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Abstract. In recent years, the use of background knowledge to improve
the data mining process has been intensively studied. Indeed, background
knowledge along with knowledge directly or indirectly provided by the
user are often available. However, it is often difficult to formalize this
kind of knowledge, as it is often dependent of the domain. In this article,
we studied the integration of knowledge as labeled objects in clustering
algorithms. Several criteria allowing the evaluation of the purity of a
clustering are presented and their behaviours are compared using artifi-
cial datasets. Advantages and drawbacks of each criterion are analyzed
in order to help the user to make a choice among them.

Keywords: Clustering, background knowledge, semi-supervised algo-
rithm, purity indexes

1 Introduction

Knowledge integration to guide the clustering process is a major issue in data
mining and an active research area. Indeed, fully unsupervised approaches raise
some problems when dealing with more and more complex data. Moreover, back-
ground knowledge on the studied data are often available. Thus, it is important
to work on proposing new approaches (semi-supervised methods) able to deal
with such knowledge, to produce better results and to enhance the performance
of the algorithms (speed-up, quality of the solutions, etc.).

The background knowledge can be represented in many different ways as
they are strongly dependent on the studied domain. Even the number of clusters
to find can be considered as knowledge on the data. Many works [1,2] addressed
the problem of using background knowledge, represented as constraints between
two objects of the dataset. These constraints give the information that the two
objects have to be in the same cluster (must-link) or, on the contrary, that
they should not be in the same cluster (cannot-link). Labeled samples can also
be considered as another kind of knowledge. In a similar way than supervised
classification methods that learn a classification function from a learning set
composed of labeled objects, this information can be used during the clustering
process to guide the algorithm towards a solution respecting this knowledge. It
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is not necessary to have many labeled samples as in the supervised case, and
they do not have to belong to each class of the problem.

In this context, the concept of purity of the clusters is very important. The
purity evaluates the quality of the clusters according to the labeled samples
available. A cluster is considered pure if it contains labeled objects from one and
only one class. Inversely, a cluster is considered as impure if it contains labeled
objects from many different classes.

The purpose of this article is to present and compare many different ways
to evaluate the purity of the clusters. In the section 2, we give a state of the
art about knowledge integration in data mining to introduce the context of this
study. Then, in section 3, purity indexes are formalized and compared. Finally,
we draw conclusions and give some directions of future work.

(a) Supervised (b) Partially la-
beled.

(c) Partially con-
strained.

(d) Unsupervised

Fig. 1. Example of different kinds of background knowledge.

2 Clustering with background knowledge

Many approaches have been investigated to use background knowledge to guide
the clustering process.

In constrained clustering, knowledge is expressed as must-link and cannot-
link constraints and is used to guide the clustering process. A must-link con-
straint gives the information that two data objects should be in the same cluster,
and cannot-link means the opposite. This kind of knowledge is sometimes easier
to obtain than a classical subset of labeled samples. Wagstaff et al. [1] presented
a constrained version of the kmeans algorithm which uses such constraints to
bias the assignment of the objects to the clusters. At each step, the algorithm
tries to agree with the constraints given by the user. These constraints can also
be used to learn a distance function biased by the knowledge about the links
between the data objects [2]. The distance between two data objects is reduced
for a must-link and increased for a cannot-link. Huang et al. [3] presented an ac-
tive learning framework for semi-supervised document clustering with language
modeling. The approach uses a gain-directed document pair selection method to
select cleverly the constraints. In order to minimize the amount of constraints



Background Knowledge Integration in Clustering Using Purity Indexes 3

required, Griga et al. [4] defined an active mechanism for the selection of can-
didate constraints. The active fuzzy constrained clustering method is presented
and evaluated on a ground truth image database to illustrate that the clustering
can be significantly improved with few constraints. Recent works on constrained
clustering are focused on evaluating the utility (i.e the potential interest) of a
set of constraints [5,6].

Kumar and Kummamuru [7] introduced another kind of knowledge through
a clustering algorithm that uses supervision in terms of relative comparisons, e.g.
x is closer to y than to z. Experimental studies on high-dimensional textual data
sets demonstrated that the proposed algorithm achieved higher accuracy and is
more robust than similar algorithms using pairwise constraints (must-link and
cannot-link) for supervision. Klein et al. [8] allowed instance-level constraints
(i.e. must-link, cannot-link) to have space level inductive implications in order
to improve the use of the constraints. This approach improved the results of the
previously studied constrained kmeans algorithms and generally requires less
constraints to obtain the same accuracies. Basu et al. [9] presented a pairwise
constrained clustering framework as well as a new method for actively select-
ing informative pairwise constraints, to get improved clustering performance.
Experimental and theoretical results confirm that this active querying of pair-
wise constraints significantly improves the accuracy of clustering, when given a
relatively small amount of supervision.

Another way to integrate background knowledge is to use a small set of la-
beled samples. Basu et al. [10] used a set of samples to seed (i.e. to initialize)
the clusters of the kmeans algorithm. Two algorithms, seeded-kmeans and
constrained-kmeans, are presented. In the first one, the labeled samples are
used to initialize the clusters and the clusters are updated during the clustering
process such as in the kmeans algorithm. In the second one, the labeled sam-
ples used during the initialization stay in their assigned cluster, and only the
unlabeled samples can change of cluster during the cluster affectation step of
kmeans. The choice between these two approaches must be done according to
the knowledge about noise in the dataset.

To tackle the problem of incorporating partial background knowledge into
clustering, when the labeled samples have moderate overlapping features with
the unlabeled data, Gao et al. [11] formulated a new approach as a constrained
optimization problem. The authors introduced two learning algorithms to solve
the problem, based on hard and fuzzy clustering methods. An empirical study
shows that the proposed algorithms improve the quality of clustering results
despite a limited number of labeled samples. Basu et al. [12] also proposed a
probabilistic model for semisupervised clustering, based on Hidden Markov
Random Fields (HMRF), that provides a principled framework for incorporat-
ing supervision into prototype-based clustering. Experimental results on several
text data sets demonstrate the advantages of this framework.

Another approach, called supervised clustering [13], uses the class informa-
tion about the objects as an additional feature, to build clusters with a high
class-based purity. The goal of supervised clustering is to identify class-uniform
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clusters having high probability densities. Supervised clustering is used to create
summaries of datasets and for enhancing existing classification algorithms.

Different kinds of background knowledge are introduced by Pedrycz et al. [14],
namely partial supervision, proximity-based guidance and uncertainty driven
knowledge hints. The authors discuss about different ways of exploiting and ef-
fectively incorporating these background knowledge (known as knowledge hints)
in the fuzzy c-means algorithm. In [15], Bouchachia and Pedrycz presented an
extension of the fuzzy collaborative clustering which takes into account back-
ground knowledge through labeled objects. One of the advantages of the method
is to take into account the classes split in several clusters. During the collabora-
tion step, the method identify if a class correspond to various clusters and add
or remove clusters according to this information. More recently, Pedrycz [16]
presented some concepts and algorithms to collaborative and knowledge-based
fuzzy clustering. The fuzzy c-means algorithm (FCM) was used as an opera-
tional model to explain the approach. Interesting linkages between information
granularity, privacy and security of data in collaborative clustering were also dis-
cussed. The problem of data privacy when clustering multiple datasets was also
recently discussed in [17]. An application of fuzzy clustering with partial knowl-
edge to organize and classify digital images is also proposed in [18]. The author
present an operational framework of fuzzy clustering using the fuzzy c-means
algorithm with an augmented objective function using background knowledge.
Experiments are carried out on collections of images composed of 2000 images.

3 Clustering evaluation

The evaluation of the purity or the quality of a clustering consists in determining
if the repartition of the objects in the different clusters is coherent with the
available knowledge on the data. We consider here the knowledge as a set of
labeled objects. Let us define some notations to formalize the purity indexes:

– Let N be the number of labeled samples
– Let C = {c1, c2, . . . , cK} be the clusters found by the clustering algorithm
– Let W = {w1, w2, . . . , wC} be the classes of the labeled objects
– Let ck be the objects composing cluster k and wk the objects composing

class k
– Let |ck| be the cardinal of cluster k
– Let nij = |wi ∩ cj | be the number objects of cluster i being in class j

3.1 Purity evaluation

The easiest way to compute the purity of a clustering is to find the majority
class in each cluster and to count the number of labeled objects of this class in
each cluster [19]. Then, the purity can be defined as:

Πsimple(C,W) =
1

N

K∑
i

arg max
j

(nij) (1)
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This evaluation of the purity consists in estimating the percentage of labeled
objects of the majority class in each cluster for all the clustering. It takes its
value in [0; 1], 1 indicating that all clusters are pure, i.e. they contain only labeled
objects of one class.

Another way to estimate the clusters purity is proposed by Solomonoff et
al. [20]. The authors define the purity as the probability that, given a cluster i
and two randomly chosen labeled objects of this cluster, they both are of the
same class j. The probability that the class of the first object is j is nij/|ci|. The

probability that the class of the second object is also j is (nij/|ci|)2. Finally, the
purity of a cluster i can be defined as:

πprob(ci) =

C∑
j

( nij
|ci|

)2

(2)

which can derived to a clustering by:

Πprob(C,W) =
1

N

K∑
i

|ck|πprob(ci) (3)

The advantage of this measure, compared to the simple purity evaluation (1),
is to take into account the distribution of all the classes in the cluster, and not
only the majority class. Thus, it promotes clusters composed of labeled samples
from a limited number of classes. Its value is in [0; 1], 1 indicating that all the
clusters are pure.

However, these two purity indexes present a major drawback. They over
evaluate the quality of a clustering having a large number of clusters. Indeed,
the purity is maximal when having one cluster per objects (which is generally
not considered as a good solution). De facto, if these measures are used in an
algorithm allowing the number of clusters to change, it will tend to converge
to a solution having to many clusters. Many propositions have been given to
cope with this problem. In [21], Ajmera et al. have proposed to calculate the
clusters purity according to their composition in terms of classes, but also the
purity of the classes in terms of clusters (for each class, its distribution among all
the clusters is observed). Then, the two values are merged to become the purity
evaluation of the clustering. This enables to penalize solutions proposing too
many clusters. The classes purity is computed in the same way as the clusters
purity:

π
p̃rob

(wi) =

C∑
j

( nij
|wi|

)2

(4)

which gives the following definition for all the clusters of a clustering:

Π
p̃rob

(C,W) =
1

N

K∑
i

|ck|πp̃rob
(wi) (5)
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The clusters purity and the classes purity are then combined as follows:

Πoverall(C,W) =
√
Πprob(C,W)×Π

p̃rob
(C,W) (6)

Another approach consists in also considering a quality measure of the clus-
tering. Demiriz et al. [22] used an optimization algorithm with a purity index
called Gini which is similar to the criterion given in 2. To avoid this case, the
algorithm generates solutions with too many clusters, the objective function
to optimize is an arithmetic mean between the clusters purity and quality. The
quality of the clusters is evaluated according to Davies-Bouldin index [23], which
promotes well separated compact clusters. The combination of these two criteria
enables to avoid extreme solutions (e.g. one cluster for each object).

Finally, Eick et al. [13] proposed to use a penalty criterion, to penalize solu-
tions having too many clusters. The penalty is calculated as follows:

penalty(K) =


√

K−C
N si K ≥ C

0 sinon

(7)

with K the number of clusters, C the number of classes and N the number
of objects. It can be used with any purity index, as the simple criteria (1):

Πpenalty(C,W) = Πsimple(C,W)− βpenalty(K) (8)

Another solution is to evaluate the Normalized Mutual Information (NMI)
index between available knowledge and the clustering:

Πnmi(C,W) =
I(C,W)

[H(C) +H(W)]/2
(9)

I is the mutual information:

I(C,W) =
∑
i

∑
j

nij log
nij

|ci|/N × |wj |/N
(10)

=
∑
i

∑
j

nij
N

log
nij

|ci| × |wj |
(11)

H is the entropy:

H(W) = −
∑
k

|wk|
N

log
|wk|
N

(12)

The mutual information I (10) evaluates the quantity of information provid-
ing by the clustering on the classes. The denominator in (9) enables to normalize
the criterion which value is in [0; 1], 1 indicating pure clusters. This index is max-
imal when the number of clusters is equal to the number of classes. Thus, it does
not have the drawback of the previous criteria presented above.
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3.2 Partitions comparison

Another commonly used criterion to compare partitions is the rand index [24]. It
consists in comparing pairs of objects and to check if they are classified identically
in two partitions. In our case, we verify if each pair of objects identically labeled
according to the background knowledge are in the same cluster. A pair of objects
is a true positive (TP) if the two objects have the same label and are in the same
cluster. It is a true negative (TN) if they have different labels and are in different
clusters. A false positive (FP) corresponds to a pair of objects having different
labels but in the same cluster, whereas a false negative (FN) corresponds to a
pair of objects having the same label but being in two different clusters. The
rand index can then be defined as:

Πrand(C,W) =
TP + TN

TP + FP + FN + TN
(13)

(TP +FP +FN + TN) representing all pairs of objects and (TP + TN) all
pairs of objects correctly classified. One drawback of this index, is that a same
weight is given to false positives and false negatives.

Regarding the F-Measure [25], it enables to affect weights to these values,
according to the precision (P) and the recall (R):

P =
TP

TP + FP
R =

TP

TP + FN

Π fmeasure(C,W) =
(β2 + 1)P ×R
β2P +R

(14)

The β parameter can be used to more penalize the false negatives as the false
positives, giving it a value over one (β > 1). If β = 1, the precision and recall
have the same importance.

The advantage of these two criteria (Πrand and Π fmeasure) is that they im-
plicitly integrate the number of clusters, putting the solutions proposing to many
clusters at a disadvantage. Indeed, the more the number of clusters is increased,
the more the pairs of objects differ from the available knowledge.
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Fig. 2. The three datasets used for the evaluation.
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3.3 Evaluation of the quality criteria

In this section, the criteria presented before are going to be evaluated on different
datasets. Figure 2 shows three artificial datasets, each representing four clusters
in a two dimension space. The kmeans algorithm was used on these data, with a
number of clusters varying from 2 to 8. For each clustering, the different measures
presented in the previous sections were calculated. Three configurations have
been evaluated, the first with 1% of labeled objects, the second with 10% of
labeled objects and the last one with 25% of labeled objects in the dataset. Each
experiment has been ran 100 times with random initialization, and the results
were averaged. Figures 3 (a), (b) and (c ) give the results respectively for the
dataset presented in figure 2(a), 2(b) and 2(c).

One can observe that when only few labeled objects are available (1%), quite
all the criteria have an unpredictable behaviour. Indeed, it is not guarantee
that the labeled set contains examples of all classes. That is why these criteria
can hardly be used when only few knowledge is available. When the number
of labeled objects increases (10%), the probabilty to have samples of each class
in the labeled set also increases. Therefore, the evolutions of the criteria are
more typical. One can observe the already mentioned problem that some purity
measures overevaluate the quality of the clustering when the number of clus-
ters increase. Indeed, the simple purity index (Πsimple) and the cluster purity
index (Πprob) increase as the number of clusters increase. The other criteria
(Πrand,Πnmi,Π fmeasure,Πoverall,Πpenalty) tend to decrease as the number of
clusters increase. The most characteristic are Π fmeasure, Πoverall and the Πnmi.
The criteria Πrand and Πpenalty decrease less significantly. It is interesting to
notice that there is no noticeable difference between the results obtained with
10% or 25% of labeled objects.

4 Conclusion

Knowledge integration in clustering algorithms is a really important issue. As
more and more knowledge are available on the data manipulated, it is neces-
sary to propose new approaches that enables to deal with this huge amount of
information.

In this article, we have presented how to take advantage of labeled objects
to evaluate the purity of a clustering. Many criteria were exhibited, formalized
and compared. One observation is that purity evaluation without taking into
account the number of clusters tends to overevaluate the quality of the results.
To cope with this problem, it is possible to penalize results with a huge number
of clusters. Another type of criteria only compare how pairs of objects were
classified, as the F-Measure which has given particularly good results in our
experiments.

In the future, we aim to evaluate more criteria and to compare other types
of domain knowledge, as for example constraints on the objects of the dataset.
Moreover, it would be necessary to study the behaviour of these criteria when
labeled objects of a same class belongs to different clusters.
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