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Abstract

Recently, Artificial Intelligence namely Deep Learning methods have revolutionized a wide range of domains and appli-
cations. Besides, Digital Pathology has so far played a major role in the diagnosis and the prognosis of tumors. However,
the characteristics of the Whole Slide Images namely the gigapixel size, high resolution and the shortage of richly labeled
samples have hindered the efficiency of classical Machine Learning methods. That goes without saying that traditional
methods are poor in generalization to different tasks and data contents. Regarding the success of Deep learning when
dealing with Large Scale applications, we have resorted to the use of such models for histopathological image segmenta-
tion tasks. First, we review and compare the classical UNet and Att-UNet models for colon cancer WSI segmentation
in a sparsely annotated data scenario. Then, we introduce novel enhanced models of the Att-UNet where different
schemes are proposed for the skip connections and spatial attention gates positions in the network. In fact, spatial atten-
tion gates assist the training process and enable the model to avoid irrelevant feature learning. Alternating the presence
of such modules namely in our Alter-AttUNet model adds robustness and ensures better image segmentation results.
In order to cope with the lack of richly annotated data in our AiCOLO colon cancer dataset, we suggest the use of a
multi-step training strategy that also deals with the WSI sparse annotations and unbalanced class issues. All proposed
methods outperform state-of-the-art approaches but Alter-AttUNet generates the best compromise between accurate
results and light network. The model achieves 95.88% accuracy with our sparse AiCOLO colon cancer datasets. Finally,
to evaluate and validate our proposed architectures we resort to publicly available WSI data: the NCT-CRC-HE-100K,
the CRC-5000 and the Warwick colon cancer histopathological dataset. Respective accuracies of 99.65%, 99.73% and
79.03% were reached. A comparison with state-of-art approaches is established to view and compare the key solutions
for histopathological image segmentation.
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1. Introduction

Image segmentation is a key task of image processing.
Over the last few years, its approaches have tremendously
evolved and have become a hotspot in the research field.
The main purpose of such task is to group similar regions
of the image and assign their respective class labels. In
fact, image segmentation combines both localization and
classification steps. Its applications cover a wide range
of domains like computer vision [1], remote sensing [2],
medical imaging [3], etc. Actually, the emergence of dif-
ferent medical imaging tools has catalyzed the efforts to
enhance the image processing techniques [4]. Medical im-
age segmentation is a crucial step for many other related
tasks namely pathology diagnosis, surgical planning and
mass detection. Traditionally, the segmentation process
relied on the pathologists experience to extract the aimed

information such as organs, tissues and nuclei [5]. How-
ever, such procedure is both time and effort consuming.
Medical images also introduce a high level of complexity
compared with natural scene images and other computer
vision data. Most of the medical images include many
components with high visual resemblance and confusing
boundaries [6]. As a matter of fact, the emergence of the
digital Whole Slide Images (WSI) has introduced new chal-
lenges for image segmentation. Histopathological images
are usually gigapixel slides with complex clinical features.
They often suffer from a lack of richly annotated refer-
ence data for accurate segmentation tasks. Thanks to the
advances in Artificial Intelligence (AI) and computational
resources, the segmentation of these gigantic slides is pos-
sible and serves as a key tool for pathological diagnosis,
prognosis, and therapeutic response prediction [7, 8].

Despite the promising potential of Deep Learning (DL)
tools, the segmentation of WSIs is still a challenging task.
Novel approaches need to cope with the particular traits
of histopathological data and ensure accurate tissue seg-
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mentation [9].
This paper shines the light on the segmentation of

histopathological images. First, a review of the role of
AI in WSI image segmentation is presented along with the
challenges that hinder its success. Then, a colon cancer
WSI segmentation is executed in a weakly supervised sce-
nario. Therefore, UNet model [10] is presented and evalu-
ated on the AiCOLO dataset. Att-UNet [11] is also used
for the same task. Novel enhanced versions of the Att-
UNet are introduced for segmentation of colon cancer
histopathological images. The proposed models are com-
pared with state-of-the-art semantic segmentation models
namely FCN8s, FCN16s, FCN32s and DeepLabv3+.
Moreover, evaluation of the models is performed with dif-
ferent public datasets (CRC-5000 , NCT-CRC-HE-100K-
and Warwick). Finally, the proposed approaches are as-
sessed as regards to state of the art methods in colon can-
cer digital pathology tasks. The main contributions of the
paper are:

� The establishment of a novel multi-step training strat-
egy. This approach enables the model to deal with
the lack of richly labeled samples, the sparse anno-
tation of the images and the unbalanced class repre-
sentation in histopathological data.

� The use of the Att-UNet model for colon cancer
histopathological image segmentation.

� The introduction of novel Att-UNet inspired mod-
els for better feature learning. The proposed models
are low-cost and ensure the focus on the relevant in-
formation in the histopathological data.

2. Artificial Intelligence for Medical Image segmen-
tation

2.1. The challenges

The use of AI for histopathological image segmentation
is disrupted by many challenges as detailed in [12] namely:

Insufficiency of annotated samples:. Most of the DL mod-
els in a digital pathology context require an important
amount of good quality, curated and representative train-
ing images. Therefore, pathologists need to thoroughly la-
bel the WSI and highlight the Regions Of Interest (ROI)
based on the targeted application. However, such task is
very time consuming and requires a huge share of involve-
ment especially when dealing with large images acquired
at different resolutions and staining techniques. Conse-
quently, WSI datasets are often lacking of annotated sam-
ples and balanced classes representation. Actually, most
the current WSI processing tasks use private data [13].
Therefore, the trained DL architectures are suffering from
limited practicality and restrained utility in different ap-
plications.

Color Variation and Artifacts:. Histopathological images
are a result of a multi-task workflow with many interferes
from different fields. Therefore, many undesirable effects
may appear at each step of the process. For example,
bending and wrinkling of the tissue may generate blurry
unsolvable regions. Moreover, color variation could oc-
cur during the staining process as a result for the different
manufacturers of staining reagents and scanners, thickness
and tearing in tissues and every lab staining conditions.
The presence of such artifacts in the WSI can mislead the
feature learning process and hinder accurate tissue seg-
mentation. In order to cope with such issue, most of the
previously proposed approaches apply prior processing or
augmentation to the histopathological slides [14, 15].

2.2. Related work

The approaches of WSI segmentation has evolved from
hand-crafted to semi-automatic models and recently to the
fully automatic segmentation as depicted in [16]. A vari-
ety of graph-based methods were developed to segment
and highlight targeted tissues in WSI namely as suggested
in [17]. However, these methods are highly dependent
from a predefined set of features. Thus, their general-
ization to different applications and datasets is very re-
stricted as detailed in [18]. Therefore, the interest was
deflected toward DL models regarding their efficiency in
automatic feature extraction. Different methods combined
graph-based approaches and DL as detailed in [19]. One
of the main trials to use Fully Convolutional networks
(FCN) for WSI semantic segmentation was evoked by
Long et al. in [20]. The proposed model is trained via
end-to-end back-propagation to generate a pixel-wise seg-
mentation map. A deep contour-aware network (DCAN)
was introduced in [21] based on a multi level FCN for col-
orectal WSI segmentation. Authors in [22] also introduce a
FCN-8s model that combines multi-level localization and
feature information for inflammatory colon disease detec-
tion in bowel biopsies. Later on, different variants of the
FCN were suggested as detailed in [23, 24, 25]. In fact, the
use of FCN models for histopathological image segmenta-
tion has also been used as a key step for different appli-
cations. For instance, the FCN network with a VGG-16
backbone as presented in [26], has inspired authors in [27]
and [28] for respective Ovarian cancer bio-markers identifi-
cation and Thyroid cancer diagnosis. The VGG-16 based
FCN was also used to execute foreground segmentation
in [29]. The model is combined with an edge detection
CNN for multi-channel image segmentation. In fact, a
great share of the histopathological image segmentation
literature is dedicated to Convolutional neural Networks
(CNN) as they ensure accurate feature learning with low
computational complexity. The authors in [30] combined
the outputs of different CNN models in order to generate
a gland segmentation map for the Histology Images Chal-
lenge Contest (GlaS) histopathological data [31]. In the
same context, Xu et al introduce a mutli-CNN frame-
work for complex multichannel information, location, and
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boundary cues fusion. Different CNN architectures were
deployed in the context of colorectal cancer namely the
VGG-19 [32], 5-layer CNN [33] and a CNN-LSTM dual
model [34]. LeNet-5 architecture is also used for the same
context in [35]. A hybrid approach was introduced by
Qaiser et al. in [36] where they combine both CNN ex-
tracted features and mathematical feature representations
of the training data for accurate segmentation of colon
cancer.

These approaches ensure reasonable performance rates
for colon WSI segmentation but are computationally ex-
pensive and are at high risk of gradient vanishing while
training. Therefore, the trials to cope with the high dimen-
sionality of WSI has generated a plethora of CNN-based
models. These networks are mainly deeper yet lighter
namely the ResNet . Residual models [37] come with
the hallmark of reusing the learnt feature for accurate and
less expensive learning as detailed in [38]. Thus, The same
concept was integrated in a DenseNet architecture to
segment digital pathology images in [39]. In this context,
the residual blocks are replaced with dense blocks were
identity mapping is replaced by dense concatenation con-
nections in order to reinforce the feature re-usage. How-
ever, histopathological slides usually encompass different
shapes and sizes for the same objects and neighboring tis-
sues which makes it hard to distinguish. As a remedy for
such problem, a recent work focuses on the use of encoder-
decoder models such as the SegNet and the UNet as
depicted in [40]. The UNet model is also used in [41]
for stain separation in H&E images to obtain the H-stain,
E-stain, and background stain intensity maps. Colorectal
cancer nuclei are then segmented on the H-stain map. A
Multi magnification version of the encoder-decoder mod-
els is introduced in [42] for multi-class segmentation in
WSIs. Authors in [43] combine the classical UNet archi-
tecture while inserting residual connections in both blocks
to ensure accurate feature learning throughout the entire
process. A dense-UNet model was also established in [44]
for the same purpose. However, these models rely on a
progressively down-sampled feature map grid. This way
the model is not assigning any priority to the contextual
features and is incapable of reducing false predictions. As
a remedy to this issue several papers have established a
2-step procedure where the segmentation and localization
modules are independent [45, 46]. To simplify the task,
authors in [11] propose the use of the so-called Soft At-
tention mechanism. In the context of image processing,
soft-Attention refers to the learning process where exclu-
sively relevant information are highlighted. Consequently,
the network cuts the computational cost of irrelevant ac-
tivations and gains more generalisation properties. Soft-
attention mechanisms are applied to transfer information
between two components of the network (encoder and de-
coder) unlike self-attention which are usually used at mod-
eling dependencies between different parts of a sequence
input. In other words, soft attention of one layer focus
on the activation of other layers while self-attention looks

for the activation of the same layer where it’s applied as
detailed in [47]. Therefore, different attention-based mod-
els have emerged for medical image segmentation within
the last few years as authors in [48] combine spatial and
spectral attention gates for MRI, CT and Endoscopy im-
age segmentation. For lumbar MRI image segmentation,
a three module framework is presented in [49]. It com-
bines a full feature fusing block followed by a combina-
tion of ResNet and attention mechanism. The final unit
is a Generative Adversarial Network (GAN). The dual-
ity of residual and attention blocks is also introduced in
a enhanced efficient UNet model where segmentation of
otoscopic images is executed as detailed in [50]. In his-
tology, a similar model was used in [51] where a residual-
inception-channel attention-Unet (RIC-Unet) enable ac-
curate nuclei segmentation of few Cancer Genomic Atlas
(TCGA) WSIs. Authors in [52] introduce a weakly super-
vised multi-module framework where a first CNN model
is used to detect Regions of interest (ROI) in histopatho-
logical images. Then, attention units are inserted in the
second CNN model to refine the feature extraction pro-
cess and enhances the slides classification process. In fact,
most of the attention-based models for histopathological
image segmentation rely on multi-step hybrid networks as
detailed in [53], [54] and [55]. Although they enable good
performance rates, such models do not deal with the main
problem of WSIs which is the poor sparse annotation of the
histopathological slides. Trials to deal with such issue have
been presented and discussed in [56], [57] and [58]. How-
ever, most of the proposed solutions rely on independent
pre-processing modules to enhance the available annota-
tions before training the network. Recently, many review
papers present opportunities and challenges of the use of
DL for WSI image analysis [59, 60, 13].

3. Proposed methodology

In this section, we propose the use of enhanced ver-
sions of the UNet model for colon cancer histopatho-
logical image segmentation. First, we rely on the classi-
cal UNet then we introduce the use of spatial-attention
blocks to enhance the segmentation accuracy.

3.1. Description of The Architectures

UNet

Regarding the variety of features included in each WSI,
we resort to the use of skip connections for multi-level fea-
ture representation as detailed in [61]. UNet [10] has the
advantage of combining high resolution features with high
semantic reused ones. Both the contracting and expand-
ing paths are symmetric which ensures accurate learning of
not only the content of the image but also its localization.
In fact, this network encompasses three main components:
an encoder, a bottleneck, and a decoder as seen in Fig-
ure 1.
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Figure 1: Architecture of the proposed UNet model.

The Encoder. is a classical stack of convolutional layers as
seen in the CNN models. It ensures the mapping of the
inputs into a feature vector in order to grasp the context
presented in the original images. While decreasing the
spatial dimensions in every layer and increasing the chan-
nels, the different convolutional layers progressively learn
the key features. The proposed architecture presents a 4-
convolutional block encoder as detailed in Table 1. Each
block is a stacking of 2 convolutional layers with 3 × 3
filters and a 1 × 1 stride. For each convolutional layer, a
ReLU activation function is used along with batch normal-
ization and max-pooling for progressive feature map size
reduction.

The bottleneck. links the down-sampling block to the de-
coding units. It consists of one convolutional block with
2 Conv2d layers with Batch Normalization and ReLu Ac-
tivation for each. The main purpose behind using bottle-
neck layers is to create a compressed version of the input
that only contains useful information for the reconstruc-
tion process.

The Decoder. is the up-sampling path which enables the
re-construction of the input image. The purpose behind
this procedure is to enable precise localization using de-
convolution. It also includes 4 deconvolutional blocks where
each block is a stacking of 2 up-sampling layers. In the
classical UNet model, transposed convolutions are used
with 3 × 3 filters and a stride equal to 2 × 2 in order to
halve the features map number and double their size. Here,
we replace the deconvolutional layers with non-trainable

up-sampling filters that execute nearest neighbor interpo-
lation of factor 2. Consequently, we reduce the number
of trainable parameters while ensuring smooth image re-
construction. The core of UNet is the use of skip con-
nections to concatenate the input of each deconvolutional
block with its corresponding feature map from the con-
tracting path. The final layer is a 1 × 1 convolution to
map the channels to the desired number of classes.

Att-UNet

Here, we suggest the joining of all skip connections in
the UNet model with Spatial Attention Gates as shown
Figure 3. The proposed Att-UNet model encompasses
the same Encoder, Decoder and bottleneck as seen in the
UNet architecture. Both the encoding and decoding paths
are 4-convolutional blocks with a final 1D-convolutional
layer to map the outputted binary mask. Each convolu-
tional block is the succession of 2 convolutional layers with
their corresponding Batch Normalization and Activation
non-linearity ReLU.

Spatial Attention Gates. Instead of simply concatenating
spatial information from the Encoder path with the De-
coder path, attention gates introduce a selective feature
learning procedure. In fact, the role of attention gates
is to essentially weighting the different regions of the im-
age and assign the largest weights for the most relevant
parts. These modules are trainable and are applied to ev-
ery patch of the image which ensures progressive weights
learning and increasing focus on the key areas. We define
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Type Size Feature maps : Input Feature maps : Output # Param

Encoding Path

Conv Block* 1 16× 3× 3 3× 256× 3 16× 256× 256 2832

Max Pool 1 − 16× 256× 256 16× 128× 128 0

Conv Block 2 32× 3× 3 16× 128× 128 32× 128× 128 14016

Max Pool 2 − 32× 128× 128 32× 64× 64 0

Conv Block 3 64× 3× 3 32× 64× 64 64× 64× 64 55680

Max Pool 3 − 64× 64× 64 64× 32× 32 0

Conv Block 4 128× 3× 3 64× 32× 32 128× 32× 32 369536

Max Pool 4 − 128× 32× 32 128× 16× 16 0

Bottleneck Conv Block 256× 3× 3 128× 16× 16 256× 16× 16 886272

Decoding Path

Upsample 1 − 256× 16× 16 256× 32× 32 0

Conv Block 1 128× 3× 3 256× 32× 32 128× 32× 32 590592

Upsample Block 2 − 128× 32× 32 128× 64× 64 0

Conv Block 2 64× 3× 3 128× 64× 64 64× 64× 64 147840

Upsample Block 3 − 64× 64× 64 64× 128× 128 0

Conv Block 3 32× 3× 3 64× 128× 128 32× 128× 128 37056

Upsample Block 4 − 32× 128× 128 32× 256× 256 0

Conv Block 4 16× 3× 3 32× 256× 256 16× 256× 256 11664

Final Conv Block 2× 1× 1 16× 256× 256 2× 256× 256 34

Table 1: Layout and number of parameters of the proposed UNet model.* A Conv Block encompasses 2 Conv2d layers
with Batch Normalization and ReLU Activation for each.

Figure 2: Attention mechanism: inside an attention Gate

two main inputs for each spatial gate: 1) the gating signal
g which is the output of the previous low level layer and
2) the vector signal x which is the encoder vector from
the same hierarchical level. Simply put, g represents the
high level-features since it comes from deeper in the net-
work and x provides the spatial information since it comes
from the encoding path. The two elements are brought
to the same size and then summed element-wise. Aligned
weights are then emphasized while inharmonious weights
are penalised. As detailed in Figure 2, the summed vec-
tor is fed to a ReLU activation and a 1 × 1 convolutional
layer. A sigmoid layer is added in order to scale the vec-
tor into a [0,1] range. The outputted 1D vector holds the
attention weights where weights closer to 1 implies more
relevant features. This attention vector is then applied to
the signal x to generate a weighted feature map which is
fed to the Att-UNet convolutional block.

Enhancing Att-UNet

We propose here enhanced models of the Att-UNet ar-
chitecture through new schemes for both the Attention
Gate and Skip Connection positions in the network. The
main goal of adding spatial attention gates in the UNet is
to enhance the model focus on the crucial features and dis-
card the useless information. However, the problem arises
when useful information are judged irrelevant from the first
levels and vice-versa. Then, the model has no opportunity
to re-adjust its learnt feature maps. To cope with this is-
sue, we introduce novel Att-UNet models as detailed in
Table 2:

Alternate Attention in Att-UNet: Alter-AttUNet:.
As seen in Figure 4a, the idea is to eliminate the Attention
Gates from certain positions to add features that might be
useful and discarded by the previous layer. The base model
is the same architecture as described in 3.1. Differently,

5



Figure 3: The original Att-UNet Model

Model Figure Nbr Attention Gates position Attention Gates Nbr Skip Con position Skip Con

UNet 1 0 [None] 4 [1,2,3,4]

Att-UNet 3 4 [1,2,3,4] 4 [1,2,3,4]

Alter-AttUNet 4a 2 [2,4] 4 [1,2,3,4]

Alter-SkipUNet 4b 2 [2,4] 2 [2,4]

AutoEncoder-AttUNet 4c 2 [3,4] 2 [3,4]

AttUNet-AutoEncoder 4d 2 [1,2] 2 [1,2]

Table 2: Summary of the the Att-UNet, Alter-AttUNet,Alter-SkipUNet, AutoEncoder-AttUNet and
AttUNet-AutoEncoder models.

Spatial Attention Gates are inserted in positions 1 and 3
from the Decoding Path while convolutional blocks 2 and
4 are connected simply through skip connections to the
Encoder.

Alternate Both Attention and Skip connections in Att-
UNet: Alter-SkipUNet:. Although skip connections
are the core of the UNet model, the combination of both
Attention gates and skip connections merges low-level fea-
tures from the encoder with high semantic features from
the decoder. The semantic gap between these two feature
representation levels could mislead the learning process.
Therefore, we propose a novel Alter-SkipUNet model
where skip connections are deleted in the absence of At-
tention Gates. As seen in Figure 4b, the same Alter-
AttUNet model is maintained where convolutional blocks
of position 1 and 3 take respectively the output of the pre-
vious encoding layer as entry.

Merging Auto-Encoders and Att-UNet: AutoEncoder-
AttUNetand AttUNet-AutoEncoder:. An auto en-
coder learns to capture as much information as possible
rather than as much relevant information as possible. There-
fore, we combine both the Spatial Attention UNet and
the classical auto-encoder model in novel models: the
AutoEncoder-AttUNet and the AttUNet-AutoEncoder

which respectively encompass Attention Gates in position
[1,2] and [3,4] as detailed in Figure 4c and Figure 4d. The
other share of the models is a classical encoder/decoder
duality with the absence of any skip connections or atten-
tion mechanisms. That way, we loosen the control degree
over the model and instate it to learn more features.

3.2. Training Strategy: Learning from sparsely annotated
WSI

In supervised DL segmentation tasks, an important
amount of labeled clean data is usually required to achieve
accurate results. However, such condition is hard to ac-
complish in the pathology field as detailed in the previous
section 2.1. Therefore, experts tend to only highlight some
specific regions or points in the WSI to simply describe
the content of the image. This procedure is described as
”sparse annotation” where an important amount of the
pixels is left unlabeled. Regardless from its rapid annota-
tion, this method generates reference images that lack lo-
calization and boundaries information of the classes. Hav-
ing to deal with the shortage of labeling information, we
propose a weakly supervised procedure for training our
DL models for WSI segmentation. The 3-steps strategy is
described as follows.
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(a) The Alter-AttUNet architecture (b) The Alter-SkipUNet architecture

(c) The AutoEncoder-AttUNet architecture (d) The AttUNet-AutoEncoder architecture

Figure 4: The proposed enhanced Att-UNet models. *The highlighted red blocks represent our proposed modified parts from
the original Att-UNet architecture.

Valid patches only:. In order to avoid the influence of un-
labeled regions, we choose to select small richly annotated
patches. For both the learning and evaluation passes, the
model is fed only with patches containing a majority of an-
notated pixels. The used patches usually encompass one
class at a time since the sparsely annotated regions are
small and distant. Trying to include different classes in
one patch injects lots of doubtful information in the learn-
ing process and biases the results. However, this stage
isn’t capable of compensating the unbalanced class repre-
sentation.

Weighted cross entropy loss:. The sparse annotation of
histopathological data usually implies unbalanced class rep-
resentation. Since the main focus is on the tumour tis-
sues, the rest of the classes are unequally presented namely
stroma, tissues background and fat. The classical way of
evaluating a model is using a cross-entropy loss where for

each class we assign a true label ŷ and a predicted label y.
The loss value is calculated as:

Loss(y, ŷ) = −
n∑

i=1

ŷi log yi (1)

However, the same importance is given to all classes re-
gardless from their presence rate in the data. Therefore,
we propose to add a weighted factor wi that assigns a dif-
ferent value to each class according to its representation
in the WSI as detailed in (2).

Loss(y, ŷ) = −wi

n∑
i=1

ŷi log yi,

n∑
i=1

wi = 1

(2)

where Loss(y, ŷ) is the cross entropy loss evaluating
the difference between the predicted probability yi ∈ [0, 1]
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and the target label ŷi ∈ [0, 1] (wi ∈ [0, 1] is the weight of
each class i and n the class number).

Boundary-aware loss:. Histopathological images represent
different neighboring tissue types with bulk regions and in-
frequent edge pixels. In that situation, DL models have
tendency to mainly focus on the continuous more pre-
sented tissue blocks. As a remedy to this issue, we add
a penalty for mistaken border pixel prediction. The pro-
posed approach is inspired from the original UNet model [10]
where sophisticated morphological functions are used to
generate the edge-aware weights. Here, we propose a less
complicated method to re-adjust the feature maps with
highlighted edges. A binary morphological dilatation of
the border pixels is used where boundaries of tumour pix-
els are gradually enlarged. Consequently, this regions are
more noticeable and less confusing for the learning process.
The dilatation is applied for each region centered at an
edge pixel (i,j) with value equal to 1 in the binary masks.
All neighboring pixels are equally set to 1 to further high-
light the boundaries. The new weighted boundary-aware
loss function Losswba(y, ŷ) is then computed as follows:

Losswba(y, ŷ) = we
wi

n∑
i=1

ŷi log yi, (3)

where we is the new edge dependent weight map and wi ∈
[0, 1].

4. Experimental Settings

Publicly available Colon cancer WSI datasets are used
to evaluate and compare the proposed Att-UNetmodels
with state of the art approaches. Linux operating system is
used with an Intel(R) Xeon(R) Bronze 3204 1.9 GHz pro-
cessors and 62GB RAM. All DL models were implemented
using The Pytorch framework. Tests were executed on a
Nvidia Quadro RTX 5000 GPU with 16GB memory.

4.1. Data

The AiCOLO dataset. includes 396 colon cancer WSIs.
All images are stained with Haematoxylin, Eosin, and Nat-
ural Saffron. The dataset is created using a Hamamatsu
photonics scanner at a 0.454µm/pixel spatial resolution.
The number of pixels per slide varies between 4 and 5 bil-
lions. A slide sample is shown in Figure 5. Only 15% of the
WSIs were sparsely labeled by pathologists from CFGL
(Dijon, France).The dataset includes 8 different classes
namely tumour, stroma, fat, necrosis, immune, healthy tis-
sue, artifacts and background as seen in Figure 5b. 256×
256 patches are extracted from the labelled regions using
the Cytomine [62] image retrieval tools. The final set of
patches is split into Training and Testing sub-sets as seen
in Table 3. For binary image segmentation tasks, ”Tu-
mour” patches represent the positive class while the rest
of the 7 classes-all joint together-represent the negative
class of ”Normal Tissues”. Consequently, the dataset is

(a) Sparse annotations of the classes of interest

(b) Binary mask for the class ”Tumour”

Figure 5: Sample of sparsely annotated WSI/mask from
the our dataset.

made of 1454 ”Tumour” samples and 3727 ”Non-Tumour”
patches.

Training samples Testing samples

Tumour 976 478

Necrosis 387 193

Immune 301 150

Stroma 642 320

Fat 75 37

Tissue 477 238

Artifacts 280 139

Background 326 162

Table 3: Number of samples in training and testing sets
in our AiCOLO patch-based dataset.

The 100,000 histological images dataset. The NCT-
CRC-HE-100K dataset encompasses 86 H&E stained colon
cancer WSIs from both the NCT Biobank (National Cen-
ter for Tumor Diseases, Heidelberg, Germany) and the
UMM pathology archive (University Medical Center Mannheim,
Mannheim, Germany). A total of 100.000 224×224 patches
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were extracted from the digital slides including 9 classes
namely tumours tissues and healthy epithelium regions.

The Colorectal Histology MNIST. The CRC-5000
dataset includes 5000 histopathological images using the
Aperio ScanScope scanner at a 20× magnification. The
150 × 150 patches come from the archive of the Institute
of Pathology, University Medical Center Mannheim, Hei-
delberg University,). The dataset represents colon cancer
adenocarcinoma along with other 8 normal tissue types.

The GlaS (Gland Segmentation in Colon Histology
Images Challenge): Warwick. The Warwick dataset
was first created for the GlaS challenge including T3 and
T4 colon tumour adenocarcinoma. The original 16 H&E
stained histopathological slides are cropped into 825 patches
of 150× 150 pixels.

As detailed in Table 4, AiCOLO dataset introduces
different challenges when compared with state of the art
datasets including NCT-CRC-HE-100K, CRC-5000 and
Warwick. The AiCOLO slides suffer from many arti-
facts namely out of focus regions, tears and cuts in the
tissues. Besides, the number of samples per class is com-
pletely unbalanced where tissues like Immune are very
poorly represented as seen in 3. This issue occurs with Ai-
COLO binary segmentation. Indeed, the class ”tumour”
represents approximately 2.5× less surface than ”non tu-
mour” tissues. In contrast, CRC-5000, NCT-CRC-HE-
100K and Warwick datasets are all composed of a bal-
anced set of tissue types, and their patches are clean (no
staining problems or artifacts). Thus, AiCOLO dataset
presents a high level of difficulty for training DL models.

4.2. Data augmentation

Data augmentation is helpful to enhance the perfor-
mance of DL models by providing new and different data
samples for the training process. In fact, a rich data is
crucial to ensure high accuracy in this context. In the ab-
sence of richly annotated datasets in our case of study, we
resort to augmentation techniques. Thus, collecting and
labeling histopathological images can be exhausting and
costly processes as already detailed in previous sections.
Transformations in datasets by using data augmentation
techniques allow us to reduce these operational costs while
creating a wide range of image variations. In order to re-
produce the different pathologist perspectives, spatial al-
terations are applied to each WSI and its respective bi-
nary mask namely arbitrary axial flips, center and resized
crops and rotations. Furthermore, Each WSI is converted
to gray-scale with random brightness, saturation and con-
tract values.

4.3. Evaluation Criteria

Our models have been evaluated and compared with
state of the art approaches, using accuracy, specificity,

sensitivity and F1-score:

Accuracy =
TN + TP

TN + TP + FN + FP

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

F1-score =
2 TP

2 TP + FP + FN

where

TP = True Positives: Correctly classified ”Tumour” Pixels.

TN = True Negatives: Correctly classified ”Non-Tumour” Pixels.

FP = False Positives: ”Non-Tumour” pixels that are Miss-classified as ”Tumour”.

FN = False Negatives: ”Tumour” pixels that are Miss-classified as ”Non-Tumour”.

4.4. Model Parameters

To train the models we only use 256 × 256 patches
derived from the AiCOLO dataset as detailed in Table
3. For sufficient representation of the data content, we
use a batch size of 32 for optimization and weight up-
date. The Stochastic Gradient Descent algorithm is used
with an initial learning rate of value 0.0001 and a 0.9 mo-
mentum. For more adapted training, the learning rate
value is divided by 10 each 25 epochs. All models includ-
ing the UNet, Att-UNet, Alter-AttUNet, Alter-
SkipUNet, AutoEncoder-AttUNet and AttUNet-
AutoEncoder are trained for 200 epochs. The ReLu
activation function is deployed for all convolutional lay-
ers in all models. The different FCN models along with
DeepLabv3+ are trained for 100 epochs. Note that each
model is trained 10 times with random train and test splits.

5. Results and Discussion

UNet vs. Att-UNet:. We tested two different UNet
schemes. The first UNet is detailed in Table 1 where the
number of filters ranges from 16 to 256 progressively at
each convolutional block. The model ensures ≈ 9% higher
accuracy and F1-score than the SegNet suggested in [63].
The number of trained parameters is also around 3× less
important than the SegNetas seen in Table 5. A heav-
ier UNet architecture is used on our AiCOLO dataset.
The number of filters vary between 64 to 1024 at each
convolutional block. Although this model provides ≈ 3%
higher accuracy rates it still introduces a dramatically im-
portant computational cost since it trains about 17× more
parameters. In order to enhance both the accuracy rate
and the cost, we propose the evaluation of the integration
of spatial attention gates in the light UNet model. In
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Data #images Image size Annotation-type Balanced classes Pre-processed Artifacts

AiCOLO 5181 256 × 256 Sparse No None Yes

NCT-CRC-HE-100K 100,000 224 × 224 Dense Yes Yes No

CRC-5000 5000 150 × 150 Dense Yes Yes No

Warwick 825 150 × 150 Dense Yes Yes No

Table 4: Comparison between the AiCOLO,NCT-CRC-HE-100K, CRC-5000 and Warwick datasets.

other words, we use a low number of filters and integrate
the attention mechanism to focus on the relevant regions
only. As seen in Table 5, the Att-UNet model has an
accuracy rate of 95.02% and a F1-score of 93.28%. As
shown in Figure 7, the integration of attention gates en-
hances the model performances of the segmentation on the
colorectal cancer AiCOLO slides. The Att-UNet also
guarantees accurate results with a light model since it only
trains 2.18M parameters while SegNet trains 7.6M and
the heavy UNet generates 34.53M parameters.

Although the three models rely on the encoder/decoder
duality, they still introduce different feature learning strate-
gies. The SegNet uses multi-level convolutional filters
along with trainable weights in the pooling layers to en-
sure multi-scale semantic data learning. However, the only
connection between the encoder and the decoder blocks
are the pooling layer learnt weights which alone are insuf-
ficient to have a thorough insight into the data content in
the decoding process. The classical UNet model as pre-
sented in Table 1 comes with the hallmark of using skip
connections to link the encoder and decoder blocks un-
like the SegNet model. The learning strategy relies on
the merge of low-level features from the encoder with high
deep features from the decoder. Despite its ability to en-
hance the segmentation precision as detailed in Table 5,
the combination of features from different semantic levels
can bias the learning process. Simply put, the semantic
gap between the encoder and decoder features generates
incompatible sets of features to learn from and misleads
the focus of the convolutional filters in the decoding path.
Consequently, the use of Att-UNet guarantees the link
between the encoding and decoding path unlike the Seg-
Net model while compensating the semantic gap between
the fused features generated by the classical UNet skip
connections. Actually, the attention mechanism as seen in
Figure 2 uses trainable weights. As a result, the spatial at-
tention filters are updated to make the model progressively
focuses on the relevant regions. The Att-UNet model is
then capable of generating more precise tumour segmen-
tation in the AiCOLO slides as show in Figure 6 where
less false negatives are introduced.

Enhancing Att-UNet. As detailed above, the introduc-
tion of spatial attention gates enhances the segmentation
results on the AiCOLO dataset. Figure 6 shows an ex-
ample of an AiCOLO slide segmentation results where
one can clearly notice that although the Att-UNet is

capable of successfully tracing the tumor tissues it still
suffers from the presence of false positives. This result is
reflected in Table 6 and in Figure 7 where a specificity of
93.15% is reached versus a sensitivity of 96.06%. In other
words, the Att-UNet model is able to detect positive tu-
mor tissues in 96.06% of cases but still confuses 7% of the
negative pixels with tumor. As a remedy to this issue,
we propose the different schemes of the attention based
models. As seen in Table 6, the Alter-AttUNet model
ensures not only higher accuracy and F1 rates but espe-
cially a 3% higher specificity which indicates a better tu-
mor segmentation and less false positives in the resulting
mask. The deletion of skip connections in the absence of
attention gates also guarantee better performance than the
Att-UNet as detailed in Figures 7a, 7b, 7c and 7d. As
detailed in Table 6, three different architectures are pro-
posed where the skip connections and the attention gates
are deleted in different positions in the network. First,
when inserting skip connections and attention gates only
in the first levels of the model (positions 1 and 2 of the de-
coder), the AttUNet-AutoEncoder model simulates a
combination of an Att-UNet followed by a classical Auto-
encoder. Then, we propose a similar yet reversed model
were skip connections and attention gates come in the final
levels of the model (positions 3 and 4). Both AttUNet-
AutoEncoder and AutoEncoder-AttUNet models
generate similar performances where the accuracy rates
are ≈ 13% greater than SegNet[63] segmentation results.
However, these models still introduce relatively a more
important number of false negatives which is obvious with
the respective 90.36% and 92.08% sensitivity rates for both
the AttUNet-AutoEncoder and the AutoEncoder-
AttUNet. Finally, the Alter-SkipUNet is presented
where skip connections and attention gates come in alter-
nated positions (positions 2 and 4 of the decoder). This
model ensures very close accuracy and F1 rates to the
Alter-AttUNetwith similar number of parameters =
2.18M .

As seen in Figures 6 and 7, the introduction of atten-
tion gates in the learning process can fill in the semantic
gap between the encoder and decode features. However,
inserting attention gates in all positions of the model as
seen in Figure 3 can mislead the learning process. In fact,
if the model judges a region as irrelevant in some stage
of the learning process, it will eventually be discarded for
the rest of the procedure. Therefore, as seen in the per-
formance results alternating between attention gates and
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Model #filters Accuracy Specificity Sensitivity F1-score #params

UNet [64 to 1024] 92.52± 0.06 91.85± 0.04 92.79± 0.06 89.47± 0.02 34.53M

UNet [16 to 256] 89.87± 0.08 90.82± 0.06 89.17± 0.06 87.48± 0.05 2.23M

Att-UNet [16 to 256] 95.02± 0.04 93.15± 0.07 96.06± 0.04 93.28± 0.06 2.18M

SegNet[63] [16 to 256] 81.22± 0.02 80.70± 0.06 81.40± 0.02 75.53± 0.03. 7.6M

Table 5: Accuracy, specificity, sensitivity rates and F1-score (in %) for UNet, Att-UNet and SegNet.

simple skip connections guarantee the link between the
encoder and the decoder to extract positions of the pixels
while using the attention mechanism to re-adjust the rel-
evant regions to learn from. Although the elimination of
skip connections in the absence of attention gates can en-
sure decent results, it still is problematic when dealing with
WSI. Limitations of Alter-SkipUNet, AutoEncoder-
AttUNet and AttUNet-AutoEncoder models come
from the gap between ”highly framed learning” to ”free
learning”. Simply put, layers that encompass both skip
connections and attention gates provide information about
”where” and ”what” to look for into the data. Layers
where no encoder/decoder links are included forces the
model to reconstruct the data with no prior knowledge
about the position and the content of the features. There-
fore, it is better performing than Att-UNet but slightly
less accurate than Alter-AttUNet where skip connec-
tions are present in all levels of the model.

Enhanced Att-UNet VS FCNs and DeepLabv3+.
In order to evaluate our proposed model, we compare it
with widely used deep learning-based semantic segmenta-
tion models namely FCN and DeepLabv3+ networks.
We rely on the FCN model that was first introduced in
[26] and lately used in [27, 28]. The architecture uses a
padding layer, VGG-16 as a backbone followed by decon-
volutional and cropping layers. FCN32s up-samples the
output with no prior spatial information. FCN16s and
FCN8s fuse the final output with up-sampled outputs
from encoding layers using element-wise addition as de-
tailed in [26]. DeepLabv3+ is another encoder-decoder
CNN based model [64]. The highlights of this model are
the use of dilated convolutions combined with atrous spa-
tial pyramid pooling (ASPP) to encode multi-scale con-
textual information [65].
As seen in Table 6 and Figure 7, the proposed Att-UNet
models ensure the highest performance rates when trained
with the AiCOLO dataset. In the absence of spatial infor-
mation, FCN32s generates rough output maps that lack
accuracy (84.98%) and sensitivity (73.89%). Although
FCN16s and FCN8s add more spatial information to
enhance the results, they still generate < 90% accuracy
rates. Besides, these models suffer from low true pos-
itive rates (< 80%) sensitivity compared with our en-
hanced Att-UNet schemes(> 90%). In fact, the different
FCN models only rely on classical up-sampling layers with

no trainable filters which results in loosing spatial infor-
mation when going deeper. This issue is solved by adding
both Attention Gates and Skip Connections in certain po-
sitions as detailed in our introduced models and shown
in Figure 6. In the same context, DeepLabv3+ uses di-
lated separable convolutions to learn the spatial resolu-
tion of the outputted feature maps. Therefore, the model
extracts dense feature maps that covers spatial informa-
tion at multiple scales. However, histopathological images
usually encompass low-level features with spatially lim-
ited regions like seen in our AiCOLO dataset. Models
like DeepLabv3+ introduce a high level of complexity
that doesn’t fit with the colon cancer segmentation tasks.
Therefore, the proposed Att-UNet models outperform
DeepLabv3+ with > 8% accuracy and sensitivity. That
goes without saying, that the enhanced Att-UNet net-
works ensure not only high performances rates but also
low computational costs. As a matter a fact, the proposed
models train ≈ 8× less parameters than the FCN archi-
tectures and ≈ 27× less than the DeepLabv3+.

Comparison with state of the art methods. In or-
der to evaluate and compare our proposed models with
state-of-the-art methods, we used three different publicly
available histopathological data including the CRC-5000,
NCT-CRC-HE-100K and the Warwick datasets. As
seen in Table 7, our proposed enhanced model Alter-
AttUNet ensures the best performance among all models
when trained with the three different datasets. First, when
using the CRC-5000 images, the Alter-AttUNet reaches
an overall performance rates > 99% including accuracy,
specificity, sensitivity and F1 scores. Actually, the model
super-pass the approaches proposed in [63] and [66] where
the authors introduce a combination of different texture fil-
ters for binary WSI segmentation. Then, we use the NCT-
CRC-HE-100K data to train and evaluate our models.
Here again our Alter-AttUNet achieves the best seg-
mentation accuracy compared with the Ensemble DNN pro-
posed by the authors in [67]. In fact, the methods relies on
an Ensemble Deep Neural network composed of DenseNet-
121, InceptionResNetV2, Xception and a custom feed for-
ward CNN. Despite its > 98% performance rates, the
approach in [67] introduces a complex model for auto-
matic data learning which limits it generalization prop-
erties. Finally, we deploy the Warwick dataset where
the GlaS MICCAI 2015 challenge winners suggested in
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(a) Sparse annotated WSI

(b) FCN8s segmentation result (c) DeepLabv3+ segmentation result

(d) UNet segmentation result (e) Att-UNet segmentation result

(f) AttUNet-AutoEncoder segmentation result (g) Alter-AttUNet segmentation result

Figure 6:
Segmentation maps of the FCN8s, DeepLabv3+,UNet, Att-UNet, AutoEncoder-AttUNet and Alter-AttUNet models.

[35], a multi-level CNN model. The architecture uses a
first CNN as a classifier to highlight the glands from the
background and then a second CNN is used for gland seg-
mentation based on weighted total variation. The out-
putted result is then the regularization of the CNNs pre-
dictions. The hallmark of this approach is a high sensitiv-

ity of 73%. CUMedVision2 is a deep contour-aware net-
work that generates multi-level feature representations us-
ing an FCN model The architecture achieved an F1-score
of 76.9% as presented in the Glas challenge [24]. How-
ever, our proposed Alter-AttUNet ensures high accu-
racy and F1 rates > 78% while increasing the sensitivity
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Model Figure pos Attention Gates pos Skip Con Accuracy Specificity Sensitivity F1-score #params

Att-UNet 3 [1,2,3,4] [1,2,3,4] 95.02± 0.04 93.15± 0.07 95.06± 0.04 93.28± 0.06 2.185M

Alter-AttUNet 4a [2,4] [1,2,3,4] 95.88± 0.03 96.12± 0.04 95.05± 0.03 95.18± 0.02 2.180M

Alter-SkipUNet 4b [2,4] [2,4] 95.73± 0.06 96.00± 0.04 95.06± 0.06 94.78± 0.04 2.180M

AutoEncoder-AttUNet 4c [3,4] [3,4] 94.98± 0.07 95.84± 0.06 92.1± 0.07 92.08± 0.08 2.183M

AttUNet-AutoEncoder 4d [1,2] [1,2] 94.44± 0.08 96.11± 0.08 90.36± 0.06 92.23± 0.07 2.163M

SegNet[63] - - - 81.22± 0.02 80.70± 0.06 81.40± 0.02 75.53± 0.03. 7.6M

FCN8s - - - 88.05± 0.09 95.23± 0.02 78.37± 0.06 85.98± 0.05 18.6M

FCN16s - - - 85.23± 0.09 91.38± 0.03 74.13± 0.07 81.85± 0.04 18.6M

FCN32s - - - 84.98± 0.08 89.17± 0.03 73.89± 0.05 80.81± 0.04 18.6M

DeepLabv3+ - - - 87.53± 0.06 88.13± 0.03 87.02± 0.08 87.57± 0.02 59.3M

Table 6: Accuracy, specificity, sensitivity rates and F1-score (in %) for Att-UNet, Alter-AttUNet,Alter-
SkipUNet, AutoEncoder-AttUNet, AttUNet-AutoEncoder, FCN8s, FCN16s, FCN32s and DeepLabv3+.

(a) Accuracy (b) F1-Score

(c) Specificity (d) Sensitivity

Figure 7: Statistical performance analysis of the UNet, Att-UNet, Alter-AttUNet, AutoEncoder-AttUNet, FCN8s,
DeepLabv3+ and SegNet models.
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to > 82%. Alter-AttUNet architectures are not only
lighter than available techniques but can also cope with
different histopathological datasets in different contexts.

Training Strategy for weakly supervised Learning.
As detailed above, we rely on a three-step training strategy
to cope with the sparse annotation of the AiCOLO colon
cancer dataset. In order to evaluate the impact of such
procedure on the segmentation results, we have executed
different tests. We resorted to the classical training pro-
cess where all patches contribute in the same way and no
special interest is dedicated to boundaries. For all mod-
els including SegNet, UNet, Att-UNetand the differ-
ent Alter-AttUNet versions, the models are incapable
of correctly learning and classifying the ”Tumour” pix-
els in all AiCOLO histopathological slides. In fact, in
the absence of the first step the models are fed with ran-
dom patches that could include too small sparse anno-
tated regions and mislead the learning process. Tests show
that accuracy rates collapse to under ≈ 40% when patches
aren’t precisely selected while rises up to ≈ 90% when only
valid patches are used for the training. Moreover, both the
weighted and boundary aware losses enable the enhance-
ment of the accuracy rates of all models. The Alter-
AttUNet model for example witnesses a 5% better accu-
racy and F1-scores when trained with weighted boundary
aware loss.

6. Conclusion

In this paper, we have proposed the use of novel en-
hanced models inspired from the Att-UNet. First, we
compared and highlighted the role of spatial attention gates in
enhancing feature learning from histopathological colorec-
tal data. Then, we introduced different schemes of attention-
based UNet models. The Att-UNet, Alter-AttUNet,
Alter-SkipUNet, AutoEncoder-AttUNet and AttUNet-
AutoEncoder architectures all perform well in an Ai-
COLO colon cancer WSI segmentation task. The models
outperform state-of-the-art semantic segmentation models
namely FCN8s, FCN16s, FCN32s and DeepLabv3+.
The enhanced Att-UNet models enable the simultane-
ous feature learning and spatial localization at different
hierarchical levels. The hallmark of such networks is the
ability to focus on relevant information without explod-
ing the computational cost. Furthermore, the Alter-
AttUNet proposed model outperform state-of-the-art meth-
ods when dealing with publicly available datasets namely
the NCT-CRC-HE-100K, CRC-5000 and Warwick.

Introducing a new pattern for Att-UNet represents
an appealing solution for histopathological image segmen-
tation. Delving into the details of the model one can easily
notice that a > 99% rate has been reached for accuracy,
sensitivity, specificity and F1-score when processing NCT-
CRC-HE-100K and CRC-5000 datasets. Less rich WSI
collections like Warwick and AiCOLO suffer from lower
performance rates. As a matter of fact, the lack of richly

annotated data and a balanced class representation hinder
the efficiency of Alter-AttUNet. The incorporation of
a special training strategy is capable of enhancing the seg-
mentation results to a certain extent. However, datasets
that encompass a low number of annotated samples with
an important share of biased, unbalanced and full of arti-
facts are one of the main obstacle toward accurate feature
learning and successfully accomplished WSI segmentation
tasks.
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