
1

Data Augmentation for Time Series
Classification with Deep Learning models

Gautier Pialla(�), Maxime Devanne, Jonathan Weber, Lhassane Idoumghar,
and Germain Forestier

IRIMAS, Université de Haute-Alsace, Mulhouse, France
firstname.lastname@uha.fr

Abstract. Deep Learning models for time series classification are bench-
marked on the UCR Archive. This archive contains 128 datasets. Unfor-
tunately only 5 datasets contain more than 1000 training samples. For
most deep learning models, this lead to over-fitting. One way to address
this issue and improve the generalization of the models is data augmen-
tation. Although it has been extensively studied and is widely used for
images, fewer works have been done on time series. InceptionTime is
an ensemble of 5 Inception classifiers and is still regarded as the state-
of-the-art deep learning model for time series classification. However,
most of the work on data augmentation were not done on the Inception
classifier. In this paper we solve this issue by studying 4 different data
augmentation methods through 4 experiments on the Inception model.
We studied trainings with one or several augmentations at the same time
and with or without generating new samples at each epoch. We also con-
ducted experiments with ensembling and benchmarked our results on the
UCR Archive. We showed that using a combination of both the scaling
and window warping data augmentation methods, we can significantly
improve the accuracy of Inception and InceptionTime models.

Keywords: data augmentation · time series · scaling · window warping · Incep-
tion

1 Introduction

As deep learning models get deeper and deeper, training them has become a real
challenge. The training part is based on statistics. A distribution of the data is
learned on a training set. The aim is to generalize on a test set, unseen by the
model. Generalization is the main challenge for the training as we expect the
model to perform as well on unknown data as on the training set. If a model
performs better on the training set than on the test set, we say that it over-fits.
For this reason, in addition to an important computing power, the training needs
quality and quantity of data. This raises the question ”For a given task how much
data do we need ?”. In the literature, this problem is called sample complexity as
the answer depends on both the complexity of the problem and that of the chosen
model. In computer vision, state-of-the art models are benchmarked on huge

This is the author’s version of an article published at ECML/PKDD Workshop AALTD 2022.



2 G. Pialla et al.

datasets like ImageNet[3], MS-COCO[14] or Open Image[12]. These datasets
contain thousands of samples for each different class. Regarding time series,
most of the models are benchmarked on the UCR Archive [1]. The latest version
of this archive contains 128 datasets regrouped in 7 categories such as Sensor,
ECG, or Devices. The downside is their few number of training samples, and the
lack of validation sets. As a matter of fact only 5 of them contain more than a
1000 training instances. Thus, it is hard for the models to generalize well because
of the over-fitting. In order to improve further generalization and reduce over-
fitting, different strategies can be carried out in machine learning. Among them,
one can reduce the complexity of a model by simply removing layers or reducing
the number of neurons. Regularization consists of adding a penalty term to the
loss function. Usually, the chosen penalty is the L1 or the L2 norm. Regarding the
weigths, the L1 norm minimizes their absolute value while the L2 norm minimizes
their squared magnitude. Early stopping is also a form of regularization. It entails
stopping the training before the appearance of over-fitting. It is widely used for
training deep learning models. Differently, Ensembling combines several weak
independent models in order to obtain a stronger model. Ensembles can have
different size, and be composed of different models. It exists several ways to create
ensembles. An easy and effective one is to average to predictions of the different
models. Another regularization method consists of using more data. One can
either collect new data, or increase artificially the amount of training data by
creating of modifying existing samples. This is called data augmentation (DA).
Using synthetic data is particularly useful when it is too difficult to obtain new
data. Such data can be created in a realistic way using algorithms, or deep models
like Variational Encoders or Generative Adversarial Networks. Most of the time,
the augmented data is simply a copy of the training set to which has been applied
random transformations. Commonly, for images these transformations are color
changes, rotations, zooming, blurring or cropping parts of the images. Increasing
the dataset in such a way, helps to provide more context. InceptionTime [8],
introduced in 2019, is considered as the state-of-the-art deep learning time series
classifier. It is an ensemble of 5 Inception networks. To reduce over-fitting, beside
creating an ensemble, Fawaz et al. used early stopping during the training of each
separate network. Despite that, InceptionTime still over-fits most of the UCR
datasets. To overcome this issue, data augmentation appears like an interesting
solution. Unlike in computer vision, where this is widely used, few time series
classifiers are using it during training. Iwana et al. [9] benchmarked 12 data
augmentation methods over 6 time series classifiers. Some of these methods were
adapted from computer vision, but other are specific for time series. As this
survey was not conducted on Inception networks and InceptionTime ensembles,
we propose to investigate the use of data augmentation on this state-of-the-art
architecture. After having selected 4 promising data augmentation methods from
[9], our main contributions are:

– We benchmarked them on both Inception and InceptionTime over the entire
UCR Archive.



Data Augmentation for TSC with Deep Learning models 3

– We went further than existing papers by testing the methods independently
but also combined together.

– We created ensembles of Inceptions networks trained with the same data
augmentation method but also with different ones.

– Finally, we showed how data augmentation can significantly improve the
accuracy of both architectures.

2 Related Work

The aim of using data augmentation is to reduce over-fitting, by improving the
generalization of a deep learning model, thus also improving it’s accuracy. Many
well-known networks have used it to boost their performances and become the
state-of-the-art. Among them, AlexNet [11] in 2012 used cropping, mirroring,
zooming, blurring and rotation. VGG [16] in 2014 used scaling and cropping.
The inception networks [17] introduced in 2014 used cropping and mirroring.
ResNet [7] has used cropping and mirroring.

Hence, data augmentation is not a new technique and has been extensively
studied for computer vision. Most of the previously cited architectures have been
adapted for time series classification. They have given FCN [20], ResNet [20]
and InceptionTime [8]. These architectures have all achieved state-of-the-art
performances, but unlike their counterparts in computer vision, they have not
used data augmentation.

Regarding time series, data augmentation has not been explored in depth
until recently. Indeed, two surveys benchmarked most of the existing methods.
The first one from Iwana et al. [9] benchmarked 12 data augmentation methods
over 6 different classifiers. Similarly, the second study by Weng et al. [21] com-
pared data augmentation methods, but considered not only classification but
also anomaly detection and prediction.

Out of the benchmarked methods, most of them are adaptations from the
ones used in computer vision. Jittering consists of adding to each time step
of a time series a random Gaussian noise. Window slicing [13] is the process
of extracting sub-parts or windows from a time series. Each part is then clas-
sified. The majority class obtained within the patches is then assigned to the
original series. Flipping inverts a time series. Some of these techniques can only
be used for specific datasets. Indeed, it does not make sense to apply flipping
for every kind of time series, like ECGs. Similarly, for Window slicing, if the
discriminative parts are not present in each slice, it can result in false predic-
tions. For this reason, some methods were specifically designed for time series.
Guided Warping techniques like Random Guided Warping and Discriminative
Guided Warping [10] use DTW to warp patterns from one time series to another.
Forestier et al. [6] introduced weighted DBA which averages a set of time series
to create a new one.

Instead of using and modifying existing time series, other methods focus
on creating synthetic data. Generative Adversarial Networks (GANs) and Vari-
ational Auto-Encoders (VAEs) are popular ways to do so. Regarding GANs,



4 G. Pialla et al.

TimeGAN [22], Recurrent Conditional GAN [5] or Continuous recurrent neural
networks [22] are adapted for time series. Regarding auto-encoders we can cite
TimeVAE [4], the use of masked autoencoders [23], or the averaging of time series
using auto-encoders [18]. Differently, Pialla et al. [15] designed a smooth adver-
sarial attack and showed through adversarial training how adversarial samples
can also be used to improve the robustness of deep models.

Although these generative methods can be used as some kind of data aug-
mentation, they require to train new models and often to fine tune them for each
dataset. Thus, they do not represent a general and quick approach to implement.

3 Proposed approach

3.1 Data Augmentation Methods used

In this paper, we took 4 methods from [9]. We selected the methods that were
the most recommended across all deep learning models to asses if they also
generalize on the Inception models.

RGW Random Guided Warping (RGW) has been introduced in [10]. For a
given class, two different patterns are selected. Then, these patterns are randomly
switched between the samples. The warping between the samples is computed
using the DTW algorithm.

DGW Discriminative Guided Warping (DGW) was also introduced in [10] and
is similar to RGW. This time, only the most discriminative pattern is selected
inside a batch.

Scaling The scaling method multiplies a time series with a random scalar α.
It can be taken from a random Gaussian distribution α ∼ N (1, σ2). We use
the same parameters as in [19]: µ = 1 and σ = 0.1. This method modifies the
magnitude of the time series. An example of a scaled time series is displayed in
Figure 1.

Original time series

Scaled time series

Fig. 1. Example of scaling a time series from the EthanolLevel dataset.



Data Augmentation for TSC with Deep Learning models 5

Window Warping Window warping as been introduced in [13]. It consists of
selecting a random window. The window is then sped up by a factor 2 or slowed
down by a factor 0.5.

We used a window size equal to 10% of the TS length. An example of Window
Warping can be seen below in Figure 2.

Original time series

Augmented time series

Fig. 2. Example of Window Warping. The part of the original time series in blue has
been increased two times.

3.2 Models used

The Inception network was first introduced by Fawaz et al. in [8]. It is an adap-
tation for time series from the famous Inception architecture in computer vision.
The model is composed of 6 inception modules, a Global Average Pooling (GAP)
and a Dense layer. The architecture is represented in Figure 3 and the inception
modules in Figure 4.

...

GAP

Dense

In
ce

p
tio

n
 m

o
d
u
le

s

Fig. 3. Inception network.

Conv Conv Conv Conv

Conv Max Pool

BN + Relu

Fig. 4. Inception module.



6 G. Pialla et al.

Each inception module, is composed of several convolutions with different
kernel sizes. All the convolutions outputs are concatenated and followed by a
Batch Normalization layer and a Relu activation function. The intuition behind
the inception module is to make the network wider instead of deeper and prone
to over-fitting.

3.3 Ensembling of Inception networks

InceptionTime [8] is an ensemble of 5 Inception classifiers. Today, it is still re-
garded as the state-of-the-art deep learning model for time series classification.
The ensemble is done by averaging the softmax predictions made by the 5 In-
ception networks. Thus, for a given input x, the final prediction of the ensemble
of n models is:

ŷ = arg max

(
1

n

n∑
i=1

fi(x)

)
(1)

In this paper, we use InceptionTime to benchmark our ensembling results. We
did several kinds of ensemblings: ensemblings of Inception models trained with
the same data augmentation method, ensemblings of Inception models trained
with different data augmentation methods and finally ensemblings of Inception
models trained with several data augmentation methods.

3.4 ROCKET

ROCKET [2], is a non-deep model for time series classification. It is composed of
random, unlearnt convolutions. Using theses convolutions, features are extracted
using the percentage of positive values (PPV). Finally, the classification is done
using a linear classifier. This model is really famous because of its accurate clas-
sifications and its exceptionally fast training time, hence the name. As ROCKET
is a state-of-the-art time series classifier, we proposed to use it as a benchmark
for our best models.

4 Experimental Setup

4.1 Datasets

All our experiments where conducted on the UCR Archive[1]. This archive is
commonly used by the time series community to benchmark methods or deep
learning classifiers. The 2018 version of the UCR Archive contains 128 different
time series datasets. Instead of using the whole archive, many research papers
only use a subset of 112 datasets. The reason is that 15 datasets are unequal
in length and one, Fungi, has a single instance per class in the training set.
Regarding the datasets with unequal length, we decided to use a padded version
provided by the same authors. For the Fungi dataset, we could not used it, as
the methods RGW and DGW require several training samples of the same class.
Thus, in total, we used 127 datasets.



Data Augmentation for TSC with Deep Learning models 7

4.2 Implementation

For this work we have reused the code and data from several sources. Regarding
the data augmentation, we used the implementation provided by [10]. We used
the code and results of Inception and InceptionTime as presented in [8] and the
results of ROCKET [2]. As we used several open source codes, we also made
freely available all the code and results in our companion GitHub repository1.

4.3 Protocol and parameters

If not specified otherwise, we use the same following parameters for each experi-
ment. All trainings where realized using the Adam optimizer during 900 epochs.
At each epoch, the training set was randomly shuffled. The objective was to mix
the original training samples and the augmented ones. Regarding the training
data, we use a mix of original samples and augmented ones. Each original sample
has its augmented counterpart generated by each data augmentation method.
Thus, if we use 1 data augmentation method, the training set will be twice the
size of the original dataset. If we use 2 methods, the amount of training data used
is 3 times the size of the training set, and so on. Each training was conducted
5 times. Having several iterations helps to have more consistent results. Indeed
the random initialization of the models and the stochasticity of some data aug-
mentation method can have an impact on the trainings. The results presented
in section 5, are always an average over the 5 runs. In order to compare the
data augmentation with InceptionTime, we created ensembles out of the 5 runs.
Theses ensembles average the predictions made by each model composing it. It
is the same process used by InceptionTime. These ensembles are unique, and
thus, the results presented for those are not an average over several runs.

5 Experiments

5.1 Experiment 1

In the first experiment, we aim to compare the vanilla Inception model, as pre-
sented in [8], to Inception models trained with data augmentation.

Results Figure 5 represents a critical diagram. Such diagrams are useful when
comparing multiple methods over several datasets, as it is the case here. The
methods are ordered given their average rank over the datasets. A thick hori-
zontal line links a set of classifiers that are not significantly different, according
to the Wilcoxon-Holm analysis. With the Figure 5, we learn that for the Incep-
tion classifier, the data augmentations Scaling and Window Warping are both
significantly better than DGW and RGW. DGW is the only method significantly
worst than the vanilla Inception classifier. Both RGW and Window Warping are
not significantly different than the vanilla classifier. Only Scaling is significantly

1 https://github.com/Gpialla/DataAugForTSC



8 G. Pialla et al.

12345

3.5394DGW
3.3307RGW
2.8583Inception

2.7480Win. Warp.
2.5236Scaling

Fig. 5. CD diagram of experiment 1

better than the vanilla classifier. Globally, the Guided Warping methods seems
in average to degrade the performances. However these methods are not useless.
Indeed, for respectively 43 and 55 datasets, DGW and RGW are still better than
the vanilla classifier.

0.2 0.4 0.6 0.8 1.0
Inception

(Inception 30, draws 5, Best augmented Inception 92)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Be
st

 a
ug

m
en

te
d 

In
ce

pt
io

n

Fig. 6. Pairwise diagram: Inception vs best Inception with augmentation for each
dataset. Each dot represent a single dataset. Blue dots represent datasets whose ac-
curacy is improved by at least one data augmentation. Gold dots represent datasets
whose accuracies have not changed (same as Inception).

The Figure 6 compares for each dataset, the vanilla Inception model to the
best augmented Inception model. We can observe that for 92 datasets, using one
of the four data augmentation methods improves the accuracy of the Inception
model. The vanilla Inception is the best method for only 30 datasets. This shows
the relevance of data augmentation for time series. Like for image classification,
most of the time series datasets can leverage the use of data augmentation.
Using the best data augmentation method improves the average accuracy by
+1.40%. The best improvement regards the DodgerLoopDay dataset with an
improvement of +43.00% using the RGW data augmentation. For this specific



Data Augmentation for TSC with Deep Learning models 9

dataset, all data augmentation methods, significantly improve the accuracy, with
an average of +41.75%.

Results with ensembling Following the previous results, we propose to an-
alyze the impact of data augmentation over ensembling. For each method, we
created ensembles in the same way as InceptionTime, by averaging the predic-
tions made by the 5 iterations.

12345

3.2638Ens. RGW
3.1850Ens. DGW
2.9803InceptionTime

2.7992Ens. Scaling
2.7717Ens. Win. Warp.

Fig. 7. CD diagram of experiment 1 with ensembling

In Figure 7 we can see that the methods that were performing the best in-
dividually, Scaling and Window Warping, are the ones that provide the best
ensembles in term of rank. After ensembling, the rank of the data augmenta-
tion methods is conserved. However, all methods are not significantly different
and none is significantly better than InceptionTime. Creating an ensemble will
smooth and improve the individual performance of the models that compose it.
Thus, it is harder to observe any difference between the augmentation methods.

Results with ensembling of several data augmentation methods Previ-
ously, we created ensembles using the five trainings of each data augmentation
method. Another way to make ensembles is to use different methods. Here we
created five ensembles. Within each ensemble, we used four models, each one
trained using a different data augmentation method. In the following results,
the accuracy of the five ensembles is averaged.

123

2.5709Inception
1.7677InceptionTime

1.6614Ens. Mix

Fig. 8. CD diagram of experiment 1 with ensembling of several data augmentation
methods

We called this ensemble Ens. Mix. We can see in Figure 8 that it significantly
outperforms InceptionTime. It seems that using different methods inside the



10 G. Pialla et al.

same ensemble leads to better results. Even if the gap between these ensembles
and InceptionTime is not huge, this result is important. Before, we should have
had to benchmark and select a single data augmentation method, but now we
can simply use them all within a single ensemble.

Table 1. Average accuracy

Method Avg. Accuracy

DGW 83.55
RGW 83.51

Scaling 83.99
Win. Warp. 84.06
Inception 83.48

Ens. DGW 84.47
Ens. RGW 84.53

Ens. Scaling 84.73
Ens. Win. Warp. 85.13

Ens. Mix 84.86
InceptionTime 84.24

In Table 1 is recorded the average accuracy for each method presented so
far. We observe that all data augmentation method improve the accuracy over
their competitor Inception or InceptionTime. Regarding this metric, Window
Warping is provide the best results with and without ensembling.

5.2 Experiment 2

This second experiment aims to put in light the importance of the original train-
ing set. As all data augmentation methods improve the accuracy of the Inception
model, is it efficient to train a model using only augmented data? We reproduced
the experiment 1, with the same parameters, but only using augmented data.

12345

4.3819DGW
3.9961RGW
2.9213Win. Warp.

2.0197Scaling
1.6811Inception

Fig. 9. CD diagram of experiment 2

Results Figure 9 shows that all methods trained only on augmented data,
performs worse than before. The vanilla Inception is significantly better than all



Data Augmentation for TSC with Deep Learning models 11

of them. The models trained with DGW and RGW are the ones which suffer the
most, with a loss in accuracy of respectively -9.63% and -7.89%.

These results underline the importance of the original data. Augmented data
can not be used as a substitution of the original data but should be used as a
complement.

12345

4.1496Ens. DGW
3.8740Ens. RGW
2.8110Ens. Win. Warp.

2.1063InceptionTime
2.0591Ens. Scaling

Fig. 10. CD diagram of experiment 2 with ensembling

Results with ensembling The previous results are also reflected with ensem-
bling. Only the Scaling ensemble, despite not having been trained on the original
data, remains competitive with InceptionTime. The intuition behind this is that
Scaling produces augmented samples that are close to the original data. Thus,
even without the original data, the model can still generalize over the test set.

5.3 Experiment 3

In image classification, data augmentation is randomly applied at each epoch.
As the model never sees several times the same augmented sample, it improves
the generalization power of the model. In this experiment we aim to apply this
computer vision trick to time series by generating new data augmentation at
each epoch. Except for the Discriminative Guided Warping, all presented data
augmentation methods use randomness to generate the augmented sample. Thus,
we can create almost an infinity of different augmented samples. We only consider
the methods Scaling and the Window Warping. As explained before, DGW is
not random and both Guided Warping methods are slow at runtime. Indeed,
they compute warping paths using the DTW algorithm which is time consuming.
Generating augmented samples once, prior to the training does not slow it much,
but using them at each epoch would have taken too much time.

Results Figure 11 compares the results from the experiment 1, with their coun-
terpart trained with data augmentation randomly generated at Each Epoch
(EE). None of the results are significantly different from Inception. Window
Warping seems to be the method that benefits the most from it as Win. Warp.
EE has a better rank than Win. Warp.. For the Scaling method, EE data aug-
mentation provides a slightly lower rank.



12 G. Pialla et al.

12345

3.1378Win. Warp.
3.1339Inception
2.9764Win. Warp. EE

2.9291Scaling EE
2.8228Scaling

Fig. 11. CD diagram of experiment 3

12345

3.1575InceptionTime
3.0591Ens. Scaling EE
2.9882Ens. Win. Warp.

2.9016Ens. Scaling
2.8937Ens. Win. Warp. EE

Fig. 12. CD diagram of experiment 3 with ensembling

Results with ensembling After ensembling, we notice that once more, Win-
dow Warping is the method that benefits the most. Once again the results with
EE data augmentation do not outperform the baseline.

Table 2. Detailed results of experiment 3

Method Avg. Accuracy

Scaling EE 83.84
Win. Warp. EE 83.89

Inception 83.48

Ens. Scaling EE 84.66
Ens. Win. Warp. EE 85.05

InceptionTime 84.24

When comparing Table 1 and Table 2 we notice that using data augmentation
at each epoch results in a slightly lower average accuracy. EE data augmentation
should improve the generalization power of the model if used correctly. However,
our experiments did not result in significant improvements of the performances,
neither in the rank or the accuracy. This shows that this trick, while being
efficient in computer vision, does not work well on the UCR archive for time
series.

5.4 Experiment 4

Experiment Until now, we used the different data augmentation methods indi-
vidually, only one for each training. In experiment 1, we showed that some data



Data Augmentation for TSC with Deep Learning models 13

augmentation methods are complementary when ensembled together. This can
be referred as late fusion.

In this experiment we aim to assess early fusion by training our models with
multiple data augmentation methods. As Scaling and Window Warping proved
to be the best methods, we did a training using them both. Finally, we did a
second training using all four methods.

As we use more training samples, we can reduce the number of epochs. We
decided to fix it to 300 epochs.

12345

3.5827Inception
3.4252DGW & RGW & Scaling & Win. Warp.
2.9685Scaling & Win. Warp.

2.6181ROCKET

2.4055InceptionTime

Fig. 13. CD diagram of experiment 4

Results Figure 13 represents the results of the experiment 4. We can notice that
the ensemble Scaling&Window Warping is significantly better than the other two
methods. DGW&RGW&Scaling&Win. Warp. is equivalent to Inception.

This shows that the combined use of several methods can be better than the
use of them independently. However the choice of the methods is important. If
we use our two best methods this lead to even better results, but using all of
them provides the same results as the baseline.

With this early fusion strategy, it is the first time we managed to obtain a
single Inception model not significantly worse than the InceptionTime model. As
InceptionTime is composed of 5 Inception models, using this training method,
we can reduce the training time and the inference time by a factor 5, with similar
performances.

1234

2.6693Ens. DGW & RGW & Scaling & Win. Warp.
2.6181InceptionTime 2.4724ROCKET

2.2402Ens. Scaling & Win. Warp.

Fig. 14. CD diagram of experiment 4 with ensembling

Results with ensembling After ensembling, Figure 14 shows that Scaling&Window
Warping is still significantly better than InceptionTime. As this ensemble rep-



14 G. Pialla et al.

resent our best result, we also compared it with ROCKET. According to the
CD diagram and the Wilcoxon-Holms test, we can not say that it is significantly
better than ROCKET but it represents a serious competitor.

Table 3. Detailed results of experiment 4

Method Avg. Accuracy

DGW & RGW & Scaling & Win. Warp. 83.16
Scaling & Win. Warp. 84.32

Inception 83.48

Ens. DGW & RGW & Scaling & Win. Warp. 84.18
Ens. Scaling & Win. Warp. 85.34

InceptionTime 84.24

ROCKET 84.68

In Table 3 we can observe than the combined use of Scaling and Window
Warping provides the best results across all our experiments, for both with and
without ensembling.

6 Conclusion

In this paper, we have shown the relevance of data augmentation for time series
classification through four different experiments, each time, with and without
ensembling and on the entire UCR Archive.

First, we trained an Inception classifier using the original train sets along with
the augmented ones. Then, we repeated the training using only augmented data.
These experiments showed the importance of the original training set. Without
it, it is much harder for the model to generalize on the test sets which do not
contain any augmented samples. This also highlighted the methods Scaling and
Window Warping, as the most efficient ones of our benchmark.

As the data augmentation methods are stochastic, for our third experiment,
we tried to generate new data augmentation at each epoch. This experience lead
to unsatisfactory results, close to the previous ones.

Finally, we did trainings using several data augmentation methods at the
same time. Using all four data augmentation methods was not conclusive but
using only Scaling and Window Warping lead to our best results. With this
method, we manage to train a single Inception model obtaining similar perfor-
mances to InceptionTime. As InceptionTime is an ensemble of five Inception
models, our method requires 5 times less training, and also reduces the inference
time by a factor five. When ensembled like InceptionTime, this method becomes
significantly better than InceptionTime. Although not significantly better than
ROCKET, this method obtain a better average accuracy.

We think that data augmentation will become commonly used for time series
classification but still need further improvements. As our future work, we would



Data Augmentation for TSC with Deep Learning models 15

like to apply data augmentation to Inception and InceptionTime, but for multi-
variate time series. Moreover, in order to create smarter ensembles, we would like
to use weighted ensembles in order to automatically choose the best combination
of data augmented models.

Acknowledgment

This work was funded by ArtIC project ”Artificial Intelligence for Care” (grant
ANR-20-THIA-0006-01) and co-funded by Région Grand Est, Inria Nancy -
Grand Est, IHU of Strasbourg, University of Strasbourg and University of Haute-
Alsace. The authors would like to thank the providers of the UCR archive as
well as the Mésocentre of Strasbourg for providing access to the GPU cluster.

References

1. Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S.,
Ratanamahatana, C.A., Keogh, E.: The ucr time series archive. IEEE/CAA Jour-
nal of Automatica Sinica 6(6), 1293–1305 (2019)

2. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Mining and
Knowledge Discovery 34(5), 1454–1495 (2020)

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Ima-
genet: A large-scale hierarchical image database. In: 2009 IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 248–255 (2009).
https://doi.org/10.1109/CVPR.2009.5206848

4. Desai, A., Freeman, C., Wang, Z., Beaver, I.: Timevae: A variational auto-encoder
for multivariate time series generation. arXiv preprint arXiv:2111.08095 (2021)

5. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation
with recurrent conditional gans. arXiv preprint arXiv:1706.02633 (2017)

6. Forestier, G., Petitjean, F., Dau, H.A., Webb, G.I., Keogh, E.: Generating synthetic
time series to augment sparse datasets. In: 2017 IEEE international conference on
data mining (ICDM). pp. 865–870. IEEE (2017)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

8. Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber,
J., Webb, G.I., Idoumghar, L., Muller, P.A., Petitjean, F.: Inceptiontime: Finding
alexnet for time series classification. Data Mining and Knowledge Discovery 34(6),
1936–1962 (2020)

9. Iwana, B.K., Uchida, S.: An empirical survey of data augmentation for time series
classification with neural networks. Plos one 16(7), e0254841 (2021)

10. Iwana, B.K., Uchida, S.: Time series data augmentation for neural networks by time
warping with a discriminative teacher. In: 2020 25th International Conference on
Pattern Recognition (ICPR). pp. 3558–3565. IEEE (2021)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25
(2012)

https://doi.org/10.1109/CVPR.2009.5206848


16 G. Pialla et al.

12. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Ka-
mali, S., Popov, S., Malloci, M., Kolesnikov, A., et al.: The open images dataset
v4. International Journal of Computer Vision 128(7), 1956–1981 (2020)

13. Le Guennec, A., Malinowski, S., Tavenard, R.: Data augmentation for time series
classification using convolutional neural networks. In: ECML/PKDD workshop on
advanced analytics and learning on temporal data (2016)

14. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

15. Pialla, G., Fawaz, H.I., Devanne, M., Weber, J., Idoumghar, L., Muller, P.A.,
Bergmeir, C., Schmidt, D., Webb, G., Forestier, G.: Smooth perturbations for time
series adversarial attacks. In: Advances in Knowledge Discovery and Data Mining:
26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16–19, 2022,
Proceedings, Part I. p. 485–496. Springer-Verlag, Berlin, Heidelberg (2022)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

17. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 1–9 (2015)

18. Terefe, T., Devanne, M., Weber, J., Hailemariam, D., Forestier, G.: Time series
averaging using multi-tasking autoencoder. In: 2020 IEEE 32nd International Con-
ference on Tools with Artificial Intelligence (ICTAI). pp. 1065–1072. IEEE (2020)

19. Um, T.T., Pfister, F.M., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U.,
Kulić, D.: Data augmentation of wearable sensor data for parkinson’s disease mon-
itoring using convolutional neural networks. In: Proceedings of the 19th ACM in-
ternational conference on multimodal interaction. pp. 216–220 (2017)

20. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep
neural networks: A strong baseline. In: 2017 International joint conference on neural
networks (IJCNN). pp. 1578–1585. IEEE (2017)

21. Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., Xu, H.: Time series data
augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478 (2020)

22. Yoon, J., Jarrett, D., Van der Schaar, M.: Time-series generative adversarial net-
works. Advances in Neural Information Processing Systems 32 (2019)

23. Zha, M.: Time series generation with masked autoencoder. arXiv preprint
arXiv:2201.07006 (2022)


	Data Augmentation for Time Series Classification with Deep Learning models

