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Abstract

Automatic image interpretation is often achieved by rst performing a seg-
mentation of the image (i.e., gathering neighbouring pixels into homogeaous
regions) and then applying a supervised region-based classi cation.nl such a
process, the quality of the segmentation step is of great importance inhe nal
classi ed result. Nevertheless, whereas the classi cation stepakes advantage
from some prior knowledge such as learning sample pixels, the segmatibn
step rarely does. In this paper, we propose to involve such sampleftough ma-
chine learning procedures to improve the segmentation procesdore precisely,
we consider the watershed transform segmentation algorithm, and rely on &th
a fuzzy supervised classi cation procedure and a genetic algorithmni order to
respectively build the elevation map used in the watershed paradigmand tune
segmentation parameters. We also propose new criteria for segmentatiorvad-
uation based on learning samples. We have evaluated our method on remoyel
sensed images. The results assert the relevance of machine leamias a way to
introduce knowledge within the watershed segmentation process.

Key words: supervised image segmentation, watershed transform, fuzzy
classi cation, genetic algorithm

1. Introduction

The goal of image understanding is to identify meaningful objects (from a
user point of view) within an image. This process usually relies on tw distinct
steps: segmentation and classi cation. The segmentation clusters piis into
regions (i.e., it assigns to each pixel a region label) whereas classation clusters
regions into classes (i.e., it assigns to each region a class label). Agien is a
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set of connected pixels from which rich features can be extracted (g., shape,
textural indexes, etc.). These features, which cannot be extractd at pixel level,
are expected to improve the classi cation accuracy. Nowadays, this ind of
approach is widely used, in particular in the remote sensing eld (Baschke,
2010).

To build an accurate classi cation, the segmentation should return a sé¢
of regions with a one-to-one mapping to the semantic objects (from a user
perspective) present within the image. However, this is hardly pssible due to
image complexity. Indeed, since a segmentation algorithm is usually dggned to
cluster connected pixels according to a homogeneity criterion, ackiving a good
segmentation needs to involve such a relevant homogeneity criterionCommon
criteria (e.g., graylevel or spectral homogeneity, but also texturalindexes) may
not be relevant when processing complex images, such as very high odstion
remotely sensed images where semantic objects have no spectral homoejigy
(e.g., a house may be quite heterogeneous, due to the presence of dows on
the roof, or a dierent illumination on each side of the roof). The lack of
relevant segmentation criteria leads to two main problems encountexd during
the segmentation process. On the one hand, undersegmentation may agovhen
a given region spans over objects of di erent classes. Whatever the sgequent
classier is, some parts of the region will necessarily be misclassd. Thus,
undersegmentation leads to segmentation errors that cannot be recovedan the
classi cation step. On the other hand, oversegmentation may occur wkn a
semantic object is covered by many regions. In this case, extracted atbutes,
especially shape and topological properties, are far less representativof the
object class. The classi cation, using such noisy attribute values Wl produce a
lower quality result. Designing a segmentation method able to avoidboth under
and oversegmentation is then very challenging.

To cope with this problem, and to achieve a one-to-one correspondenceeb
tween the segmented regions and the semantic objects de ned by usémnowl-
edge, homogeneity criteria involved in the segmentation process ndeto be
related to the user's knowledge. In the context of image understandig, this
knowledge is often brought by the user through learning samples given aan
input to the (supervised) classi cation step. It seems very interesting to also
exploit these samples in the segmentation step and to elaborate more semtic
homogeneity criteria. By analogy with supervised classi cation, segmetation
methods guided by learning samples are called hersupervised segmentation
algorithms.

In this paper, we propose a new supervised segmentation method rehg
on learning samples (also called ground truth) in two di erent ways. Firstly,
ground truth information is used to learn how to project the source image in
a more relevant data space, where the homogeneity assumption betweere
nected pixels is true and where a well-known segmentation methodi.e., the
watershed transform) can be applied. Secondly, ground truth is usedo learn
an adequate set of segmentation parameters using a genetic algorithm. Geie
algorithms were chosen here to optimize the segmentation parameters elsause



they are very e cient methods commonly used for objective functions optimiza-
tion (Goldberg and Holland, 1988). Moreover, they have already been used in
the context of segmentation parameters optimization, as mentioned in Se.2.
Similarly to some recent studies (Lezoray et al., 2008), our contributiors show
that designing machine learning-based image processing algorithms is \eery
promising way to rely on user knowledge.

We start by recalling the main principles of watershed segmentation ad
brie y reviewing how this method has been supervised. We thendescribe sev-
eral ways to perform supervised segmentation: space transformation €. 3),
segmentation parameters optimization (Sec. 4) and nally an hybrid method
combining the two approaches (Sec. 5). In Sec. 4, we also deal with therqb-
lem of segmentation evaluation and introduce several new criteria with will be
used as tness function within the genetic algorithm. Then, we provide both an
analytical evaluation of the algorithms and an experimental and quantitative
evaluation in remote sensing. Finally, conclusions and some researchrdctions
are drawn.

2. Watershed segmentation and its supervision

In this section, we recall the main principles of the watershed trarsform, a
widely used morphological approach for image segmentation. We also present
related work, i.e., attempts to introduce user knowledge in the vatershed-based
image segmentation.

2.1. Watershed segmentation

The watershed transform has been chosen as the base segmentation algo-
rithm in our approach, which may however be applied with any segmentaion
algorithm (and especially those needing parameter settings, see Set). It is
a well-known segmentation method which considers the image to be pressed
as a topographic surface. In the immersion paradigm from Vincent and Soille
(1991), this surface is ooded from its minima, thus generating di erent growing
catchment basins. Dams are built to avoid merging water from two di erent
catchment basins. The segmentation result is de ned by the locatios of the
dams (i.e., the watershed lines) when the whole image has been oode as
illustrated in Fig. 1.

In this approach, the topographic surface is most often built from an image
gradient, since object edges (i.e., watershed lines) are most probablocated
at pixels with high gradient values. Di erent techniques can be involved to
compute the image gradient. Since it does not a ect our study, we considr here
as an illustrative example, the morphological gradient (Soille, 2003) compute
marginally (i.e., independently) for each image band and combined throgh an
Euclidean norm. Vectorial morphological approaches may of course be involde
(Aptoula and Letvre, 2007).

In its original, marker-free version, the watershed segmentation is pven to
easily generate an oversegmentation (i.e., a segmentation where the mber of
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Figure 1: lllustration of the watershed segmentation princ  iple. For each pixel, the elevation
relies here on the intensity within the image.

regions created is far larger than the number of actual regions in the image)A
smoothing lter is often applied on the input image to overcome this problem.
Here we have decided to process marginally all image bands with a medialter
(of size 3 3 pixels, which is adequate for our task) in order to preserve image
edges.

To further reduce oversegmentation, we may use other, more advancadeth-
ods. In this paper we consider three well-established techniges but our proposal
is not limited to those approaches.

First, the gradient thresholding method (Haris et al., 1998) is used. Onthe
grayscale gradient image considered as the topographic surface, each pixgth
a value below a given threshold (writtenhmin) is set to zero. This step removes
small heterogeneity e ects. On Fig. 2, this step is represented byhe hmin line:
all values under this line are set to null, and thus, two watershedsare removed.

The concept of dynamics (Najman and Schmitt, 1996) is also involved.
Catchment basins with a dynamic (written d) under a given threshold are lled.
On Fig. 2 this step is represented by the catchment basin which strts from A.
If its dynamic d is below the considered threshold, this catchment basin is lled
and the left watershed is removed.

The last method involved here is region merging (Haris et al., 1998). For
each region produced by the watershed transform, the average spectraignature
is computed from its pixels and considered as a feature vector. If th&uclidean
distance between vectors of two neighboring regions is below a giveinteshold
(written M), these two regions are merged.

2.2. Supervised segmentation

Another way to improve the quality of the segmentation is to leverage the
knowledge or examples available on the image. This family of methods isaled
supervised segmentation methods.
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Figure 2: lllustration of watershed-related oversegmenta tion reduction methods considered in
this paper.

The most frequent use of examples (or ground truth in the eld of remote
sensing) is to perform an optimization to nd the best segmentation parameters
(Bhanu et al., 1995; Pignalberi et al., 2003; Song and Ciesielski, 2003; Martin
et al., 2006; Feitosa et al., 2006). This kind of methods involves a common
segmentation algorithm which can be tuned by a set of parameters. The getie
algorithm nds a set of parameters which optimize a tness function. Di erent
tness functions were proposed using di erent segmentation criteia based on
ground truth. We will focus on this strategy in Sec. 4.

A completely di erent approach was proposed by Meyer and Beucher (1990),
where knowledge is introduced using markers in the watershed algithm. Many
methods have been proposed for the choice of markers using knowledda these
methods, the user may locate the markers, which are used only as thiitial
positions of the catchment basins, i.e., the regions to be segmentediecently,
Lekvre (2007) proposed another marker-based watershed method where ¢hseg-
mentation process also relies on the contents of the markers. Markerixels are
involved in a supervised pixel classi cation process whose redtils merged with
the gradient of the input image to build the topographic surface. This approach
share some properties with the strategy proposed in Sec. 3, but reques the
user to set relevant markers for all the objects to be segmented (wbh cannot
be achieved in many contexts, e.g., remote sensing).

It is also possible (but less common) to apply the watershed on a moded
input image. As our approach could be classi ed in this category of methods,
we review the related major contributions hereafter.

Haker et al. (2000) use manually segmented images to extract, for each
object, a priori membership probabilities to belong to the di erent classes of
interest. Then, they are combined using Bayes rules. Other kids of data
knowledge can be included in the process, for example spatial relatns between
objects of interest. This approach is comparable to a supervised claissation,
thus it faces the same problem of undersegmentation. Neverthelesg,produces
better results if the user can approximately determine the positon of the objects



in the scene.

In a similar way, Levner and Zhang (2007) propose a method working with
probability maps. They use a rst classi cation, based on an eroded grour
truth to nd some seeds. Another classi cation is applied using original ground
truth and the resulting inverted probability map is used as an elevation. This
approach is currently applied only on binary classi cation. Also, this method
assumes the detection of all seeds. If a seed is missed then the enlging object
is not segmented.

Another method proposed by Grau et al. (2004) uses a probability map for
each class of interest. In this approach, markers are generated using anlas.
Each marker has an associated class. A region growing approach is used to
simulate ooding. The elevation between two pixels relies on the oiginal marker
class as it uses the probability di erence between these pixelqiithe probability
map for the marker class (i.e., it is a markovian process). This approdt also
needs the knowledge of markers locations.

Other ways to introduce knowledge within the segmentation procas have
been proposed. Hamarneh and Li (2007) perform a watershed segmentation
with the classical oversegmentation problem. They use a modied kmeans
algorithm in order to cluster segments by intensity and position. Using ap-
pearance knowledge, they select the appropriate cluster and iterately align a
shape histogram over the result to remove irrelevant remaining segemts. This
approach relies heavily on the assumption that objects have homogeneous-i
tensity values, assumption which cannot be made in our context.

Chen et al. (2003) extract a shape and intensity model of the object of
interest from a set of reference segmentations. After the learningtep, they
use an active contour model in order to segment the objects in respeavith
the shape and intensity model previously de ned. This method woks only for
single object detection and approximative location needs to be known

From this brief review of related work, we can notice that involving knowl-
edge into the segmentation process is a relevant idea which leads tgeveral
approaches recently proposed. In order to highlight our contribution andthe
goals of this paper, we point out the main properties which di ers our work
from other existing approaches:

ability to deal with many classes;
knowledge about the position of objects is not needed;

ability to deal with spectrally inseparable classes i.e., where maer cre-
ation using classi cation is not possible.

3. Supervised segmentation by space transformation

Segmentation algorithms aim to produce an image partition (i.e., a seg-
mentation) which ensures several fundamental properties. Thus, &lregions of
the segmentation have to full a prede ned segmentation criterion. In other



words, extracted objects are expected to be homogeneous, i.e., theyeabuilt by
gathering adjacent pixels with similar values (spectral similarity is most often
considered, but other criteria may be used, e.g., texture). Howeer, when deal-
ing with very high resolution remotely sensed images, this assumpbin does not
hold any more. Indeed, too many details appear in such images (e.g., carsar
visible on the roads, shadows of the buildings appear, etc.). Thus, wpropose
here another approach, called probashed, that modi es the data space in kich
the segmentation is applied.

The main idea is to use the examples given by the user to de ne a new
homogeneity between the pixels. For this, we project the pixelsn a new data
space in which the sample regions are composed of homogeneous pixels. Then
classical segmentation algorithms can be applied and should give better salts
(according to the samples given by the user).

To produce the new data space based on the examples, we apply a super
vised classi cation method on the data. Applying a hard classi cation technique
would produce a binary membership map, which is of limited usage whegiven
as an input to a segmentation algorithm. As we are considering to apply a wate
shed segmentation on the membership map, we rather need a more deitive
data representation. Thus, we perform a fuzzy classi cation of the dag, in or-
der to obtain a grayscale membership map which can then be processég the
watershed transform.

A graphical representation of the supervised segmentation process jsre-
sented in Fig. 3(b). The proposed method breaks down into two parts:

fuzzy classi cation: based on the samples given by the user;

watershed segmentation: the segmentation is applied on the memberghi
map given by the fuzzy classi cation (not on the original image).

Let us describe more precisely the space transformation strategy. We nite
S; the input space:

S: E ! R
X 7' Si(x) with Sj(x) the spectral (2)
signature of the pixel x

As we are facing complex images, we cannot assume that a perfect decision
function (i.e., a function able to assign the correct class for every el from
Si) exists. Since only approximation functions exist, we consider tle space of
membership values and write it Sy, :

Sm: E 1 [0;1]¢(©
X 7' Sn(X) with Sy, (X) the membership (2)
vector of the pixel x

with ( C) the number of classes. In this membership space, each class of olifec
contained in the image and provided by the user is assumed to be a dimsion
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Figure 3: The di erent segmentation processes presented in t his paper



of the space. Thus the value in each dimension denotes the memberphof the
pixel to the corresponding class of objects.

In order to build the membership spaceS,, from the input space S;, we
propose to rely on data mining tools and to perform a learning process dsed
on the available ground truth.

As an illustrative example, we use here a\ nearest neighbours classi er (Aha
et al., 1991) to achieve the fuzzy classi cation and compute the membersp
values. For each input pixelp, the N nearest labeled pixels in theS; space are
selected. Each neighbouring pixep, will increase the membership degree of the
class it has been labeled with, weighted by the inverse of the distaze d(p, pn)
in the feature space, withd : R R | R* a given distance measure, e.g., the
Euclidean distance. The membershipsny are then obtained by:

xoxo Tt
Mpk = Wh;| Wh;k (3)
n=1 |=1 n=1

d(p,pn) ! if pn is labeled with classk
0

where Wnk = otherwise

In this section, we have presented the probashed supervised segmation
method which consists in applying a watershed segmentation on a trariermed
data space. This transformation is computed using a fuzzy classi caton of the
data from which fuzzy probability membership maps are built. Conseqently,
the watershed is applied on the membership maps instead of the rawada, which
allows the method to better grasp the complexity of the image and leveage the
available knowledge. An evaluation and an application of this method are giva
in Sec. 6.

4. Supervised segmentation by parameters optimization

In the previous section, learning examples provided by the user &ve been
used to compute a new similarity criterion between pixels. The sgmentation
algorithm is then applied on a modi ed input image where spectral values have
been replaced by class memberships. Another way to improve the gmentation
is to rely on the learning samples to automatically nd the best parameters re-
quired for the algorithm. This can be achieved using an optimization framework,
and we propose to use here a genetic algorithm.

A genetic algorithm (GA) is an optimization method (Gersho and Gray,
1992), based on a function to maximize, called thefitness function. The de -
nition of this tness function is a critical point of these methods. Indeed, the
tness has to evaluate the solutions proposed by the GA, in order to driwe it to
the best solutions.

In this section, we rst describe the parameters optimization algorithm, and
then present and compare di erent kinds of segmentation evaluation crieria
that could be used as tness functions.



4.1. Parameters optimization algorithm

Let us emphasize that the watershed segmentation method (and its param-
eters) considered in this paper is just a simple example to illusate our contri-
bution which consists in a general evolutionary framework for optimizng seg-
mentation parameters. Another segmentation algorithm could have been usk
instead.

As it has been underlined previously, the base segmentation algorithmgnd
more precisely the oversegmentation reduction techniques) redres several pa-
rameters to be set. We explain here how the genetic algorithm procels to tune
these parameters.

Given an evaluation function f(G) where G (the genotype in the genetic
framework) is taken in a spaceG, the GA searches the optimal value ofG, i.e.,

argmax f(G). GA are known to be e ective even if f(G) contains many local
G2G
minima. This optimization can be considered as a learning process, dnd only

if it is performed on a learning set but can be generalized to other (ukearned)
datasets.

The genotype G is de ned as an array containing the parameters that have
to be automatically tuned in the watershed segmentation process, i.¢ G =
[W1,...,wn], with all parameters normalized into [0; 1].

A GA requires an initial population de ned as a set of genotypes, to perbrm
the evolutionary process. In this process, the population evolvesat obtain better
and better genotypes, i.e., solutions of the optimization problem unde consid-
eration. In order to build the initial population, each genotype is randomly
chosen in the spaceG.

Once the initial population has been de ned, the algorithm relies on the
following steps, which represent the transition between two gearations:

1. assessment of genotypes in the population: genotypes are sorted by thei
relevance;

2. selection of genotypes for crossover weighted by their rank;

3. crossover: two genotypes@; and G;) breed by combining their parame-
ters (or genes in the genetic framework) to give a childe. The resulting
child is E with E[i] = Gy, [i]+ oi j Gy[i] G2[i]j where a; and p; are
randomly selected in [ 1;1] andf 1, 2g respectively. We apply an elitist
procedure and keep the best solution of the current generation in theext
generation;

4. mutation: each parameter may be replaced by a random value with a
probability Py. Thus, we avoid the GA to be trapped in a local mini-
mum. As indicated previously, the best genotype of a generation is kept
unchanged.

In our study, we use the following parameters for the GA: a population sie
of 15 genotypes, a mutation probability P, of 1%, and an evolution number
N = 30 generations (experiments shown that no signi cant improvement is
obtained with more generations). The results are presented in Sec. 6.

Any segmentation evaluation function can be used as tness function £(G)).
Di erent segmentation evaluation are presented in the following setion.

10



4.2. Segmentation evaluation

In the literature, many criteria for segmentation quality evaluation h ave been
proposed. The reader can refer to (Zhang, 1996, 2001) for some surveys of this
topic. In this paper, we do not consider all existing criteria, but rather focus on
criteria based on discrepancy, i.e., comparing a resulting segmeation with some
reference regions. This is particularly relevant since we are intested here in
evaluation of GA methods in the context of optimal segmentation parameters
learning. Criteria which are not based on learning samples are uselesghen
investigating machine learning capabilities of the GA solutions.

Let us de ne reference samples as a set of connected componeri&s =
fRigi211;( r)) Where each connected componerR; is labeled with a classCy =
¢(Ri) fromthe set C = fCyQxap1;( cy» With the cardinality operator and c the
class assignment function. For instance, we could de n€ = f house road, vegetationg
in the remote sensing context. If no class are meaningful, we assign aew
class to each reference sample, thus(R;j) = C; and (R) = ( C). We
also note R®x the set of reference samples, sharing the same class label, i.e.,
R = fR; 1 ¢(Ry) = Cko.

We can de ne three types of discrepancy criteria: classi cation erors cri-
teria, matching criteria and generalization criteria. In our study, we illustrate
these categories by a few representative criteria which will nowbe described.

4.2.1. Classification errors criteria

These criteria are based on the classi cation error principle. An imageseg-
mentation can be seen as an image classi cation process, and then, the per
centage of misclassi ed pixels can be used. Since labels are assignedbioth
produced and reference regions, the number of pixels with di eret labels be-
tween the segmentation and the reference image can be computed.

The criterion used here is derived from theE criterion from Carleer et al.
(2005). In the original paper, each reference region has a unique label. In
our case, we assign to each reference region a class label. This wayerefice
regions sharing the same semantic, have the same label. To each segmezht
region is then assigned the label of the most overlapping referenceg®en (i.e.,
the region sharing the greatest number of pixels). We de ne here theT MA
criterion (Theoretical Maximum Accuracy), which uses class labels mstead of
a label for each region. If a segmented region spans over two referenaegions
of the same class, thel M A criterion does not track an error, whereas theE
criterion does, as each reference region has a di erent label. For eadtass, error
is measured and weighted by the inverse number of reference pixein order to
give the same importance to each class. Then, a per-pixel confusion mat K is
computed. For each evaluation pixel of a clas<;, assigned to a labelC; by the
matching, the value of the cellKj is incremented by (( C;)) * where ( Cj) is
the number of reference pixels for clas€;. Thus, the evaluation function TMA
is the classi er precision (the overall accuracy):

11
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The TMA criterion gives the best available accuracy of a subsequent classi-
cation step of the resulting segments.

TMA =

4.2.2. Matching criteria

Matching criteria measure spatial di erences between segmentednd refer-
ence regions. They rely on a matching functionm(R;, S;) which computes a
matching score between a reference regidR; and a segmented regiors; , where
S = £Sjgj2p1;( sy Is the set of segmented regions. Let us additionally de ne
Rs, the set of reference regions overlapping;, and inversely Sg, the set of
segmented regions overlappindR;. To apply these criteria on a complete seg-
mentation, the average matching valuep,, of the best matching score for each
reference region is computed:

KR
(R) i

Hm = best, | (5 (M(R;,S;)) )

where the best function is the optimum function, i.e., minimum or maximum
function depending on the matching criterion.
The rst criterion used here is taken from Feitosa et al. (2006) and de ned

by:

(Rin(Ri\ )+ ( Sjn(R\ §)))
( Ri) ©)

wheren represents the set di erence operator, i.e.,AnB = fx : x2 A, X 62Bg.

We observe that the F criterion favours oversegmentation over underseg-
mentation and should be minimized to obtain the best segmentation.

The second criterion is taken from Janssen and Molenaar (1995). It is quite
similar to F but does not have the bias to avoid oversegmentation. It considers
reference and segmented regions in the same way and should be maxintze

S T o\ a2
_ (Ri\ S)
YRSIE TRy ()

In this formulation, if a segmented regionS; spans over two reference regions
Ri and R;oof the same clas<Cy, both matching scoresJ(R;, S;) and J(Ri5S;)
will be low. Nevertheless, asR; and R;obelongs toRCx, they could be merged,
thus resulting in a high matching scoreJ(Ri [ Ri5S;).

This principle leads to a new criterion JC which relies on class labels. For a
given couple R;,S;), we consider the subset oR“R1) = fR;u: ¢(Ri0) = c(Ri)g
(i.e., the union of all reference regionsR;osharing the label assigned toR;)
overlapping S;, or Rg(iRi = RYR)\ S;. The modi ed criterion is then:

F(Ri,Sj) =

()

12
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A similar evaluation criterion is the Jaccard index (Jaccard, 1912) which

should also be maximized. It is de ned as the ratio between the cardialities of
the intersection and the union of the two sets:

JC(R;,Sj) = (8)

(Ri\ )
JYR;,Sj)= — 2 9
RS (RTs) ©)
Here, we also extend this criterion to handle class labels:
R(RD\ )
JCYR;,Si) = (RN §) 10
RS)= TR TS uo

We can also mention the ultimate measurement accuracy criterion (Zhag
and Gerbrands, 1992), which measures the di erence between featurextracted
from R; and S;. Since it strongly depends on the regional features extracted,
and thus, is hardly compatible with a generic solution for parameter tuning, we
do not consider this criterion in our study.

4.2.3. Generalization criteria

Generalization criteria measure the coarseness of the segmentation.

The Gen criterion (Carleer et al., 2005) measures oversegmentation through
a simple ratio between the number of segmented and reference reg®ni.e.,
Gen=( S) ( R).

Here we consider only segmented regions spanning over a reference ,oine
order to deal with an incomplete reference segmentation. Moreover, & take
into account class information and compute the average oversegmentatiorof
all classes. Thus the proposed criteriorOV is de ned as:

_ 1 X9 ((5pe))
V1o, (R

where Sgc, denotes the set of segmented regions overlapping at least one of
the reference region assigned to the clasSx while R« is the set of reference
regions assigned to the clas€y.

Another criterion belonging to this category is the average region size (ated
p/r), i.e.,, ( 1)/ ( S) where (1) and ( S) represent respectively the number
of pixels in the image and the number of regions produced by the segmeation.

It is rather simplistic and does not involve any sample. Nevertheles, it allows
to compare two segmentations to determine the coarsest one.

11)
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4.2.4. Hybrid criteria

Among the previous criteria, some criteria measure mainly oversegnmta-
tion (e.g., OV and p/r) while others measure mainly undersegmentation (e.g.,
TMA). So it is relevant to combine these criteria to build some aggregated
criteria. Combination is one solution for resolving multi-objective optimization.
Another solution is to use the Pareto front (Fonseca and Fleming, 1996). The
Pareto front returns a set of results representing di erent trade-o s between
all the considered criteria. Thus, handling a set of results needsnore user
interaction, which is out of the scope of this paper.

We propose here two multi-objective criteria, combining TMA and OV .

The rst one TMA/OV, avoids mainly undersegmentation (usingT MA)
and secondarily oversegmentation (usingV ). It is simply de ned by weighting
OV with a small coe cient ( €):

1
™ V=TMA+ e — 12
A/O EOV (12)

The second criterion isTMA OV (a). It also primarily relies on underseg-
mentation (using TMA), but limits its e ect with the o parameter:

. 1
TMA OV(a)=min( TMA,a)+ EW (13)

Of course the a parameter is dependent of the application. It represents
the amount of errors (measured by theT M A criterion) tolerated by the user or
system. For instance, if the TM A quality should be at least 95%, the user sets
a=0.95.

5. Hybrid approach

In this section, we describe a hybrid method, integrating the two previous
ideas presented in Sec. 3 and Sec. 4. In an oine phase, the method leas
how to segment an image using a learning set (composed of images and masks
corresponding to objects of interest). The learning process oces in two steps:

a space transformation step and a core segmentation step. Once the leang is
nished, a segmentation algorithm (i.e., the space transformation stepand the
core segmentation step) is produced and can be used to segment images. No
learning set is needed in this application phase. The proposed metlidodoes not
need input parameters in neither phases. A ow chart is shown on Fig.3(d).

The learning set is composed of learning images and corresponding leangi
masks. A learning mask is a semantic interpretation of a learning image e
by a human expert. For each object, the corresponding pixels in themage are
labeled with a classCyx wherek 2 [1...K] and K is the number of classes.
Some pixels could be left unlabeled, denoting the inability to labé them.
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5.1. Segmentation supervision by genetic algorithm

Here we propose a genetic algorithm in order to handle the parameters from
the segmentation step. As already stated in Sec. 4, the watershed algorithm
needs three parameters to be sethmin to ignore low gradient values,d for the
bassin dynamics andM as the threshold for the region merging step. In the
space transform segmentation algorithm, another parameter is added, whiclis
the same as theM threshold, but applied with the mean of membership maps:
this new threshold is written M,. Thus, we have four parameters to optimize.

5.2. Evaluation function

As already discussed in Sec. 4.2, a critical point of the genetic algorithm
optimization method is the way the quality of the potential solutions (i.e.,
genotypes) is estimated. Here, as we are interested in evaluation of segm
tation results, we focus on empirical discrepancy evaluation methosl following
the work from Carleer et al. (2005). Nevertheless, our criteria are adaptedo
both mixed and user-meaningless pixels which do not appear in such aanual
reference segmentation. They are compatible with partially segmente images
de ned as (incomplete) sets of labeled pixels. We use the term regn for a
labeled reference region given by the user and the term segment for a&gion
produced by a segmentation.

From the evaluation criteria introduced in Sec. 4.2, we can de ne theevalua-
tion function. We can choose to optimize one of the two criteria or a comination
of them. Here, we chose to optimize a criterion which represents @rsegmenta-
tion and undersegmentation using:

F(g) = max(0, TMA(g) 0.98) (14)

1
OV (9)

In the proposed function, F(g) increases asOV (g) is reaching 1 (no over-
segmentation) and decreases whel M A(g) decreases. The function is null if
TMAC(g) is under 98%, i.e., the maximum accuracy is 98% well classi ed pixels
This threshold was set to give more importance to avoid undersegmeation. It
could be modied by the user depending on the image noise and completi
98% seems a good compromise in our experiments. TfTM A(g) falls below this
threshold the resulting segmentation will be useless.

6. Evaluation

The evaluation of the proposed algorithm follows the evaluation scheme pro-
posed by Zhang (1996), using both an analytical evaluation and an empirical
discrepancy evaluation. Let us observe that the empirical goodness aluation
is not performed, since it is not relevant here: indeed it usually asumes that
segments are spectrally homogeneous.
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6.1. Analytical evaluation

The rst part of the evaluation is an analytical review of the proposed algo-
rithm. Such a review is helpful to know if the algorithm is suitable to an image
or not. The proposed algorithm requires some knowledge from the user toé
able to segment an image:

Class knowledge: the user needs to know the classes of objects whare
sought in the image.

Samples for each class: some samples of each class are needed for the
learning step. Thefuzzy classification step can work with isolated samples,
but the genetic optimization step requires labeling of image parts.

There are also some limits which should be noted in the proposed algorith:

Connected objects of the same class: if two objects of the same class are
spatially connected and have similar memberships to classes, thewill

be merged together (i.e., undersegmentation). The same problem arise
in usual segmentation methods when two objects have similar specit
values.

Objects having heterogeneous spectral values and membership vakiein
such a case, the algorithm produces an oversegmentation.

Nevertheless, these limits are weaker than those of classical segmatibn
algorithms. If an object has heterogeneous spectral and membership valsg
it will be oversegmented by classical segmentation methods. The caswhere
two spatially connected objects have similar membership values andissimilar
spectral values and each object has homogeneous spectral values seems les
frequent than objects with heterogeneous spectral values. It is a tideo that
should be analyzed depending on the application.

Computational complexity. The computational complexity of this algorithm de-
pends on 4 parameters:n the number of pixels in the image, ( C) the number
of labeled examplesp the population size andN the number of generations of
the genetic algorithm. At each step of the GA, the costly part of the algorithm is
the evaluation of the genotypes (i.e., the computation of the fuzzy classcation
followed by the watershed algorithm and the calculation of the evaluation ci-
teria). The fuzzy classi cation algorithm has a O(n ( C)) complexity. But, as
it is only executed once at the beginning of the algorithm, we decidedd ignore
it in the following. The watershed segmentation algorithm is linear according
to n. The evaluation of the tness function depends on the chosen criteon. In
the case of TMA, it is linear according to ( C). Thus, the complexity of the
evaluation of one genotype is inO(n + ( C)) which can be approximated by
O(n) if we consider that the segmentation is totally recomputed at each eval-
uation (worth case) and that ( C) << n (which seems realistic in most of the
cases). Finally, the complexity of the method is inO(N p n).
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(a) Original Quickbird image (b) Labeled samples given by the expert

Figure 4: Remotely sensed image of a part of Strasbourg (Franc e)

6.2. Application to a real urban image

In the last decade automatic interpretation of remotely sensed images be
came an increasingly active domain since sensors are now able to produogages
with a very high spatial resolution (VHSR) (i.e., 1 meter resolution). This in-
creasing precision disturbs the classical per-pixel classi catin procedures and
knowledge based systems have been more attentively investigatedudng the
last few years, to improve VHSR image interpretation. Indeed, the so alled
object-oriented (Blaschke et al., 2000; Blaschke, 2010) approach provides a new
paradigm of reasoning by focusing on the objects present within an imagegnd
not only on the pixels. The images are segmented and the segments are cliesg
using spectral and spatial attributes (e.g shape index, texture, &.).

This case study is a typical example of VHSR image interpretation in remoge
sensing, where a segmentation is rst performed before applying a gervised
region-based classi cation.

The input data is a pan-sharpened Quickbird* image of the city of Strasbourg
(France) with 4 spectral bands representing a zone of 15.4km13.3km, with a
spatial resolution of 0.7 meter per pixel.

The experiment was performed on the whole zone Derivaux (2009), but
we only present here the results on an 900900 pixels extract of the image
(Fig. 4(a)). In four areas of the studied zone, some regions (representinl3% of
the extract) have been labeled by the expert in three classes: roadiegetation
and house (Fig. 4(b)).

Choice of the fitness function. The aim of the rst set of experiments carried
out on this data was to evaluate the in uence of the choice of the tness finc-

limage provided by the LIVE laboratory from University of Str asbourg
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Figure 5: Evolution of the tness functions according to the number of generations

tion. Indeed, we presented in Sec. 4.2 many criteria that could be sed as tness
function to optimize the parameters of the segmentation methods. Thegquestion
is which criteria shall we optimize to obtain the best result ? We performed a
genetic optimization on two segmentation algorithms proposed before: class
cal watershed andprobashed (which corresponds to the space transformation
method given in Sec. 3). For the watershed algorithm, three parameterhave
to be tuned as stated in Sec. 4hmin, d, and M. For the probashed algorithm,

four parameters are used (Sec. 5) hmin, d, M and M, .

In our experiments, we consider the following parameters for the gestic
algorithm: a population size of 15 genotypes, a mutation probability P, of
1% and an evolution number equals to 30 generations. Experiments show &t
stability and convergence is achieved at this step. Fig. 5 shows therénd of the
tness functions with respect to the number of generations. It shavs that the
convergence is relatively fast and that 30 generations are enough as no signant
improvement arises after 20 generations.
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Fitness functions Evaluation criteria

TMA oV 100 F | 100 JC | 100 JC°
TMA/OV 98.03 | 48.01 77.4 52.9 44.2
TMA OV 99.12 | 95.10 81.5 43.4 36.4
F 98.56 | 61.28 75.7 53.4 44.8
JC 96.74 | 34.83 78.6 56.7 48.4
Jco 96.91 | 41.12 78.8 55.5 48.8

Table 1: Watershed parameters optimization (for readabili  ty reasons, F, JC and JC indexes
were multiplied by 100).

Fitness functions Evaluation criteria

TMA | OV 100 F | 100 JC | 100 JC°
TMA/OV 98.05 | 4.51 88.2 66.1 52.7
TMA OV 99.50 | 28.79 68.8 64.6 57.5
F 99.40 | 23.59 68.4 65.3 57.6
JC 98.27 | 7.58 81.2 68.9 57.2
Jco 99.17 | 12.88 72.8 67.6 59.2

Table 2: Probashed parameters optimization (for readabili ty reasons, F, JC and JC indexes
were multiplied by 100).

We present in Tabs. 1 and 2 the results obtained by optimizing the paam-
eters of the segmentation method. The rst column shows the critefon that
has been used as tness function. Then, each column corresponds todhvalue
obtained by the nal result for each evaluation criterion.

It is important to notice that three criteria have to be maximized (0 <
TMA < 100, 0< JC < 1, 0 < JC° < 1), while two have to be minimized
O<F<land0<OV).

The rst remark concerns the three last lines of the two tables. It is obvious
that optimizing one criterion will produce the best result for thi s criterion. This
is veri ed on these results for the three criteria F, JC and JC°.

Concerning the hybrid criteria, TMA OV seems to be a better compromise
asTMA/OV because it optimizes well theT M A criterion, without having bad
results with the other ones.

Comparison of the di [erent approaches proposed. The second experiment tries
to compare the di erent approaches proposed in this paper. To have a mar
thorough study, we also included two results given by two commerciaremote
sensing segmentation software: eCognitio from De niens? and ENVI FX

from ITT Visual Information Solutions 3. These results were manually com-
puted by a geographer expert. We also computed a supervised per-pk clas-

2http://earth.definiens.com/
Shttp://www.ittvis.com/
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Segmentation methods Evaluation criteria
TMA | OV 100 F | 100 JC | 100 JC©

Watershed 99.18 | 99.04 17.1 41.5 30.0
Optimized watershed 98.57 | 61.29 24.3 53.4 44.8
Probashed 99.52 | 24.33 317 65.5 48.3
Optimized probashed 99.41 | 23.59 31.7 65.3 57.6
eCognition 91.42 | 35.26 12.9 48.3 51.2
ENVI FX 84.95 | 2.75 1.3 47.3 59.8
Pixel+Median 97.41 | 2.77 5.7 5.82 56.4
Pixel 97.48 | 6.69 5.3 5.85 55.5

Table 3: Comparison of the di erent approaches proposed witht wo commercial segmentation
softwares and a supervised per-pixel classication (for re adability reasons, F, JC and JC"
indexes were multiplied by 100).

si cation using a 5 nearest neighbours classi er for comparison purpose The
results are presented for a raw per-pixel classi cation and a per-ixel classi ca-
tion after the application of a median Iter (with a window of 3 3 pixels).

Again, we present in Tab. 3 the evaluations calculated from the di erent cri-
teria on the results given by the di erent proposed methods. For the optimized
methods, we only give the result with F as tness function for a better read-
ability. We choose F because it has good results with quite all the evaluation
criteria.

Concerning the TM A criterion, no signi cant improvement is shown com-
pared to the classical or optimized version of the watershed. But compad
to the two commercial softwares, the probashed algorithm gives better esults.
For OV, F and JC, the two probashed algorithms present better results as the
other methods. The space transformation brings a signi cant contribution to
the quality of the solution. Finally, results for the JCO criterion are comparable
with those given by the commercial softwares and better than those giverby
the watershed. In conclusion, the probashed algorithms seem to pexfm better
results according to the di erent quality criteria proposed here.

As it is di cult to grasp the in uence of a small change on a criterion, we
show in Fig. 6 the segmentations produced by the di erent methods Thus,
it is possible to have a visual appreciation of the quality of the resuls. It is
clear that the watershed, even in its optimized version, producegesults that
could not be used directly in the classi cation step. For example, the vegetation
zones in the blocks are really oversegmented as well as the houses.idtthen
very di cult to use geometrical attributes in the classi cation, as t he shape of
the regions does not necessarily correspond to the expected one.

When comparing the probashed method and its optimized version, the alues
for the evaluation criteria are comparable or better for the optimized vesion.
But the main di erences are visible on the segmentation results (Fg. 6). It is
obvious that the river (East of the image) is better delimited as the houses in
the blocks.
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(e) eCognition segmentation (f) ENVI FX segmentation

Figure 6: Segmentation results obtained by the dierent appr oaches proposed (extract from
the studied image)
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7. Conclusion

In this article, we presented and compared di erent criteria to optimize seg-
mentation parameters, when examples are available. We also exposed aneth
way to take advantage of ground truth, in changing the data space before ap-
plying the segmentation algorithm. The space transformation is performe by
a fuzzy classi cation based on the examples given by the expert. It hadeen
shown that using this knowledge to guide the segmentation enables tproduce
better results, even better than manually produced segmentationdy an expert.

In future work, we would like to focus on the study of the integration of
other kinds of knowledge (not only examples) in the segmentation procss. For
example, a hierarchy of concepts describing the objects of interésould help to
better identify which regions are well segmented. We also plan to us several

segmentation algorithms and make them collaborate to nd a better segmenta-
tion.
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