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Abstract. Time series data can be found in almost every domain, rang-
ing from the medical field to manufacturing and wireless communication.
Generating realistic and useful exemplars and prototypes is a fundamen-
tal data analysis task. In this paper, we investigate a novel approach
to generating realistic and useful exemplars and prototypes for time se-
ries data. Our approach uses a new form of time series average, the
ShapeDTW Barycentric Average. We therefore turn our attention to ac-
curately generating time series prototypes with a novel approach. The
existing time series prototyping approaches rely on the Dynamic Time
Warping (DTW) similarity measure such as DTW Barycentering Aver-
age (DBA) and SoftDBA. These last approaches suffer from a common
problem of generating out-of-distribution artifacts in their prototypes.
This is mostly caused by the DTW variant used and its incapability of de-
tecting neighborhood similarities, instead it detects absolute similarities.
Our proposed method, ShapeDBA, uses the ShapeDTW variant of DTW,
that overcomes this issue. We chose time series clustering, a popular form
of time series analysis to evaluate the outcome of ShapeDBA compared
to the other prototyping approaches. Coupled with the k-means cluster-
ing algorithm, and evaluated on a total of 123 datasets from the UCR
archive, our proposed averaging approach is able to achieve new state-
of-the-art results in terms of Adjusted Rand Index.

Keywords: Time Series · Clustering · Dynamic Time Warping · Time
Series Averaging · ShapeDTW.

1 Introduction

Time series data can now be seen in many real life problems. This data is starting
to be of interest in many research fields. For instance time series can be found
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in medical data such as ECG signals, in human motion data, in satellite images,
etc. Generating exemplars and prototypes for time series data is an essential
problem that could be used in many areas. For example, time series averaging
is being used to generate synthetic data in order to augment the training data
and boost supervised models [11,5] or used to make the classification task more
accurate [16]. Time series prototyping can also be used for explainability [6].

One challenge when prototyping time series data is evaluation, which is ad-
dressed in most of the cases using clustering, a fundamental machine learning
tool in data analysis. Clustering is a machine learning unsupervised problem
that aims to discover a set of clusters in the data that should correspond to
the same distribution and the previously unseen class label. Clustering for time
series data has been very much addressed in the literature [13,1]. Varying from
machine learning tools such as k-means and k-medoids [7] to the usage of deep
learning [12]. Unlike other data types, basic machine learning clustering algo-
rithms need to be adapted to the case of temporal data. For instance, the k-means
algorithm aims to minimize a distance between the samples in a cluster and the
centroid of this cluster. This distance is usually the Euclidean distance, but the
implicit assumption using such metric is that the input samples are made of
independent feature points. However, this is not the case in time series data,
where each feature point, referred to as time stamp, is dependent with all other
time stamps. This is referred to as a temporal correlation, which obligates the
definition of a replacement of the Euclidean distance in the k-means algorithm.
For this reason, time series similarity measures such as DTW and SoftDTW
have been used instead and showed a significant improvement over the usage of
the Euclidean distance.

A further issue with the naive way of using the k-means algorithm, is the av-
eraging phase to define the clusters’ centroids. The averaging method used in the
k-means algorithm is the arithmetic mean, which presents the same problem as
the Euclidean distance. For this reason, a novel averaging method was proposed
that uses the DTW similarity measure in order to produce a meaningful cen-
troid. This technique, DBA, showed to perform significantly better than other
naive approaches. The problem of finding a meaningful average for time series
data presents much more challenges than defining the similarity metric. This
is due to the challenge in defining what an average time series does represent.
However, finding a meaningful average presents a much higher impact on the
performance of the k-means algorithm than defining the similarity measure. For
these reasons, we address the clustering problem by producing a more respectful
averaging algorithm for time series data.

The defined averaging techniques for time series data until now suffer from
a common problem of generating out-of-distribution artifacts (see Figure 3).
This problem occurs because these averaging techniques do not look into the
neighborhood of each time stamp in the time series data. Instead, the averaging
occurs after aligning each time stamp of the centroid with the ones in the time
series dataset. In this work, we propose incorporating ShapeDTW [20] into the
DBA algorithm in order to overcome this issue. ShapeDTW is a DTW variant
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that manages to avoid aligning two time stamp that have closer values but
in a significantly different neighborhood. This last case study occurs often in
time series data and is the main reason, to the best of our knowledge, for the
existence of the generated artifacts. The ShapeDTW similarity measure coupled
with DBA, i.e., the proposed ShapeDBA algorithm, is coupled with the k-means
algorithm in order to apply clustering on time series data.

The contributions of this work are:

– Proposing a novel averaging algorithm ShapeDBA based on ShapeDTW;
– Extensive experiments on the UCR archive showing that ShapeDBA achieves

state-of-the-art performance following the Adjusted Rand Index metric;
– Efficient implementation of ShapeDTW resulting in ShapeDBA being faster

than SoftDBA.

2 Related Work

Definitions The following definitions will be used throughout the rest of the
paper:

– Univariate Time Series (UTS) x = {x0, x1, . . . , xL−1} is a sequence of length
L made of correlated data points equally separated in time.

– A TSC dataset D = {(xi, yi)}N−1
i=0 is a collection of N time series with their

corresponding labels y.
– A Time Series Average (TSA) xavg = {x0, x1, . . . , xL−1} is a time series of

length L that represents the average of a part of D.

2.1 Time Series Similarity

Euclidean Distance (ED) The naive solution to define a similarity is by using
the Euclidean Distance (ED). This metric defined in (1) supposes that the two
time series are aligned on the time axis, which is not the case most of the times.

ED(x1,x2) =

√√√√L−1∑
t=0

(x1,t − x2,t)2. (1)

Another limitation that this similarity measure presents is that both time series
should have the same length. In case of unequal length samples in the dataset,
the problem should be addressed as dicussed in [18] such as padding, uniform
scaling, etc.

Dynamic Time Warping (DTW) The following measure [14] is a more gen-
eral formulation of the ED that is: (a) independent of the time series length, and
(b) aligns the two time series on the time axis. The formulation of the DTW is
presented in (2).

DTW (x1,x2) = min
π∈M(x1,x2)

(
∑

(i,j)∈π

|x1,i − x2,j |q)1/q, (2)



4 A. Ismail-Fawaz et al.

with M(x1,x2) being the set of all possible alignment paths on the time axis
between x1 and x2. The parameter q is the order of the Minkovski distance used,
if q = 2 then the distance is set to be Euclidean. The hypothesis in this case is
that x1 and x2 have different lengths, L1 and L2, respectively. The goal of DTW
is to find the optimal path π of length Lπ that minimizes the loss in (2). Some
conditions should be applied on the optimal path as listed below:

– π0 = (0, 0);
– πLπ−1 = (L1 − 1, L2 − 1);
– The elements of the path should be a strictly increasing sequence in the

indices i and j of π.

Soft Dynamic Time Warping (SoftDTW) One issue of the DTW measure
is its non-differentiability. For this reason, in [3] the Soft Dynamic Time Warping
(SoftDTW) was proposed, which is differentiable. This differentiability exists
because of the replacement of the hard min function in (2) by the softer version
as seen in (3):

softminγ(x0, . . . , xL−1) = −γ. log(

L−1∑
i=0

e−xi/γ). (3)

where the parameter γ controls the smoothness of the softmin function. The
smaller the value of γ, the closer the softmin function is to the hard min.

Shape Dynamic Time Warping (ShapeDTW) In [20], a different version of
DTW was proposed that, instead of aligning all the time series at the same time,
aligns transformations of sub-sequences of the time series. This is done in order
to preserve the fact that the alignment between two time stamps of two different
time series takes into consideration the structure of their neighborhoods. For the
mathematical definition of ShapeDTW, let us assume F is a descriptor function,
x1 and x2 two univariate time series of lengths L1 and L2, respectively. The first
step is to extract the sub-sequences of length l from x1 and x2 denoted by X1

and X2 represented as two multivariate time series of shape (L1, l) and (L2, l),
respectively. The second step is to extract the descriptors from the sub-sequences
using F and produce D1 = F(X1) and D2 = F(X2) of shapes (L1, d) and (L2, d),
respectively, where d is the target dimension. The ShapeDTW measure comes
down to the following optimization problem:

ShapeDTW (x1, x2) = min
π∈M(x1,x2)

(
∑

(i,j)∈π

|D1,i −D2,j |q)1/q (4)

The above definition can simply be adapted to multivariate time series as men-
tioned in the original work [20] by extracting multivariate sub-sequences and
applying the descriptors on each dimension independently or by finding a suit-
able multivariate descriptor function.
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2.2 Time Series Averaging - Clustering

Time Series Clustering Given a time series dataset, usually an unlabeled one,
the goal of the clustering algorithm is to learn how to group time series samples
that should belong to the same class label together. A well known clustering
algorithm is the k-means one, which learns how to group time series samples
given their distance to a cluster’s centroid. For this reason, a definition of a time
series cluster centroid should be defined.

Dynamic Time Warping Barycenter Averaging (DBA) To define an
average of a collection of time series, in [17] the usage of DTW measure was
proposed in order to find the optimal average that takes into consideration the
misalignment between the samples of this collection. In other words, given two
time series, the DBA algorithm defines for each time stamp its barycenter by
taking the average of all the aligned values. DBA has proven to be very effective
in clustering using the k-means algorithm.

Soft Dynamic Time Warping Barycenter Averaging (SoftDBA) In [3],
authors also proposed the replacement of DTW in the DBA algorithm by using
SoftDTW instead. Our proposed approach, called SoftDBA, is shown to work
better than DBA in clustering and classification.

3 Proposed Approach

3.1 Shape Dynamic Time Warping Barycenter Averaging
(ShapeDBA)

ShapeDBA follows the same methodology of DBA and SoftDBA that is averaging
over the aligned time stamps. The key difference of ShapeDBA is the usage of the
ShapeDTW [20] aligning method of time series data. The ShapeDBA algorithm
can be summarized in the following steps:

– Step 1: Initialize the average time series, for example choose a random
selection of the time series set in question;

– Step 2: Find the aligned points of each time stamp of the average series
with all the samples of the data. We call the time stamps of all the sam-
ples aligned with a given time stamp t of the average series as assoct =
{assoct0 , assoct1 , . . . , assoctA−1

, where A is the number of associated time
stamps with t;

– Step 3: For each time stamp t of the average series, the resulting average is
the barycenter of assoct.
Where barycenter(assoct0 , assoct1 , . . . , assoctA−1

) = 1
A

∑A−1
i=0 assocti ;

– Repeat from Step 2 until convergence.
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3.2 Clustering with ShapeDBA

The k-means clustering algorithm in machine learning can be used with any time
series averaging technique, coupled with any time series similarity measure. The
averaging method, i.e., ShapeDBA for instance, is used to find the centroids of
each cluster during the training phase. The similarity measure is then used to
calculate the distance of each series in the data to the centroid of each cluster.

In the rest of this paper, we refer to the following coupling for applying the
k-means clustering algorithm:

– DBA: the DBA as an averaging method coupled with the DTW as a simi-
larity measure;

– MED: the arithmetic mean as an averaging technique coupled with the Eu-
clidean Distance (ED) as a similarity measure; MED finds iteratively the
arithmetic average series, as in DBA, without taking into consideration the
temporal alignment between the prototype and the samples;

– SoftDBA: the SoftDBA as an averaging method coupled with the SoftDTW
as a similarity measure;

– ShapeDBA: the ShapeDBA as an averaging method coupled with the Shape-
DTW as a similarity measure.

3.3 Implementation Efficiency

The ShapeDTW algorithm comes down to applying the original DTW similarity
measure on the transformed input time series. In the univariate case coupled with
the ’identity’ descriptor of each neighborhood [20], the transformed time series
is a multivariate version. For each time stamp, its neighborhood is added as a
Euclidean vector to form a multivariate time series. When applying the DTW
similarity measure on this transformed series, the algorithm is simply computing
the Euclidean distance between the channel vectors of a pair of time stamps. This
creates a computational waste when sliding the reach window as illustrated in
Figure 1. This problem only occurs when the descriptor is set to be the identity
transformation.

To avoid this issue, the Euclidean pairwise distance between the two time
series in question is computed as a first step. This distance matrix is then padded
with its edges values reach/2 times. We then slide a window of height and width
equal to the time series lengths on this Euclidean distance matrix. The direction
of the sliding window is over the second diagonal of the distance matrix. The
results captured on the sliding window are accumulated in a zero-initialized
matrix. After accumulating all the information into the new distance matrix, we
apply the DTW algorithm on the new matrix. This implementation saves time by
avoiding unnecessary computations. A summary of this efficient implementation
of the ShapeDTW can be seen in Figure 2.

3.4 Reach Value Control

The hyperparameter of ShapeDTW, called “reach”, controls the length of the
neighborhood of each time stamp to be used for the alignment. This value makes
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Fig. 1: Computation of the ShapeDTW measure between two time series. It
can be observed that the common area between the two sliding window is re-
computed.

the ShapeDTW algorithm a general definition that includes two similarity mea-
sures: the DTW and the Euclidean distance. For instance, on the one hand, if
the reach value is set to 1, the algorithm will behave just as the original DTW
similarity measure. This is due to the fact that the length of the neighborhood
of each time stamp will be set to 1 leading to taking into consideration only
this time stamp. On the other hand, if the reach is large enough, i.e., ∞, the
ShapeDTW algorithm will behave just as the Euclidean distance. This is due to
the fact that for each time stamp, the neighborhood length will be larger than
the time series itself. In this work, we set the value of the reach to 30 given it
was the value used in the original paper [20].

4 Results

4.1 Experimental Setup

Datasets All the experiments were conducted on 123 datasets of the UCR
archive [4]. The total number of datasets in the UCR archive since 2018 is 128,
but five datasets were excluded from the experiments given the large length of
the time series. This was crucial given the quadratic time complexity of most of
the executed algorithms with respect to the time series length. All of the datasets
were Z-normalized in order to have a zero mean and unit standard deviation for
each time series. The clustering algorithms are trained on the combination of the
train test splits for all the 123 datasets used in the experiments. It is important
to note that some datasets of the UCR archive are simply another train test
split of an exiting dataset. This does not occur much, which would mean that
the clustering algorithm is done on the same dataset more than one time. The
source code of this work is publicly available for reproducibility 5.

5 https://github.com/MSD-IRIMAS/ShapeDBA
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Fig. 2: A more efficient implementation of the ShapeDTW measure when the
descriptor is set to be the identity. Instead of applying the DTW on the mul-
tivariate transformation of the time series, a window slides on the ED matrix
between the two time series. The captured frames are accumulated in another
zero-initialized matrix on which the DTW algorithm is then applied.

Removing Bias A typical problem in non-deterministic estimators in machine
learning is the biased performance to a given initial setup. This problem occurs
in many problems such as deep learning where the performance can be biased to
an initialization of the weights. In this clustering task, the bias in performance
comes down to the initialization of the clusters before the k-means algorithm
starts its optimization. To avoid this bias, we do the same experiments five
different times, each time with different initial clusters and present the average
performance on each dataset. However, this may raise the issue of fairness among
multiple clustering algorithms experimented with. This is due to the probable
second bias of a method to a specific five initial clusters. To fix this bias as well,
in this work the same initial clusters are used over the five experiments for all
clustering algorithms. Given that for clustering experiments using k-means and
k-shape need the initial clusters, which are usually randomly selected, it would
create an issue if not all algorithms use the same initial clusters. For this reason,
we made sure that for all the experiments done, for the same dataset, all of
the clustering variants used the same initial clusters. This was done with five
different initial clusters and the average performance is presented in order to
remove any variance in the results.

4.2 Qualitative Evaluation of DBA Variants

Given a set of time series example from the GunPointMaleVersusFemale dataset
of the UCR archive, we can generate the average time series to compare and
analyse the limitation of each technique. In Figure 3, the generated average time
series is presented from a set of samples from the GunPointMaleVersusFemale
dataset. It can be seen that for the naive way of averaging, using the Euclidean
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distance, i.e., Arithmetic Mean, differs from all other approaches by the shifting
issue. In other words, the Arithmetic Mean does not take into consideration the
time warping and miss-aligned information between the samples of the example
set.

Comparing other alignment techniques with ShapeDBA, the TSA almost is
placed in the same time interval. The difference between warping methods is
that DBA and SoftDBA present additional artifacts in the shape. This results
in a TSA that includes some small peaks (red circles in Figure 3) that do not
appear in the original set of time series. ShapeDBA avoids generating this kind
of artifacts given the usage of shapeDTW. ShapeDTW’s advantage is to avoid
aligning a time stamp with an outlier, which is obtained thanks to the ability
of the method of aligning time stamp in specific sub-sequence of the time series.
This advantage leads ShapeDBA to generate a prototype that is more likely to
be randomly selected from the dataset distribution.

Arithmetic Mean
 
presence

of artifacts

presence
of artifacts

DBA

SoftDBA ShapeDBATime

V
a
lu

eshifting
problem

Presence of
artifact

Fig. 3: A qualitative evaluation of the proposed average technique compared to
other approaches on a GunPoint dataset. The ShapeDBA algorithm is the only
approach to not generate out-of-distribution artifacts.

4.3 Quantitative evaluation

Competitor In this work, we compare the proposed method to other time series
averaging techniques as detailed in Section 3.2. The state-of-the-art model for
time series clustering is k-shape [15]. This algorithm is an improvement over the
k-means algorithm on time series data by using a Shape Based Distance (SBD)
that uses the cross-correlation between two time series instead of an alignment
measure. Until now, to the best of our knowledge, k-shape is the state-of-the-art
and most efficient clustering method on time series data.
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Adjusted Rand Index (ARI) The Adjusted Rand Index (ARI) [9] is a new
fixed version of the original Rand Index (RI) defined in (5). Given the true labels
of the time series dataset y and the predicted labels by the clustering algorithm
ŷ, the RI is calculated as follows:

RI(y, ŷ) =
TP + TN

TP + FP + FN + TN
, (5)

where, TP and TN stand, respectively, for True Positive and True Negative,
while FP and FN stand for False Positive and False Negative, respectively.

The RI counts the number of pairs that are present in the intersection of both
sets of true and predicted labels as well as the number of pairs that exist in the
difference of these two sets. This metric, however, presents a limitation: a high
RI should indicate that the two clusters in question are almost identical, which
is not always the case. The RI may favor high identical clusters without taking
into consideration the case where the intersection was randomly generated. This
is due to the fact that the expected value of the RI is not constant between
two random clusters. This random chance can be generated when the number
of clusters becomes high enough that the probability of a pair to be in both
clusters is large. For this reason, the Adjusted Rand Index (ARI) is proposed
with a scaled version that takes into account this randomness by setting the
value 0.0 for the random chance. The ARI presented in (6) is bounded between
−0.5 indicating no similarity and 1.0 for a perfect similarity between the clusters.

ARI(y, ŷ) =
RI(y, ŷ)− E[RI]

1.0− E[RI]
, (6)

where E[RI] is the expected value of RI.
We present in the following three different ways to compare the performance

of each clustering method on the total of 123 datasets of the UCR archive.

One-vs-One Comparison : In this approach, we present a scatter plot of all the
pairwise comparisons between k-means with ShapeDBA and the approaches in
the literature. Each point visualized in Figure 4 represents one dataset, the x-axis
presents the ARI value on this dataset using a method from the literature and
the y-axis the ARI value using ShapeDBA. The Win-Tie-Loss count is presented
in the legend of each One-vs-One scatter plot as well as a p-value. This latter
p-value is produced using the Wilcoxon Signed Rank Test [19]. If this p-value is
larger than the threshold 0.05, than the difference in performance between the
comparates in question is not considered statistically significant.

It is clear from Figures 4a, 4b, and 4c that the usage of ShapeDBA as an
averaging method in k-means is significantly better than the baseline, i.e., ED
and DBA with k-means and significantly better than the state-of-the-art k-
shape. From Figure 4d it can be seen that even though ShapeDBA presents more
wins compared to SoftDBA, the difference in performance is still not significantly
different. In what follows, we show however that ShapeDBA is way faster than
SoftDBA.
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Analysing Outliers Some unique outliers from the One-vs-One scatter plots are
clear to favor either ShapeDBA or the other approaches. For instance, com-
pared to k-shape, ShapeDBA does not perform well (low ARI) on two datasets:
ShapeletSim and ECGFiveDays. On the one hand, given knowledge on the UCR
archive datasets, we believe that no correct conclusion can be found on Shapelet-
Sim given that this dataset is simply a simulation of random data. On the other
hand, the ECGFiveDays dataset presented in Figure 5 is a unique example to
show case the disadvantage of ShapeDBA.
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Fig. 4: 1v1 Comparison between using k-means with ShapeDBA-ShapeDTW and
other approaches from the literature using the Adjusted Rand Index clustering
metric.

This dataset is mostly made of noisy time stamps with an information com-
pressed in the important segments placed in the middle of the time series as seen
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Fig. 5: Two examples from each class taken from the ECGFiveDays dataset of
the UCR archive. Most time stamps of this dataset represent noise and the
important neighborhood of the time stamp is just in the middle of the whole
time series.

in Figure 5. For this reason, ShapeDTW will be adding noise in the optimiza-
tion steps. A clear winner on the SonyAIBORobotSurface1 dataset, however, is
ShapeDBA compared to k-shape with almost a 0.6 difference in the ARI. After
analysing this dataset, still no hard conclusions can be found but this is not a
special case for ShapeDBA given that MED, DBA and SoftDBA perform better
than k-shape on this dataset. Suggesting that it is k-shape underperforming on
this dataset.

Comparing ShapeDBA to DBA, it seems as if ShapeDBA has an advantage
over the DiatomSizeReduction dataset, which suffers from the lack of training
samples with only four samples per class label.

Critical Difference Diagram (CDD) : a technique to compare multiple estimators
by reducing the metrics on multiple datasets into a one dimensional view. This
one dimensional view is presented by using the average rank of each method
on the total of the 123 datasets used. The best performing clustering approach
is the one with the lowest rank as for instance ShapeDBA in Figure 6. The
CDD used in this work utilizes, as proposed in [2], the Wilcoxon Signed-Rank
Test [19] coupled with the Holm multiple test correction [8] in order to generate
the cliques. If a clique links a set of comparates in the CDD, this represents that
the differences in performance between this set of comparates is not statistically
significant.

Multi-Comparison Matrix (MCM) : was proposed in [10] arguing that CDD
has some limitations that can miss-lead the interpretation of the results. First,
one important issue with CDD as mentioned in [10] is the instability of the
average rank. For instance the average rank can easily be manipulated by the
addition or removal of some comparates. For this reason, MCM proposes the
usage of a descriptive statistics that does not change with this addition and
removal of comparates. This statistics is the average performance on the total
of the 123 datasets used, in our case it is the average ARI over these datasets
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Fig. 6: Critical Difference Diagram showing the average rank of the ARI score
over the datasets of the UCR archive.

for each clustering approach. Second, a common issue of the CDD is the usage
of the multiple test correction, which is unstable to the addition and removal of
comparates. Finally, a major limitation with only using the CDD is the lack of
pairwise comparison information. The MCM proposed in [10] overcomes these
three problems by using the average performance instead of the average rank to
order the comparates, not applying a multiple test correction for the produced
Wilcoxon p-values and presenting the pairwise comparisons between comparates.
The MCM in Figure 7 shows that SoftDBA is the winning approach given the
average ARI with not much difference with the average ARI of ShapeDBA that
comes in second place. A full pairwise and multi-comparates comparison between
all clustering techniques discussed in this work on the ARI metric is presented
in Figure 10.

In what follows, we did a computational runtime comparison between all ap-
proaches. We show that although ShapeDBA does not outperform in significant
manner SoftDBA, it is however faster.

SoftDBA
0.2459

ShapeDBA
0.2442

KShape
0.2272

DBA
0.2259

MED
0.1959

ShapeDBA
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If in bold, then
p-value < 0.05 0.04 0.02 0.00 0.02 0.04

Mean-Difference

Fig. 7: A Multi-Comparison Matrix showing the proposed approach’s perfor-
mance compared to other approaches using a tool that is stable to the addi-
tion/removal of new classifiers.

Computational Runtime Given that all experiments were conducted on the
same machine with the same environment, fairness in time computation com-
parison stands here. By keeping track of the total computation time for each
clustering approach, averaged over five initialization, we can apply the same
comparison techniques as for the ARI. In Figure 8, the CDD of the computa-
tional runtime is presented. Given that in the case of runtime, the lower the time
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the better, and to keep the ordering of the average rank as lower is better, we
multiplied the values of the computational time by −1. It is clear from the CDD
plot that the fastest approach is k-shape and the slowest one is SoftDBA. The
reason behind the fast computation of k-shape is essentially because of the usage
of the Fast Fourier Transform (FFT), while doing the cross-correlation between
the time series. However, with the help of the efficient implementation used in
ShapeDBA, the computation is way faster than SoftDBA.

For ARI, we generated the MCM as well for the computational time compar-
ison in Figure 9. On average of 123 datasets, ShapeDBA is 1.7 times faster than
SoftDBA with 109 wins for ShapeDBA in terms of computational runtime. It is
important to note that in this case of MCM, the Win-Tie-Loss count considers
the lower the better.

12345

4.8862SoftDBA
4.1138ShapeDBA
2.9512DBA

2.0325MED

1.0163KShape

Computational Runtime

Fig. 8: Critical Difference Diagram showing the average rank of the duration (in
seconds) of the k-means algorithm over the datasets of the UCR archive.
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Fig. 9: A Multi-Comparison Matrix showing the proposed approach’s duration
(in seconds) compared to other approaches using a tool that is stable to the
addition/removal of new classifiers.

5 Conclusion

In this work, we addressed the problem of Time Series Averaging (TSA) using
elastic distances. We proposed a novel TSA approach, ShapeDBA, based on the
similarity measure ShapeDTW similarity measure. We showed that ShapeDBA
has the ability to preserve the shape of the true dataset distribution instead of
producing spikes artifacts as other approaches. To quantitatively evaluate the
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Fig. 10: A Multi-Comparison Matrix showing the full One-vs-One comparison
and the multi-comparates comparison between all the time series clustering ap-
proaches used and proposed in this work.

proposed approached, we provided extensive experiments on the UCR archive
using the k-means clustering algorithm. We show that in terms of the Adjusted
Rand Index metric, our approach achieves state-of-the-art performance, while
being much faster than SoftDBA that represents the current elastic state-of-the-
art averaging technique. This last observation is beneficial to help deploy time
series averaging techniques in real life problems. Finally, to avoid computation
waste in our proposed ShapeDBA algorithm, we present a dynamic programming
detailed implementation of the algorithm.
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