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Abstract

Automatic image interpretation is often achieved by �rst performing a seg-
mentation of the image (i.e., gathering neighbouring pixels into homogeneous
regions) and then applying a supervised region-based classi�cation. In such a
process, the quality of the segmentation step is of great importance in the �nal
classi�ed result. Nevertheless, whereas the classi�cation step takes advantage
from some prior knowledge such as learning sample pixels, the segmentation
step rarely does. In this paper, we propose to involve such samples through ma-
chine learning procedures to improve the segmentation process.More precisely,
we consider the watershed transform segmentation algorithm, and rely on both
a fuzzy supervised classi�cation procedure and a genetic algorithm in order to
respectively build the elevation map used in the watershed paradigmand tune
segmentation parameters. We also propose new criteria for segmentation eval-
uation based on learning samples. We have evaluated our method on remotely
sensed images. The results assert the relevance of machine learning as a way to
introduce knowledge within the watershed segmentation process.

Key words: supervised image segmentation, watershed transform, fuzzy
classi�cation, genetic algorithm

1. Introduction

The goal of image understanding is to identify meaningful objects (from a
user point of view) within an image. This process usually relies on two distinct
steps: segmentation and classi�cation. The segmentation clusters pixels into
regions (i.e., it assigns to each pixel a region label) whereas classi�cation clusters
regions into classes (i.e., it assigns to each region a class label). A region is a
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set of connected pixels from which rich features can be extracted (e.g., shape,
textural indexes, etc.). These features, which cannot be extracted at pixel level,
are expected to improve the classi�cation accuracy. Nowadays, this kind of
approach is widely used, in particular in the remote sensing �eld (Blaschke,
2010).

To build an accurate classi�cation, the segmentation should return a set
of regions with a one-to-one mapping to the semantic objects (from a user
perspective) present within the image. However, this is hardly possible due to
image complexity. Indeed, since a segmentation algorithm is usually designed to
cluster connected pixels according to a homogeneity criterion, achieving a good
segmentation needs to involve such a relevant homogeneity criterion.Common
criteria (e.g., graylevel or spectral homogeneity, but also texturalindexes) may
not be relevant when processing complex images, such as very high resolution
remotely sensed images where semantic objects have no spectral homogeneity
(e.g., a house may be quite heterogeneous, due to the presence of windows on
the roof, or a di�erent illumination on each side of the roof). The lack of
relevant segmentation criteria leads to two main problems encountered during
the segmentation process. On the one hand, undersegmentation may occur when
a given region spans over objects of di�erent classes. Whatever the subsequent
classi�er is, some parts of the region will necessarily be misclassi�ed. Thus,
undersegmentation leads to segmentation errors that cannot be recovered in the
classi�cation step. On the other hand, oversegmentation may occur when a
semantic object is covered by many regions. In this case, extracted attributes,
especially shape and topological properties, are far less representative of the
object class. The classi�cation, using such noisy attribute values will produce a
lower quality result. Designing a segmentation method able to avoidboth under
and oversegmentation is then very challenging.

To cope with this problem, and to achieve a one-to-one correspondence be-
tween the segmented regions and the semantic objects de�ned by userknowl-
edge, homogeneity criteria involved in the segmentation process need to be
related to the user's knowledge. In the context of image understanding, this
knowledge is often brought by the user through learning samples given asan
input to the (supervised) classi�cation step. It seems very interesting to also
exploit these samples in the segmentation step and to elaborate more semantic
homogeneity criteria. By analogy with supervised classi�cation, segmentation
methods guided by learning samples are called heresupervised segmentation
algorithms.

In this paper, we propose a new supervised segmentation method relying
on learning samples (also called ground truth) in two di�erent ways. Firstly,
ground truth information is used to learn how to project the source image in
a more relevant data space, where the homogeneity assumption between con-
nected pixels is true and where a well-known segmentation method(i.e., the
watershed transform) can be applied. Secondly, ground truth is usedto learn
an adequate set of segmentation parameters using a genetic algorithm. Genetic
algorithms were chosen here to optimize the segmentation parameters, because
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they are very e�cient methods commonly used for objective functions optimiza-
tion (Goldberg and Holland, 1988). Moreover, they have already been used in
the context of segmentation parameters optimization, as mentioned in Sec. 2.2.
Similarly to some recent studies (Lezoray et al., 2008), our contributions show
that designing machine learning-based image processing algorithms is avery
promising way to rely on user knowledge.

We start by recalling the main principles of watershed segmentation and
brie
y reviewing how this method has been supervised. We thendescribe sev-
eral ways to perform supervised segmentation: space transformation (Sec. 3),
segmentation parameters optimization (Sec. 4) and �nally an hybrid method
combining the two approaches (Sec. 5). In Sec. 4, we also deal with the prob-
lem of segmentation evaluation and introduce several new criteria which will be
used as �tness function within the genetic algorithm. Then, we provide both an
analytical evaluation of the algorithms and an experimental and quantitative
evaluation in remote sensing. Finally, conclusions and some research directions
are drawn.

2. Watershed segmentation and its supervision

In this section, we recall the main principles of the watershed transform, a
widely used morphological approach for image segmentation. We also present
related work, i.e., attempts to introduce user knowledge in the watershed-based
image segmentation.

2.1. Watershed segmentation
The watershed transform has been chosen as the base segmentation algo-

rithm in our approach, which may however be applied with any segmentation
algorithm (and especially those needing parameter settings, see Sec.4). It is
a well-known segmentation method which considers the image to be processed
as a topographic surface. In the immersion paradigm from Vincent and Soille
(1991), this surface is 
ooded from its minima, thus generating di�erent growing
catchment basins. Dams are built to avoid merging water from two di�erent
catchment basins. The segmentation result is de�ned by the locations of the
dams (i.e., the watershed lines) when the whole image has been 
ooded, as
illustrated in Fig. 1.

In this approach, the topographic surface is most often built from an image
gradient, since object edges (i.e., watershed lines) are most probably located
at pixels with high gradient values. Di�erent techniques can be involved to
compute the image gradient. Since it does not a�ect our study, we consider here
as an illustrative example, the morphological gradient (Soille, 2003) computed
marginally (i.e., independently) for each image band and combined through an
Euclidean norm. Vectorial morphological approaches may of course be involved
(Aptoula and Lef�evre, 2007).

In its original, marker-free version, the watershed segmentation is proven to
easily generate an oversegmentation (i.e., a segmentation where the number of
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Figure 1: Illustration of the watershed segmentation princ iple. For each pixel, the elevation
relies here on the intensity within the image.

regions created is far larger than the number of actual regions in the image).A
smoothing �lter is often applied on the input image to overcome this problem.
Here we have decided to process marginally all image bands with a median�lter
(of size 3� 3 pixels, which is adequate for our task) in order to preserve image
edges.

To further reduce oversegmentation, we may use other, more advancedmeth-
ods. In this paper we consider three well-established techniques but our proposal
is not limited to those approaches.

First, the gradient thresholding method (Haris et al., 1998) is used. Onthe
grayscale gradient image considered as the topographic surface, each pixelwith
a value below a given threshold (writtenhmin) is set to zero. This step removes
small heterogeneity e�ects. On Fig. 2, this step is represented bythe hmin line:
all values under this line are set to null, and thus, two watershedsare removed.

The concept of dynamics (Najman and Schmitt, 1996) is also involved.
Catchment basins with a dynamic (written d) under a given threshold are �lled.
On Fig. 2 this step is represented by the catchment basin which starts from A.
If its dynamic d is below the considered threshold, this catchment basin is �lled
and the left watershed is removed.

The last method involved here is region merging (Haris et al., 1998). For
each region produced by the watershed transform, the average spectralsignature
is computed from its pixels and considered as a feature vector. If theEuclidean
distance between vectors of two neighboring regions is below a given threshold
(written M ), these two regions are merged.

2.2. Supervised segmentation
Another way to improve the quality of the segmentation is to leverage the

knowledge or examples available on the image. This family of methods is called
supervised segmentation methods.
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Figure 2: Illustration of watershed-related oversegmenta tion reduction methods considered in
this paper.

The most frequent use of examples (or ground truth in the �eld of remote
sensing) is to perform an optimization to �nd the best segmentation parameters
(Bhanu et al., 1995; Pignalberi et al., 2003; Song and Ciesielski, 2003; Martin
et al., 2006; Feitosa et al., 2006). This kind of methods involves a common
segmentation algorithm which can be tuned by a set of parameters. The genetic
algorithm �nds a set of parameters which optimize a �tness function. Di�erent
�tness functions were proposed using di�erent segmentation criteria based on
ground truth. We will focus on this strategy in Sec. 4.

A completely di�erent approach was proposed by Meyer and Beucher (1990),
where knowledge is introduced using markers in the watershed algorithm. Many
methods have been proposed for the choice of markers using knowledge. In these
methods, the user may locate the markers, which are used only as theinitial
positions of the catchment basins, i.e., the regions to be segmented.Recently,
Lef�evre (2007) proposed another marker-based watershed method where the seg-
mentation process also relies on the contents of the markers. Marker pixels are
involved in a supervised pixel classi�cation process whose result is merged with
the gradient of the input image to build the topographic surface. This approach
share some properties with the strategy proposed in Sec. 3, but requires the
user to set relevant markers for all the objects to be segmented (which cannot
be achieved in many contexts, e.g., remote sensing).

It is also possible (but less common) to apply the watershed on a modi�ed
input image. As our approach could be classi�ed in this category of methods,
we review the related major contributions hereafter.

Haker et al. (2000) use manually segmented images to extract, for each
object, a priori membership probabilities to belong to the di�erent classes of
interest. Then, they are combined using Bayes rules. Other kinds of data
knowledge can be included in the process, for example spatial relations between
objects of interest. This approach is comparable to a supervised classi�cation,
thus it faces the same problem of undersegmentation. Nevertheless, it produces
better results if the user can approximately determine the position of the objects
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in the scene.
In a similar way, Levner and Zhang (2007) propose a method working with

probability maps. They use a �rst classi�cation, based on an eroded ground
truth to �nd some seeds. Another classi�cation is applied using original ground
truth and the resulting inverted probability map is used as an elevation. This
approach is currently applied only on binary classi�cation. Also, this method
assumes the detection of all seeds. If a seed is missed then the underlying object
is not segmented.

Another method proposed by Grau et al. (2004) uses a probability map for
each class of interest. In this approach, markers are generated using an atlas.
Each marker has an associated class. A region growing approach is used to
simulate 
ooding. The elevation between two pixels relies on the original marker
class as it uses the probability di�erence between these pixels in the probability
map for the marker class (i.e., it is a markovian process). This approach also
needs the knowledge of markers locations.

Other ways to introduce knowledge within the segmentation process have
been proposed. Hamarneh and Li (2007) perform a watershed segmentation
with the classical oversegmentation problem. They use a modi�ed k-means
algorithm in order to cluster segments by intensity and position. Using ap-
pearance knowledge, they select the appropriate cluster and iteratively align a
shape histogram over the result to remove irrelevant remaining segments. This
approach relies heavily on the assumption that objects have homogeneous in-
tensity values, assumption which cannot be made in our context.

Chen et al. (2003) extract a shape and intensity model of the object of
interest from a set of reference segmentations. After the learning step, they
use an active contour model in order to segment the objects in respectwith
the shape and intensity model previously de�ned. This method works only for
single object detection and approximative location needs to be known.

From this brief review of related work, we can notice that involving knowl-
edge into the segmentation process is a relevant idea which leads toseveral
approaches recently proposed. In order to highlight our contribution and the
goals of this paper, we point out the main properties which di�ers our work
from other existing approaches:

� ability to deal with many classes;

� knowledge about the position of objects is not needed;

� ability to deal with spectrally inseparable classes i.e., where marker cre-
ation using classi�cation is not possible.

3. Supervised segmentation by space transformation

Segmentation algorithms aim to produce an image partition (i.e., a seg-
mentation) which ensures several fundamental properties. Thus, all regions of
the segmentation have to ful�l a prede�ned segmentation criterion. In other
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words, extracted objects are expected to be homogeneous, i.e., they are built by
gathering adjacent pixels with similar values (spectral similarity is most often
considered, but other criteria may be used, e.g., texture). However, when deal-
ing with very high resolution remotely sensed images, this assumption does not
hold any more. Indeed, too many details appear in such images (e.g., cars are
visible on the roads, shadows of the buildings appear, etc.). Thus, wepropose
here another approach, called probashed, that modi�es the data space in which
the segmentation is applied.

The main idea is to use the examples given by the user to de�ne a new
homogeneity between the pixels. For this, we project the pixels in a new data
space in which the sample regions are composed of homogeneous pixels. Then,
classical segmentation algorithms can be applied and should give better results
(according to the samples given by the user).

To produce the new data space based on the examples, we apply a super-
vised classi�cation method on the data. Applying a hard classi�cation technique
would produce a binary membership map, which is of limited usage when given
as an input to a segmentation algorithm. As we are considering to apply a water-
shed segmentation on the membership map, we rather need a more descriptive
data representation. Thus, we perform a fuzzy classi�cation of the data, in or-
der to obtain a grayscale membership map which can then be processedby the
watershed transform.

A graphical representation of the supervised segmentation process ispre-
sented in Fig. 3(b). The proposed method breaks down into two parts:

� fuzzy classi�cation: based on the samples given by the user;

� watershed segmentation: the segmentation is applied on the membership
map given by the fuzzy classi�cation (not on the original image).

Let us describe more precisely the space transformation strategy. We write
Si the input space:

Si : E ! Ri

x 7! Si (x) with Si (x) the spectral
signature of the pixel x

(1)

As we are facing complex images, we cannot assume that a perfect decision
function (i.e., a function able to assign the correct class for every pixel from
Si ) exists. Since only approximation functions exist, we consider the space of
membership values and write it Sm :

Sm : E ! [0; 1]
( C )

x 7! Sm (x) with Sm (x) the membership
vector of the pixel x

(2)

with 
( C) the number of classes. In this membership space, each class of objects
contained in the image and provided by the user is assumed to be a dimension
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Figure 3: The di�erent segmentation processes presented in t his paper
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of the space. Thus the value in each dimension denotes the membership of the
pixel to the corresponding class of objects.

In order to build the membership spaceSm from the input space Si , we
propose to rely on data mining tools and to perform a learning process based
on the available ground truth.

As an illustrative example, we use here aN nearest neighbours classi�er (Aha
et al., 1991) to achieve the fuzzy classi�cation and compute the membership
values. For each input pixel p, the N nearest labeled pixels in theSi space are
selected. Each neighbouring pixelpn will increase the membership degree of the
class it has been labeled with, weighted by the inverse of the distance d(p, pn )
in the feature space, with d : Ri � Ri ! R+ a given distance measure, e.g., the
Euclidean distance. The membershipsmp;k are then obtained by:

mp;k =

 
NX

n =1

KX

l =1

wn;l

! � 1 NX

n =1

wn;k (3)

where wn;k =
�

d(p, pn ) � 1 if pn is labeled with classk
0 otherwise

In this section, we have presented the probashed supervised segmentation
method which consists in applying a watershed segmentation on a transformed
data space. This transformation is computed using a fuzzy classi�cation of the
data from which fuzzy probability membership maps are built. Consequently,
the watershed is applied on the membership maps instead of the raw data, which
allows the method to better grasp the complexity of the image and leverage the
available knowledge. An evaluation and an application of this method are given
in Sec. 6.

4. Supervised segmentation by parameters optimization

In the previous section, learning examples provided by the user have been
used to compute a new similarity criterion between pixels. The segmentation
algorithm is then applied on a modi�ed input image where spectral values have
been replaced by class memberships. Another way to improve the segmentation
is to rely on the learning samples to automatically �nd the best parameters re-
quired for the algorithm. This can be achieved using an optimization framework,
and we propose to use here a genetic algorithm.

A genetic algorithm (GA) is an optimization method (Gersho and Gray,
1992), based on a function to maximize, called thefitness function. The de�-
nition of this �tness function is a critical point of these methods. Indeed, the
�tness has to evaluate the solutions proposed by the GA, in order to drive it to
the best solutions.

In this section, we �rst describe the parameters optimization algorithm, and
then present and compare di�erent kinds of segmentation evaluation criteria
that could be used as �tness functions.
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4.1. Parameters optimization algorithm
Let us emphasize that the watershed segmentation method (and its param-

eters) considered in this paper is just a simple example to illustrate our contri-
bution which consists in a general evolutionary framework for optimizing seg-
mentation parameters. Another segmentation algorithm could have been used
instead.

As it has been underlined previously, the base segmentation algorithm (and
more precisely the oversegmentation reduction techniques) requires several pa-
rameters to be set. We explain here how the genetic algorithm proceeds to tune
these parameters.

Given an evaluation function f (G) where G (the genotype in the genetic
framework) is taken in a spaceG, the GA searches the optimal value ofG, i.e.,
arg max

G2 G
f (G). GA are known to be e�ective even if f (G) contains many local

minima. This optimization can be considered as a learning process, ifand only
if it is performed on a learning set but can be generalized to other (unlearned)
datasets.

The genotypeG is de�ned as an array containing the parameters that have
to be automatically tuned in the watershed segmentation process, i.e., G =
[ω1, . . . , ωn ], with all parameters normalized into [0; 1].

A GA requires an initial population de�ned as a set of genotypes, to perform
the evolutionary process. In this process, the population evolves to obtain better
and better genotypes, i.e., solutions of the optimization problem under consid-
eration. In order to build the initial population, each genotype is randomly
chosen in the spaceG.

Once the initial population has been de�ned, the algorithm relies on the
following steps, which represent the transition between two generations:

1. assessment of genotypes in the population: genotypes are sorted by their
relevance;

2. selection of genotypes for crossover weighted by their rank;
3. crossover: two genotypes (G1 and G2) breed by combining their parame-

ters (or genes in the genetic framework) to give a childE. The resulting
child is E with E[i] = Gpi [i] + αi � j G1[i] � G2[i]j where αi and pi are
randomly selected in [� 1; 1] and f 1, 2g respectively. We apply an elitist
procedure and keep the best solution of the current generation in thenext
generation;

4. mutation: each parameter may be replaced by a random value with a
probability Pm . Thus, we avoid the GA to be trapped in a local mini-
mum. As indicated previously, the best genotype of a generation is kept
unchanged.

In our study, we use the following parameters for the GA: a population size
of 15 genotypes, a mutation probability Pm of 1%, and an evolution number
N = 30 generations (experiments shown that no signi�cant improvement is
obtained with more generations). The results are presented in Sec. 6.

Any segmentation evaluation function can be used as �tness function (f (G)).
Di�erent segmentation evaluation are presented in the following section.
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4.2. Segmentation evaluation
In the literature, many criteria for segmentation quality evaluation h ave been

proposed. The reader can refer to (Zhang, 1996, 2001) for some surveys of this
topic. In this paper, we do not consider all existing criteria, but rather focus on
criteria based on discrepancy, i.e., comparing a resulting segmentation with some
reference regions. This is particularly relevant since we are interested here in
evaluation of GA methods in the context of optimal segmentation parameters
learning. Criteria which are not based on learning samples are uselesswhen
investigating machine learning capabilities of the GA solutions.

Let us de�ne reference samples as a set of connected componentsR =
f Ri gi 2 [1;
( R )] where each connected componentRi is labeled with a classCk =
c(Ri ) from the set C = f Ck gk2 [1;
( C )] , with 
 the cardinality operator and c the
class assignment function. For instance, we could de�neC = f house, road, vegetationg
in the remote sensing context. If no class are meaningful, we assign a new
class to each reference sample, thusc(Ri ) = Ci and 
( R) = 
( C). We
also note RCk the set of reference samples, sharing the same class label, i.e.,
RCk = f Ri : c(Ri ) = Ck g.

We can de�ne three types of discrepancy criteria: classi�cation errors cri-
teria, matching criteria and generalization criteria. In our study, w e illustrate
these categories by a few representative criteria which will nowbe described.

4.2.1. Classification errors criteria
These criteria are based on the classi�cation error principle. An imageseg-

mentation can be seen as an image classi�cation process, and then, the per-
centage of misclassi�ed pixels can be used. Since labels are assigned to both
produced and reference regions, the number of pixels with di�erent labels be-
tween the segmentation and the reference image can be computed.

The criterion used here is derived from theE criterion from Carleer et al.
(2005). In the original paper, each reference region has a unique label. In
our case, we assign to each reference region a class label. This way, reference
regions sharing the same semantic, have the same label. To each segmented
region is then assigned the label of the most overlapping reference region (i.e.,
the region sharing the greatest number of pixels). We de�ne here theTMA
criterion (Theoretical Maximum Accuracy), which uses class labels instead of
a label for each region. If a segmented region spans over two reference regions
of the same class, theTMA criterion does not track an error, whereas theE
criterion does, as each reference region has a di�erent label. For eachclass, error
is measured and weighted by the inverse number of reference pixels in order to
give the same importance to each class. Then, a per-pixel confusion matrix K is
computed. For each evaluation pixel of a classCi , assigned to a labelCj by the
matching, the value of the cell Kij is incremented by (
( Ci )) � 1 where 
( Ci ) is
the number of reference pixels for classCi . Thus, the evaluation function TMA
is the classi�er precision (the overall accuracy):
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TMA =
1


( C)


( C )X

i =1

Kii (4)

The TMA criterion gives the best available accuracy of a subsequent classi-
�cation step of the resulting segments.

4.2.2. Matching criteria
Matching criteria measure spatial di�erences between segmentedand refer-

ence regions. They rely on a matching functionm(Ri , Sj ) which computes a
matching score between a reference regionRi and a segmented regionSj , where
S = f Sj gj 2 [1;
( S)] is the set of segmented regions. Let us additionally de�ne
RSj the set of reference regions overlappingSj , and inversely SR i the set of
segmented regions overlappingRi . To apply these criteria on a complete seg-
mentation, the average matching valueµm of the best matching score for each
reference region is computed:

µm =
1


( R)


( R )X

i =1

best1� j � 
( S) (m(Ri , Sj )) (5)

where the best function is the optimum function, i.e., minimum or maximum
function depending on the matching criterion.

The �rst criterion used here is taken from Feitosa et al. (2006) and de�ned
by:

F (Ri , Sj ) =

( Ri n (Ri \ Sj )) + 
( Sj n (Ri \ Sj ))


( Ri )
(6)

wheren represents the set di�erence operator, i.e.,AnB = f x : x 2 A, x 62Bg.
We observe that the F criterion favours oversegmentation over underseg-

mentation and should be minimized to obtain the best segmentation.
The second criterion is taken from Janssen and Molenaar (1995). It is quite

similar to F but does not have the bias to avoid oversegmentation. It considers
reference and segmented regions in the same way and should be maximized.

J(Ri , Sj ) =

s

( Ri \ Sj )2


( Ri ) � 
( Sj )
(7)

In this formulation, if a segmented regionSj spans over two reference regions
Ri and Ri ′ of the same classCk , both matching scoresJ(Ri , Sj ) and J(Ri ′ , Sj )
will be low. Nevertheless, asRi and Ri ′ belongs toRCk , they could be merged,
thus resulting in a high matching scoreJ(Ri [ Ri ′ , Sj ).

This principle leads to a new criterion JC which relies on class labels. For a
given couple (Ri , Sj ), we consider the subset ofRc(R i ) = f Ri ′ : c(Ri ′ ) = c(Ri )g
(i.e., the union of all reference regionsRi ′ sharing the label assigned toRi )
overlapping Sj , or Rc(R i

Sj
= Rc(R i ) \ Sj . The modi�ed criterion is then:
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JC(Ri , Sj ) =

s



�
Rc(R i ) \ Sj

� 2


( Ri ) � 
( Sj )
(8)

A similar evaluation criterion is the Jaccard index (Jaccard, 1912) which
should also be maximized. It is de�ned as the ratio between the cardinalities of
the intersection and the union of the two sets:

J0(Ri , Sj ) =

( Ri \ Sj )

( Ri [ Sj )

(9)

Here, we also extend this criterion to handle class labels:

JC0(Ri , Sj ) =

( Rc(R i ) \ Sj )


( Ri [ Sj
(10)

We can also mention the ultimate measurement accuracy criterion (Zhang
and Gerbrands, 1992), which measures the di�erence between featuresextracted
from Ri and Sj . Since it strongly depends on the regional features extracted,
and thus, is hardly compatible with a generic solution for parameter tuning, we
do not consider this criterion in our study.

4.2.3. Generalization criteria
Generalization criteria measure the coarseness of the segmentation.
The Gen criterion (Carleer et al., 2005) measures oversegmentation through

a simple ratio between the number of segmented and reference regions, i.e.,
Gen = 
( S)/ 
( R).

Here we consider only segmented regions spanning over a reference one, in
order to deal with an incomplete reference segmentation. Moreover, we take
into account class information and compute the average oversegmentation for
all classes. Thus the proposed criterionOV is de�ned as:

OV =
1


( C)


( C )X

k=1


( SR C k )

( RCk )

(11)

where SR C k denotes the set of segmented regions overlapping at least one of
the reference region assigned to the classCk while RCk is the set of reference
regions assigned to the classCk .

Another criterion belonging to this category is the average region size (noted
p/r), i.e., 
( I)/ 
( S) where 
( I) and 
( S) represent respectively the number
of pixels in the image and the number of regions produced by the segmentation.
It is rather simplistic and does not involve any sample. Nevertheless, it allows
to compare two segmentations to determine the coarsest one.
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4.2.4. Hybrid criteria
Among the previous criteria, some criteria measure mainly oversegmenta-

tion (e.g., OV and p/r) while others measure mainly undersegmentation (e.g.,
TMA). So it is relevant to combine these criteria to build some aggregated
criteria. Combination is one solution for resolving multi-objective optimization.
Another solution is to use the Pareto front (Fonseca and Fleming, 1996). The
Pareto front returns a set of results representing di�erent trade-o�s between
all the considered criteria. Thus, handling a set of results needsmore user
interaction, which is out of the scope of this paper.

We propose here two multi-objective criteria, combining TMA and OV .
The �rst one TMA/OV , avoids mainly undersegmentation (usingTMA)

and secondarily oversegmentation (usingOV ). It is simply de�ned by weighting
OV with a small coe�cient ( ε):

TMA/OV = TMA + ε
1

OV
(12)

The second criterion isTMA � OV (α). It also primarily relies on underseg-
mentation (using TMA), but limits its e�ect with the α parameter:

TMA � OV (α) = min( TMA, α) + ε
1

OV
(13)

Of course the α parameter is dependent of the application. It represents
the amount of errors (measured by theTMA criterion) tolerated by the user or
system. For instance, if theTMA quality should be at least 95%, the user sets
α = 0 .95.

5. Hybrid approach

In this section, we describe a hybrid method, integrating the two previous
ideas presented in Sec. 3 and Sec. 4. In an o�ine phase, the method learns
how to segment an image using a learning set (composed of images and masks
corresponding to objects of interest). The learning process occurs in two steps:
a space transformation step and a core segmentation step. Once the learning is
�nished, a segmentation algorithm (i.e., the space transformation stepand the
core segmentation step) is produced and can be used to segment images. No
learning set is needed in this application phase. The proposed method does not
need input parameters in neither phases. A 
ow chart is shown on Fig.3(d).

The learning set is composed of learning images and corresponding learning
masks. A learning mask is a semantic interpretation of a learning image made
by a human expert. For each object, the corresponding pixels in the image are
labeled with a classCk where k 2 [1 . . . K] and K is the number of classes.
Some pixels could be left unlabeled, denoting the inability to label them.
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5.1. Segmentation supervision by genetic algorithm
Here we propose a genetic algorithm in order to handle the parameters from

the segmentation step. As already stated in Sec. 4, the watershed algorithm
needs three parameters to be set:hmin to ignore low gradient values,d for the
bassin dynamics andM as the threshold for the region merging step. In the
space transform segmentation algorithm, another parameter is added, whichis
the same as theM threshold, but applied with the mean of membership maps:
this new threshold is written Mm . Thus, we have four parameters to optimize.

5.2. Evaluation function
As already discussed in Sec. 4.2, a critical point of the genetic algorithm

optimization method is the way the quality of the potential solutions ( i.e.,
genotypes) is estimated. Here, as we are interested in evaluation of segmen-
tation results, we focus on empirical discrepancy evaluation methods following
the work from Carleer et al. (2005). Nevertheless, our criteria are adaptedto
both mixed and user-meaningless pixels which do not appear in such a manual
reference segmentation. They are compatible with partially segmented images
de�ned as (incomplete) sets of labeled pixels. We use the term region for a
labeled reference region given by the user and the term segment for a region
produced by a segmentation.

From the evaluation criteria introduced in Sec. 4.2, we can de�ne theevalua-
tion function. We can choose to optimize one of the two criteria or a combination
of them. Here, we chose to optimize a criterion which represents oversegmenta-
tion and undersegmentation using:

F(g) =
1

OV (g)
� max(0, TMA(g) � 0.98) (14)

In the proposed function, F(g) increases asOV (g) is reaching 1 (no over-
segmentation) and decreases whenTMA(g) decreases. The function is null if
TMA(g) is under 98%, i.e., the maximum accuracy is 98% well classi�ed pixels.
This threshold was set to give more importance to avoid undersegmentation. It
could be modi�ed by the user depending on the image noise and complexity.
98% seems a good compromise in our experiments. IfTMA(g) falls below this
threshold the resulting segmentation will be useless.

6. Evaluation

The evaluation of the proposed algorithm follows the evaluation scheme pro-
posed by Zhang (1996), using both an analytical evaluation and an empirical
discrepancy evaluation. Let us observe that the empirical goodness evaluation
is not performed, since it is not relevant here: indeed it usually assumes that
segments are spectrally homogeneous.
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6.1. Analytical evaluation
The �rst part of the evaluation is an analytical review of the proposed algo-

rithm. Such a review is helpful to know if the algorithm is suitable to an image
or not. The proposed algorithm requires some knowledge from the user to be
able to segment an image:

� Class knowledge: the user needs to know the classes of objects which are
sought in the image.

� Samples for each class: some samples of each class are needed for the
learning step. Thefuzzy classification step can work with isolated samples,
but the genetic optimization step requires labeling of image parts.

There are also some limits which should be noted in the proposed algorithm:

� Connected objects of the same class: if two objects of the same class are
spatially connected and have similar memberships to classes, theywill
be merged together (i.e., undersegmentation). The same problem arises
in usual segmentation methods when two objects have similar spectral
values.

� Objects having heterogeneous spectral values and membership values: in
such a case, the algorithm produces an oversegmentation.

Nevertheless, these limits are weaker than those of classical segmentation
algorithms. If an object has heterogeneous spectral and membership values,
it will be oversegmented by classical segmentation methods. The case where
two spatially connected objects have similar membership values anddissimilar
spectral values and each object has homogeneous spectral values seems less
frequent than objects with heterogeneous spectral values. It is a tradeo� that
should be analyzed depending on the application.

Computational complexity. The computational complexity of this algorithm de-
pends on 4 parameters:n the number of pixels in the image, 
( C) the number
of labeled examples,p the population size andN the number of generations of
the genetic algorithm. At each step of the GA, the costly part of the algorithm is
the evaluation of the genotypes (i.e., the computation of the fuzzy classi�cation
followed by the watershed algorithm and the calculation of the evaluation cri-
teria). The fuzzy classi�cation algorithm has a O(n
( C)) complexity. But, as
it is only executed once at the beginning of the algorithm, we decided to ignore
it in the following. The watershed segmentation algorithm is linear according
to n. The evaluation of the �tness function depends on the chosen criterion. In
the case ofTMA, it is linear according to 
( C). Thus, the complexity of the
evaluation of one genotype is inO(n + 
( C)) which can be approximated by
O(n) if we consider that the segmentation is totally recomputed at each eval-
uation (worth case) and that 
( C) << n (which seems realistic in most of the
cases). Finally, the complexity of the method is inO(N � p � n).
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(a) Original Quickbird image (b) Labeled samples given by the expert

Figure 4: Remotely sensed image of a part of Strasbourg (Franc e)

6.2. Application to a real urban image
In the last decade automatic interpretation of remotely sensed images be-

came an increasingly active domain since sensors are now able to produceimages
with a very high spatial resolution (VHSR) (i.e., 1 meter resolution). This in-
creasing precision disturbs the classical per-pixel classi�cation procedures and
knowledge based systems have been more attentively investigated during the
last few years, to improve VHSR image interpretation. Indeed, the so called
object-oriented (Blaschke et al., 2000; Blaschke, 2010) approach provides a new
paradigm of reasoning by focusing on the objects present within an image,and
not only on the pixels. The images are segmented and the segments are classi�ed
using spectral and spatial attributes (e.g shape index, texture, etc.).

This case study is a typical example of VHSR image interpretation in remote
sensing, where a segmentation is �rst performed before applying a supervised
region-based classi�cation.

The input data is a pan-sharpened Quickbird1 image of the city of Strasbourg
(France) with 4 spectral bands representing a zone of 15.4km� 13.3km, with a
spatial resolution of 0.7 meter per pixel.

The experiment was performed on the whole zone Derivaux (2009), but
we only present here the results on an 900� 900 pixels extract of the image
(Fig. 4(a)). In four areas of the studied zone, some regions (representing 13% of
the extract) have been labeled by the expert in three classes: road, vegetation
and house (Fig. 4(b)).

Choice of the fitness function. The aim of the �rst set of experiments carried
out on this data was to evaluate the in
uence of the choice of the �tness func-

1 image provided by the LIVE laboratory from University of Str asbourg
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Figure 5: Evolution of the �tness functions according to the number of generations

tion. Indeed, we presented in Sec. 4.2 many criteria that could be used as �tness
function to optimize the parameters of the segmentation methods. Thequestion
is which criteria shall we optimize to obtain the best result ? We performed a
genetic optimization on two segmentation algorithms proposed before: classi-
cal watershed andprobashed (which corresponds to the space transformation
method given in Sec. 3). For the watershed algorithm, three parametershave
to be tuned as stated in Sec. 4:hmin, d, and M . For the probashed algorithm,
four parameters are used (Sec. 5) :hmin, d, M and Mm .

In our experiments, we consider the following parameters for the genetic
algorithm: a population size of 15 genotypes, a mutation probability Pm of
1% and an evolution number equals to 30 generations. Experiments show that
stability and convergence is achieved at this step. Fig. 5 shows the trend of the
�tness functions with respect to the number of generations. It shows that the
convergence is relatively fast and that 30 generations are enough as no signi�cant
improvement arises after 20 generations.
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Fitness functions Evaluation criteria
TMA OV 100� F 100� JC 100� JC0

TMA/OV 98.03 48.01 77.4 52.9 44.2
TMA � OV 99.12 95.10 81.5 43.4 36.4
F 98.56 61.28 75.7 53.4 44.8
JC 96.74 34.83 78.6 56.7 48.4
JC0 96.91 41.12 78.8 55.5 48.8

Table 1: Watershed parameters optimization (for readabili ty reasons, F , JC and JC′ indexes
were multiplied by 100).

Fitness functions Evaluation criteria
TMA OV 100� F 100� JC 100� JC0

TMA/OV 98.05 4.51 88.2 66.1 52.7
TMA � OV 99.50 28.79 68.8 64.6 57.5
F 99.40 23.59 68.4 65.3 57.6
JC 98.27 7.58 81.2 68.9 57.2
JC0 99.17 12.88 72.8 67.6 59.2

Table 2: Probashed parameters optimization (for readabili ty reasons, F , JC and JC′ indexes
were multiplied by 100).

We present in Tabs. 1 and 2 the results obtained by optimizing the param-
eters of the segmentation method. The �rst column shows the criterion that
has been used as �tness function. Then, each column corresponds to the value
obtained by the �nal result for each evaluation criterion.

It is important to notice that three criteria have to be maximized ( 0 <
TMA < 100, 0 < JC < 1, 0 < JC0 < 1), while two have to be minimized
(0 < F < 1 and 0< OV ).

The �rst remark concerns the three last lines of the two tables. It is obvious
that optimizing one criterion will produce the best result for thi s criterion. This
is veri�ed on these results for the three criteria F , JC and JC0.

Concerning the hybrid criteria, TMA � OV seems to be a better compromise
as TMA/OV because it optimizes well theTMA criterion, without having bad
results with the other ones.

Comparison of the different approaches proposed. The second experiment tries
to compare the di�erent approaches proposed in this paper. To have a more
thorough study, we also included two results given by two commercialremote
sensing segmentation software: eCognitionTM from De�niens2 and ENVI FX
from ITT Visual Information Solutions 3. These results were manually com-
puted by a geographer expert. We also computed a supervised per-pixel clas-

2http://earth.definiens.com/
3http://www.ittvis.com/
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Segmentation methods Evaluation criteria
TMA OV 100� F 100� JC 100� JC0

Watershed 99.18 99.04 17.1 41.5 30.0
Optimized watershed 98.57 61.29 24.3 53.4 44.8
Probashed 99.52 24.33 31.7 65.5 48.3
Optimized probashed 99.41 23.59 31.7 65.3 57.6
eCognition 91.42 35.26 12.9 48.3 51.2
ENVI FX 84.95 2.75 1.3 47.3 59.8
Pixel+Median 97.41 2.77 5.7 5.82 56.4
Pixel 97.48 6.69 5.3 5.85 55.5

Table 3: Comparison of the di�erent approaches proposed with t wo commercial segmentation
softwares and a supervised per-pixel classi�cation (for re adability reasons, F , JC and JC′

indexes were multiplied by 100).

si�cation using a 5 nearest neighbours classi�er for comparison purpose. The
results are presented for a raw per-pixel classi�cation and a per-pixel classi�ca-
tion after the application of a median �lter (with a window of 3 � 3 pixels).

Again, we present in Tab. 3 the evaluations calculated from the di�erent cri-
teria on the results given by the di�erent proposed methods. For the optimized
methods, we only give the result with F as �tness function for a better read-
ability. We choose F because it has good results with quite all the evaluation
criteria.

Concerning the TMA criterion, no signi�cant improvement is shown com-
pared to the classical or optimized version of the watershed. But compared
to the two commercial softwares, the probashed algorithm gives better results.
For OV , F and JC, the two probashed algorithms present better results as the
other methods. The space transformation brings a signi�cant contribution to
the quality of the solution. Finally, results for the JC0 criterion are comparable
with those given by the commercial softwares and better than those givenby
the watershed. In conclusion, the probashed algorithms seem to perform better
results according to the di�erent quality criteria proposed here.

As it is di�cult to grasp the in
uence of a small change on a criterion, we
show in Fig. 6 the segmentations produced by the di�erent methods. Thus,
it is possible to have a visual appreciation of the quality of the results. It is
clear that the watershed, even in its optimized version, producesresults that
could not be used directly in the classi�cation step. For example, the vegetation
zones in the blocks are really oversegmented as well as the houses. Itis then
very di�cult to use geometrical attributes in the classi�cation, as t he shape of
the regions does not necessarily correspond to the expected one.

When comparing the probashed method and its optimized version, the values
for the evaluation criteria are comparable or better for the optimized version.
But the main di�erences are visible on the segmentation results (Fig. 6). It is
obvious that the river (East of the image) is better delimited as the houses in
the blocks.
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(a) watershed (b) watershed optimization

(c) probashed (d) probashed optimization

(e) eCognition segmentation (f) ENVI FX segmentation

Figure 6: Segmentation results obtained by the di�erent appr oaches proposed (extract from
the studied image)
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7. Conclusion

In this article, we presented and compared di�erent criteria to optimize seg-
mentation parameters, when examples are available. We also exposed another
way to take advantage of ground truth, in changing the data space before ap-
plying the segmentation algorithm. The space transformation is performed by
a fuzzy classi�cation based on the examples given by the expert. It hasbeen
shown that using this knowledge to guide the segmentation enables toproduce
better results, even better than manually produced segmentationsby an expert.

In future work, we would like to focus on the study of the integration of
other kinds of knowledge (not only examples) in the segmentation process. For
example, a hierarchy of concepts describing the objects of interest could help to
better identify which regions are well segmented. We also plan to use several
segmentation algorithms and make them collaborate to �nd a better segmenta-
tion.
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