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Multiresolution Remote Sensing Image Clustering
Cédric Wemmert and Anne Puissant and Germain Forestier and Pierre Gançarski

Abstract—With the multiplication of satellite images with com-
plementary spatial and spectral resolution, a major issue in the
classification process is the simultaneous use of several images. In
this context, the objective of this letter is to propose a new method
which uses information contained in both spatial resolution. The
main idea is that on one hand, the semantics level associated with
an image depends on its spatial resolution, and on the other hand,
information given by these images are complementary. The goal
of this multiresolution image method is to automatically build
a classification using knowledge extracted from both images, by
unsupervised way and without pre-processing image fusion. The
method is tested by using a Quickbird (2.8m) and a SPOT-4
(20m)images on the urban area of Strasbourg (France). The
experiments have shown that the results are better than a classical
unsupervised classification on each image, and comparable to a
supervised region-based classification on the HSR image.

Index Terms—multiresolution, clustering, remote sensing
image analysis, high spatial resolution.

I. INTRODUCTION

With the recent development of remote sensing technology,

a large amount of satellite images is available with a comple-

mentary spatial, spectral and time resolution. These data are

valuable for mapping urban areas at different scales. There

is a wide range of object nomenclatures such as the Corine

Land Cover nomenclature defined for Landsat images (30m

spatial resolution), the SPOT Thema nomenclature defined

for Spot images (5m to 20m) or the French national land

cover database BDCartorIGN (defined for aerial photographs

and SPOT images). These existing products enable to map

urban areas respectively from 1:100,000 (Corine Land Cover

nomenclature) to 1:50,000 and 1:25,000 (SPOT Thema and

BDCarto nomenclatures). The production of these maps is

often based on manual image interpretation or semi-automatic

techniques (combined with per-pixel algorithm). With High

Spatial Resolution (HSR - 1 to 5m) satellite images, it is

possible to extract urban objects (e.g. house, garden and

road) using object-oriented approach based on a segmentation

step [3]. This allows to map individual objects at scale from

1:10,000 to 1:5,000.

In the domain of urban planning and management, some

users also need to map the territory at the scale of the urban

blocks (which can be defined as a minimal cycle closed

by communication way) corresponding to a scale near of

1:10,000. In this case, there is no existing available land

cover/use product. Medium Spatial Resolution (MSR from 30

to 10m spatial resolution) satellite images have a too large

spatial resolution and HSR images have a too fine spatial

resolution to map urban blocks. In this context, a question is

how to reconstruct urban blocks from individual objects and

how to help end-user to extract automatically these blocks ?

This problem can be treated as a classification problem

where images with different spatial resolutions can be used si-

multaneously in an unsupervised way. To address this problem,

the question of the number of clusters on each image is not

straightforward. In MSR images, urban areas can be classified

into 5 to 7 clusters associated to land cover classes referring

to the identification of ’urban zone’ (Table I, left column).

In HSR images, the number of clusters is higher (10 to 15

classes) referring to materials of each urban objects (Table I,

right column). For instance, buildings can be differentiated by

the materials and the roofs color (Table I, right column). To be

able to offer to end-users a 1:10,000 mapping of urban areas,

the number of semantic classes must range between 7 and 9

classes (for instance, Table I, middle column). However, these

semantic classes cannot be directly obtained by a classification

process from unique MSR or HSR images.

In this context, the objective of this paper is to propose

a new method which simultaneously uses the information

contained in both MSR and HSR images. This multiresolution

image analysis takes into account the different numbers of

clusters obtained on each image at very different spatial

resolutions.

The sequel of this article is structured in three sections.

The multiresolution remote sensing images analysis is briefly

introduced and the new multiresolution clustering process is

detailed in Section II. Some experiments performed on a

HSR and MSR multispectral images on the urban area of

Strasbourg (France) are presented. These images are issued

from (1) different sensors (Spot and Quickbird) and (2) a

degradation process from the Quickbird image (Section III).

Some conclusions are then drawn in Section IV.

II. MULTIRESOLUTION REMOTE SENSING IMAGES

ANALYSIS

In [9], we proposed a framework of collaborative clustering,

called SAMARAH which enables several clustering methods

(referred here as classifiers) to collaborate, in order to produce

an unique solution from a set of images. These images can

have different resolutions. Each classifier deals with an image

from this set. All the classifiers work together to end up

at an agreement on their clustering. Each classifier modifies

its results according to all the other clusterings until all the

clusterings proposed by the classifiers are strongly similar.

Thus, they can be more easily unified, for example, through

a voting algorithm. This unified result represents a consensus

among all the knowledge extracted from the different sources.

Furthermore, the voting algorithm highlights the agreement

and the disagreement between the clustering methods. These

two informations, as well as the result produced by each

clustering method, lead to a better understanding of the scene

by the expert.

This method was experimented on two study cases where

all the classifiers generated the same number of clusters
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TABLE I
TYPOLOGIES USED TO MAP URBAN AREA ON MSR AND HSR IMAGES AND TYPOLOGY USED BY END-USERS AT 1:10,000

1:100,000-1:25,000 1:10,000 1:5,000

MSR imagery (30 to 5 m) Semantic class based on urban blocks HSR imagery (3 to 1 m)

’area level’ ’block level’ ’object level’

• High-density urban fabric

• Low-density urban fabric

• Industrial areas

• Forest zones

• Agricultural zones

• Water surfaces

• Bare soil

• Continuous urban blocks

• Discontinuous urban blocks

- Individual urban blocks

- Collective urban blocks

• Industrial urban blocks

• Urban vegetation

• Forest

• Agricultural zones

• Water surfaces

• Road

• Building/roofs:

- red tile roof

- light gray residential roof

- light commercial roof

• Vegetation:

- green vegetation

- non-photosynthetic vegetation

• Transportation areas:

- streets

- parking lots

• Water surfaces:

- river

- natural water bodies

• Bare soil

• Shadow

in order to produce a unique result. The first experiment1

was the analysis of SPOT-5 images (panchromatic - 5m and

multispectral - 10m with four spectral bands - red, green, blue

and near infra-red) of the urban area of Strasbourg (France).

The second experiment2 was performed on four images of a

coastal zone (Normandy Coast, Northwest of France). This

area is especially interesting since it is periodically affected

by natural and anthropic phenomena. Four images issued

from three different satellites and with different spatial and

spectral resolutions were used (SPOT-4 multispectral at 20m

and panchromatic at 10m, SPOT-5 panchromatic at 2.5m and

ASTER multispectral at 15m).

Results of these experiments were better than those pro-

duced from panchromatic band only, multispectral bands only

or pan-sharpened images. However, the geographic objects to

identify depends on the spatial resolutions, especially in the

context of urban images classification. So another method is

presented here that enables to use simultaneously two images

with very different spatial resolutions, and for which each

classifier does not necessarily search the same number of

clusters.

A. Multi-source clustering

A first way to classify multi-source objects is to combine

all the descriptions of the objects associated to the different

sources. Each object has a new description composed of (all)3

the attributes (also called features or characteristics) of all the

sources [6], [5]. For instance, all the radiometric information

given by the different sensors are used to describe the objects.

Unfortunately, due to the curse of dimensionality [1], most

of the classical distance-based algorithms are not sufficient to

analyze objects having many attributes: the distances between

these objects are not enough different to correctly determine

the nearest objects. In addition, with the increase of the

spectral dimensionality, some problems appear like the Hughes

phenomena [10] which shows that classifier performance ac-

tually decreases with increasing data dimensionality objects.

1FoDoMuSt project: http://fodomust.u-strasbg.fr
2ECOSGIL project (JC05-50539): http://ecosgil.u-strasbg.fr
3Depending on the redundancy of these attributes

A second way [2], [4], [8] to classify multi-source objects

is to independently classify each data sets. Then a new

description of each object is built, using the labels of the

cluster to which the object belongs in each classification.

Finally, a new clustering is done using the new description

of the objects. The aim of the first clustering is to reduce the

data space for the final clustering, making it more effective.

This approach is similar to the stacking method [11] which

is known as outperforming the methods based on the direct

combination of attributes. Thus, the method we propose, is

based on this second approach that we have adapted to the

analysis of remote sensing images.

B. Multi-source remote sensing image clustering

1) Notations: An image I can be viewed as a function

I : E ⊂ Z
2 → Z

b

p → I(p)
(1)

where I(p) = 〈I1(p), . . . , Ia(p) . . . , Ib(p)〉 with b ∈ N
∗

the number of spectral bands of the image and Ia(p) the

radiometric information associated to the pixel on the a-th

band.

A clustering image C from a clustering of the image I is

defined as

C : E ⊂ Z
2 → [1,K],K ∈ Z

p → C(p)
(2)

where C(p) is the cluster label associated to the pixel p by the

clustering algorithm (e.g., the number of the cluster to which

the pixel belongs) and K the number of clusters.

From such an image, a connected component Oi (also called

region or object) is defined as

Oi = {p, q ∈ I : C(p) = C(q) ∧ connected(p, q) = 1} (3)

where connected is the classical 8-connectivity function

in I (let p(x, y) and q(x′, y′) two pixels in the image,

connected(p, q) = 1 if max(|x− x′|, |y− y′|) = 1). Note that

the number of regions depends on the clustering and cannot

be a priori defined. Let Nr be the number of regions.

The region image R built from a clustering result image C
is defined as

R(C) = {On, ∀n ∈ [1, Nr]} (4)
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In the following, we only focus on the case where we have

two images In and In′

having the resolutions rn and rn
′

with rn > rn′ .

Let λn,n′ be a correspondence function, associating one pixel

from In to its corresponding pixel in In′

. λn,n′ can be easily

defined using the georeferencing of the two images.

Let Cn (resp. Cn′

) be the clustering image associated to In

(resp. In′

), kn (resp. kn′ ) be the number of clusters in Cn

(resp. Cn′

) and Rn (resp. Rn′

) be the region image associated

to Cn (resp. Cn′

).

2) The method: Our method is object-oriented. It consists

in four sequential steps. First, a per-pixel clustering is done

on both the images. Then, for each image, regions are built

and characterized using the per-pixel clusterings. Then, these

characterized regions are clustered.

The four steps of our approach are:

• Step 1 - Initial clusterings: both images are independently

classified to obtain clustering images (Eq. 2).

• Step 2 - Regions building: both corresponding region

images are built (Eq. 4).

• Step 3 - Regions characterization: each region On
i ∈ Rn

from an image is characterized according to its clusters

composition in the clustering image Cn′

(resp. On′

i , Rn′

and Cn): for each region On
i ∈ Rn, we calculate a

composition histogram representing the distribution of the

labels associated to the pixels of In′

corresponding to the

pixels of On
i using the correspondence function λn,n′ .

The composition histogram Hn′(On
i ) associated to a

region On
i according to clustering image Cn′

is defined

by:

Hn′(On
i ) = 〈hn′

i,1, . . . , h
n′

i,k
n
′
〉, On

i ∈ Rn (5)

where kn′ is the number of clusters in Cn′

and

hn′

i,j =| {q = λn,n′(p) : Cn′

(q) = j, ∀p ∈ On
i } | (6)

.

• Step 4 - Object-oriented classification: for each region

image Rn (resp. Rn′

), a clustering algorithm is inde-

pendently applied on all its objects (i.e. characterized

regions) using the composition histograms. Let Cn′(On
i )

the class label associated to the object On
i characterized

using a clustering image Cn′

(resp. Cn(O
n′

i ) and Cn)

Then, the final clustering image Fn′(n) (resp. Fn(n
′)) is

defined as

F : E ⊂ Z
2 → [1,Kn]

p → Cn′(On
i ), p ∈ On

i

(7)

where Kn is the number of clusters expected in the final

clustering of the image In (resp. Kn′ and In′

).

Note that Kn can be different of kn because the first

classification is pixel-oriented while the second one is

object-oriented. Commonly, kn > Kn.

III. RESULTS

A. Experiments

Some experiments are performed on two multispectral ima-

ges with different spatial resolutions (2.8m and 20 m) on

(a) HSR - multispectral Quickbird
image at 2.8 m

(b) MSR - multispectral SPOT-4
image at 20m

Fig. 1. Extract of the urban area of Strasbourg (France)

the urban area of Strasbourg (France), acquired: (1) from

two different sensors (Quickbird4 and Spot-45, respectively in

May and July 2001) and (2) from a Quickbird image and

a resampled image at 20m spatial resolution. The Quickbird

multispectral image is available in four spectral bands (blue,

green, red and near-infrared bands). The multispectral SPOT-4

image has three spectral bands (green, red, near-infrared).

These images (Fig.1(a) and Fig.1(b)) present an extract

of the urban area of Strasbourg (France) which is a typical

suburban area with some water surfaces (in the center), forest

area in the South, industrial areas, agricultural zones with

different spectral responses due to the seasons (bare soil in

the HSR image - May can appear in red on the MSR image

- July) and some individual or collective housing blocks (in

red, black and white textured on the MSR image, in red, blue

and white textured in the HSR image).

The experiments have consisted to perform the four steps

described in Section II-B2.

• Step 1 - Initial classifications: in all experiments, each

image is classified using the classical K-means algorithm

[12] with a number of classes depending on the spatial

resolution. Note that any algorithm which can deal with

numeric data would be used. For MSR image, a lot of

previous works shown that urban areas can be classified in

6 classes. For HSR image, the number of clusters depends

on the materials of the urban objects (cf. above). In order

to find the best number of cluster according to the study

zone, three experiments with respectively 10, 15 and 20

classes are carried out.

These experiments have shown that:

– with 10 classes, the regions are too large and there

are not enough regions to classify;

– with 20 classes, the regions are too small and they

are too close of the pixels (each region contains only

3 to 6 pixels).

4 c©DigitalGlobe Inc.
5 c©CNES (Isis program)
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(a) HSR image (b) MSR image

The colors affected to the regions have no semantic and have been randomly choosen

Fig. 2. Regions built from the initial clusterings (Step 2)

(a) Extracted image (b) Groundtruth map

Industrial urban blocks Discontinuous urban blocks Water surface

Road Agricultural zones Urban vegetation Forest

Fig. 3. Subset of the studied zone with the groundtruth map (BDOCS 2000
CIGAL 2003)

The best result is obtained with 15 classes.

• Step 2 - Regions building: from both classified images,

the regions are built, integrating into a same region the

connected pixels having the same class label. Fig. 2 shows

the region maps.

• Step 3 - Regions characterization: All the composition

histograms have been computed.

• Step 4 - Objects classification: After having computed

another K-means algorithm on the region images, we

obtain the final clusterings in the both spatial resolutions.

The first three steps are applied once and the fourth step is

tested for 7, 8 and 9 clusters in order to find the best result, by

taking into account the number of expected land use classes,

based on the ’block level’. Results are presented here on an

extract of the studied zone (North West part of the Fig. 1) with

7, 8 and 9 clusters (Fig.4).

B. Results assessment and discussion

Results are assessed by a comparison with a groundtruth

map from a landcover/use database (BDOCS 2000 CIGAL

2003) used for a 1:10,000 mapping. This groundtruth map

contains 8 thematic classes at the urban blocks semantic level

(see Tab. I). Only 7 thematic classes are present on the extract

shown on Fig. 3(b). Fig. 4 shows respectively the results with

(a) With 7 clusters (b) With 8 clusters

(c) With 9 clusters

Discontinuous urban blocks :

Individual urban blocks

Collective urban blocks

Fig. 4. Results of the proposed multiresolution method

7, 8 and 9 clusters on this extract. The 7 classes found on

the first image (Fig. 4(a)) do not exactly match those from

the groundtruth map. Indeed, the industrial blocks are in the

same cluster as the water surfaces, and there are 2 clusters

representing the discontinuous urban blocks (individual in

orange and collective in red). On the 8 clusters image (Fig.

4(b)), the industrial blocks appear in the 8th cluster (in purple).

Finally, a new class of vegetation is discovered in the 9 clusters

result (Fig. 4(c)).

We choose to calculate the Kappa index to evaluate quan-

titatively the quality of these first results by comparison

with the groundtruth (Table II). The Kappa is a measure of

classification accuracy which can be used as an indicator

of the agreement between two classifications. It evaluates

the percentage of correct values which are due to “true”

agreements versus “chance” agreement. It is defined as:

κ =
Pr(a)− Pr(e)

1− Pr(e)
(8)

where Pr(a) is the relative observed agreement and Pr(e) is the

hypothetical probability of chance agreement. A Kappa value

of 1 indicates a perfect agreement. The value of the Kappa

decreases as the classification are in disagreement. A value

between 1.00 et 0.81 reflects a perfect agreement, a value

between 0.80 and 0.60 indicates a good agreement and so on

[7].

For comparison purpose, we also evaluated our results by

comparing them with clusterings carried out with different

approaches:

• K-means clustering with 7, 8 and 9 clusters at a pixel

level (Fig. 5(a));

• K-means clustering on an image built by direct fusion of

the two images HSR+MSR (to each pixel is associated all

the radiometric information from HSR and MSR images)

(Fig. 5(b));

• K-means clustering on two degraded images of the HSR

image with a resolution ratio of 1/2 and of 1/3 (Fig. 5(c)

and 5(d));

• K-means clustering with 7, 8 and 9 clusters at an object

level using only spectral information (the objects were
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(a) HSR image (b) HSR+MSR combined image

(c) Degraded image (ratio 1/2) (d) Degraded image (ratio 1/3)

Fig. 5. Per-pixel clustering using K-means with 9 clusters

(a) K-means (b) Supervised object-oriented me-
thod

Fig. 6. Regions classification on HSR image, with 9 clusters

created from a clustering with 15 clusters) (Fig. 6(a));

• Supervised object-oriented approach with Definiens Pro-

fessional software, using only spectral information 6 (Fig.

6(b)).

Fig. 5 illustrates results obtained by the per-pixel classifi-

cation with 9 clusters expected. Fig. 6 shows results obtained

by the object-oriented classifications with 9 clusters expected.

TABLE II
KAPPA VALUES OF THE DIFFERENT EXPERIMENTS

7 8 9

Multiresolution proposed method 0.73828 0.74259 0.74501

K-means on HSR image 0.70805 0.70412 0.71832

K-means on HSR+MSR combined image 0.68772 0.70412 0.71831

K-means on degraded image (1/2) 0.68729 0.70396 0.71645

K-means on degraded image (1/3) 0.68569 0.70536 0.71620

K-means region classification 0.67864 0.68051 0.69002

Supervised object-oriented method 0.70604 0.72811 0.73843

The Kappa index was computed using the groundtruth

map. It was computed for all the different results (II). The

analysis of this global quality indicator shows that the results

of the multiresolution proposed method are comparable to the

supervised object-oriented method, and outperforms the other

ones.

6http://www.definiens.com/

IV. CONCLUSION

One of the challenging issues in remote sensing image

information mining is the multiple uses of the acquired image

data. Indeed, satellite images are now easier to acquire and

consequently, a large amount of heterogeneous images is

now available. If a classification on a MSR image gives

not enough information, a classification on a HSR brings

too much heterogeneous information (salt-pepper effect). To

obtain aggregate information, users have to be apply a post-

classification process (class merging). In order to help users

to obtain directly this aggregate information for a land cover

mapping at 1:10,000 for instance, we have presented here a

new method which automatically combine information from

two satellite images with very different spatial resolutions.

This method offers the ability to discover new knowledge from

these two images. These first experiments on the urban area of

Strasbourg have shown very interesting results. In the future

we wish to integrate the method into the SAMARAH framework

of collaborative clustering. We also planed to extend the

method in order to make it able to simultaneously deal with

more than two images.
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