts. The
matching score is a linear combination of local similarity measure obtained with
the concepts kj of the path starting from the root of the ontology to the studied
concept km. This calculation integrates the proof of the concepts βi to advantage
lower concept in the hierarchy.

Score(r, km) =

∑m

j=1 βjSim(r, kj)
∑m

j=1 βj

With such a matching process, each region produced by the segmentation
can have a score which represents its suitability to the concepts formalized in
the ontology.

4 Genetic algorithm

In this section, we are interested in using an evolutionary approach to find the
parameters of the segmentation algorithm by using the knowledge contained in
the ontology. We start by describing the genetic algorithm and we detail the
chosen evaluation function.

4.1 Description

A genetic algorithm is an optimization method. Given an evaluation function
F(g) where g is taken in a space G, the genetic algorithm searches the value of
g where F(g) is maximized. Genetic algorithms are known to be effective even
if F(g) contains many local minima. In order to consider this optimization as a
learning process, it is required that the optimization performed on a learning set
could be generalized to other (unlearned) datasets.

Here we consider g (the genotype in the genetic framework) as a vector con-
taining the parameters to be tuned automatically in the watershed segmentation
process. All these parameters are normalized in [0; 1], so here G = [0; 1]3 as we
consider 3 parameters to optimize: hmin, d and ft.

A genetic algorithm requires an initial population defined as a set of geno-
types to perform the evolutionary process. In this process, the population evolves
to obtain better and better genotypes, i.e. solutions of the optimization prob-
lem under consideration. In order to build the initial population, each genotype
is randomly chosen in the space G except one which uses default parameters.
By this way, we ensure that the final solution is as good as the default one. In
our case, the default set of parameters is {0, 0, 0}, thus disabling the various
over-segmentation reduction methods described previously.

Once the initial population has been defined, the algorithm relies on the
following steps which represent the transition between two generations:

1. assessment of genotypes in the population.



2. selection of genotypes for crossover weighted by their score rank, as discussed
in the following subsections.

3. crossover: two genotypes (p1 and p2) breed by combining their parameters
(or genes in the genetic framework) to give a child e. For each parameter
gi, gi(e) is computed as the value α × gi(p1) + (1 − α) × gi(p2) where α is a
random value between 0 and 1. We apply an elitist procedure to keep in the
next generation the best solution of the current generation.

4. mutation: each parameter may be replaced by a random value with a prob-
ability Pm. Thus we avoid the genetic algorithm to be trapped in a local
minimum. As indicated previously, the best genotype of a generation is kept
unchanged.

We use a mutation rate of Pm = 1% and a number of generations of 15, as
experiments shown that more generation do not increase the results.

4.2 Choice of the evaluation function

A critical point of genetic algorithm methods is how the quality of potential
solutions (i.e. genotypes) is estimated, through evaluation criterion. We use here
the ontology knowledge to drive the evolutionary process and find the set of
parameters which allows to maximize the discovery of objects within an image.
Thus, we propose to use as evaluation function, the percentage of the image
which is identified by the ontology. Let Rg be the set of regions of a segmentation
obtained with the parameters g and Rg

o be the set of regions identified by the
ontology (Rg

o ⊆ Rg). The percentage of the surface of the image recognized by
the ontology is defined as :

F(g) =

∑

r∈R
g
o
Area(r)

∑

r∈Rg Area(r)

with Area(r) a function returning the surface in pixels of the region r. The
surface of the identified regions has been preferred to their number to evaluate
the result. Indeed, a segmentation algorithm can produce many small regions
which do not cover any type of concept in the ontology and thus that can not
be identified by the ontology. These small regions can perturb a criteria based
on the number of regions. The criterion based on the surface of the regions
allows to quantify the quality of the segmentation according to the knowledge
present in the ontology. The increasing of this criterion indicates that the regions
built by the segmentation correspond more and more to the description of the
geographical objects described in the ontology. By maximizing this criterion we
build a segmentation matching with the expert knowledge about geographical
objects.

5 Experimentations

The proposed method have been evaluated on an image of Strasbourg taken by
the satellite Quickbird. The size of the image is 900 x 900 pixels and the spectral



resolution is 8 bits for each of the four band. The figure 3 presents the image to
interpret. The figure 4 (a) presents an extract of the image and the figure 4 (b)
presents the segmentation of this extract by the watershed without parametriza-
tion. The figures 4 (c) (d) (e) and (f) present extracts of segmentation with the
parameters found during the genetic evolution. We observe an amelioration of
the construction of the objects, the image being better identified by the ontol-
ogy with the number of generation. To validate these results we have evaluated
the quality of the segmentations obtained with ground truth of three thematic
classes, house, vegetation and road. These evaluations are done on geographic
objects built and labeled manually by an expert. Three quality indexes have
been used to evaluate the quality of the segmentations.

The first index used is the recall. It consists in considering the identification of
the ontology as a classification of the image. The pixels of the objects identified
by the ontology are then compared to the pixels of the objects provided by the
expert:

recall =
number of well labelled pixels

number of expert pixels

It takes its values in [0; 1], the more it is near to 1, the more the image is well
identified.

The second index used is the index of Janssen defined in [12]. It evaluates
the concordance between the expert objects and the corresponding regions in the
segmentation. For each expert object i and each corresponding region j having
the biggest intersection with the object i, this index is defined as :

Janssen(i,j) =

√

Area(i ∩ j)

Area(i)
×

Area(i ∩ j)

Area(j)

It takes its value in ]0; 1], 1 meaning a perfect correspondence between the expert
objects and the regions of the segmentation.

The third and last index is the index of Feitosa defined in [7]. It also evaluates
the correspondence between the expert object and the corresponding regions in
the segmentation. With the same notation, it is defined as :

Feitosa(i,j) =
Area(i r (i ∩ j)) + Area(j r (i ∩ j))

Area(i)

It takes its value in [0, (Area(i)−1)+(Area(j)−1)], the nearer from 0 it is, the
more the regions correspond to the expert objects.

We have compared our evaluation criterion to these three criteria. For each
criterion a mean is computed on the set of objects provided by the expert.
The goal of this analysis is to check that maximizing our criterion leads to a
real amelioration of the segmentation. During the evolutionary process we have
evaluated each individual according to the different criteria. Thus, 200 possible
parametrizations have been evaluated. The different set of parameters have been
ordered according to our criterion of evaluation. The figure 5 shows the curves



for the three indexes. We can notice that for the three cases, the two curves
seem to have the same behaviour and are highly correlated. These results show
that optimizing our criterion is relevant and allows to compute segmentation of
quality without forcing the expert to provide examples.

Finally, the table 1 presents values of these indexes for the segmentations
with the parameters found during the generations 1, 3, 5 et 11 of the genetic

evolution. After the 11th generation, the quality of the results does not increase
significantly. The genetic algorithm has found the limit of the ontology recogni-
tion (approximatively 52% as shown on table 1). This limit can be explained in
two ways : first many pixels in the image do not belong to the concepts given
in the ontology (noise from the sensors, shadows, cars, etc.), and second the
concepts as defined in the ontology do not match all objects in the image.

Fig. 3. Quickbird image of Strasbourg (France). The square area used to illustrate the
segmentation is outlined in white.

Table 1. Results of the evaluation of the method on expert objects for 4 generations.

generation Ontology Recall Janssen Feitosa

1st 29.64 % 24.98 % 0.32 25.19

3rd 33.92 % 27.83 % 0.35 17.55

5th 37.56 % 31.74 % 0.42 6.63

11th 51.91 % 49.72 % 0.48 7.10



(a) raw image (b) 5% recognized (without

parameters)

(c) 29% recognized (1st gen-

eration)

(d) 33% recognized (3rd gen-

eration)

(e) 37% recognized (5th gen-

eration)

(f) 51% recognized (11th gen-

eration)

Fig. 4. Extracts of segmentations obtained at different generations during a genetic
evolution. The outline of the regions is drawn in white.
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Fig. 5. Evolution of evaluation functions for 200 individuals ordered by the criterion
based on the ontology.



6 Conclusion

In this article, we have presented how an evolution algorithm could fill the se-
mantic gap between meaningless parameters for a segmentation algorithm and
knowledge of a domain expert. Results show the relevance of this approach. In
the future, we want to introduce contextual knowledge like the position of the
objects between each others. The evolutionary algorithm will be more complex
and will check the constraints defined by this contextual knowledge.
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