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Abstract—In recent years, there has been an increasing interest
in Deep Learning models for time series classification. In this
field, state-of-the-art architectures rely on convolution neural
networks that learn one dimensional filters in order to capture
patterns allowing to discriminate between the different classes.
These filters are randomly initialized and modified throughout
model training. In this paper, we explore the creation of hand-
crafted (non learned) filters in order to capture specific patterns
in a time series. We propose a set of filters whose values are fixed
and not modified during the training step. Our goal with these
filters is to capture specific patterns in a time series (increase,
decrease, peaks) and study the relevance of adding such filters to
existing architectures ranging from simple architecture (Fully
Convolutional Network (FNC)) to state-of-the-art architecture
(InceptionTime). Experiments reveal that adding our manually
created filters increase the prediction accuracy on a majority of
the 128 datasets of the UCR Archive. They also show that hand-
crafted filters and learned filters are complementary to obtain the
best preforming models. This work is the first step in proposing
a catalog of generic and fixed filters that could be useful in a
large range of applications to improve deep models accuracy for
time series classification.

Index Terms—Time Series Classification, Convolution Neu-
ral Networks, Pattern Recognition, Feature Engineering, hand-
crafted Filters

I. INTRODUCTION

In recent years, Time Series Classification (TSC) has seen
a rising interest in the scientific community, especially after
the release of the UCR archive [1], the largest archive of
univariate TSC datasets. TSC has also been used for surgical
skills prediction [2], physical rehabilitation assessment [3] and
remote sensing [4] In recent work, Deep Learning approaches
have been used for time series analysis. These approaches
include classification [5]–[7], clustering [8], [9], knowledge
distillation [10], adversarial attacks [11], [12], data augmen-
tation [13], [14], etc. In almost every cases, it is shown that
Convolution Neural Networks (CNNs) can perform better than
other approaches for capturing relevant features on time series.
The feature extraction consists in finding linear combinations
between consecutive time steps of a fixed size. The deeper
the model is, the more it increases its receptive field. This
represents the input space that a point in a certain depth of
the network depends on. The larger the receptive field is, the
more beneficial it is for the model.
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Fig. 1. Three hand-crafted filters detecting: (1) increasing trends, (2) decreas-
ing trends and (3) peaks in a time series. The orange points indicates on which
time stamps the filters is activated after being convolved with an input time
series from the Meat dataset of the UCR Archive.

In Computer Vision, many work have been propose to
explain the features detected by CNNs on images. It has been
shown that most of the time, the first convolution layers allow
to detect edges in an image. The deeper layers are then able
to detect more complex features such as change in material,
background and orientation. This motivated researchers to cre-
ate some hand-crafted convolution filters, instead of learning
them, in order to detect these features [15]–[17].

In this work, we address the TSC problem and propose some
hand-crafted filters dedicated to time series which, to the best
of our knowledge, has not been done before. We propose three
types of filters, the increasing and decreasing trend detection
filters and the peak detection filter. A summary of the hand-
crafted filters proposed in this paper can be seen in Figure 1.
Given that in time series domain we work in a one dimensional
axis , the first types of patterns that can be useful to detect for
classifying time series are the increasing and decreasing trends.
Moreover, some type of datasets have a lot of oscillations
(ups and downs) with a high frequency. This could perturb
the classification if a model only takes into consideration the
increasing and decreasing trends. That is why we also consider
another type of pattern that can be useful to detect, the peaks.

Deep Learning models use back propagation in order to
minimize a loss function on a given input. The problem with
this last algorithm is the error propagation from layer to layer
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in the neural network. In other words, if an error occurs in the
last layer of the network, the error it generates is propagated
to the first layer. Hence, Deep Learning model can find it
hard to learn a general filter that satisfies all of the samples
in the dataset with the lowest loss possible. To fix this, a
trivial approach would be to add more filters to be learned.
This could lead to great performances but also encourage
over-fitting in some cases. An additional problem with this
trivial solution is its cost of memory and time complexity. To
overcome these issues, other approaches have been employed
like applying regularization to the filters or using dropout to
generalize better and be more robust. In this work we propose
an original approach using hand-crafted filters we create, in
parallel to the filters learned by the Deep Learning model. In
this way, the network focuses more on types of filters that
were not manually created.

To evaluate the impact of hand-crafted filters on TSC
performance, we propose three models adapted from previous
architectures, FCN [5] and InceptionTime [6]. We thus eval-
uate three hybrid models and show that with the help of the
generic hand-crafted filters, the model can focus on other types
of filters and not re-calculate the same filters (hand-crafted
ones). We would like to point out that our hand-crafted filters
proposed in this paper are independent of the dataset. They
thus act as generic filters able to extract similar features for
any input time series. This does not hold true for the learned
filters of a Convolutional Neural Network (CNN) given that
the filters vary from a dataset to another due to the learning
phase.

Our main contributions in this work are:
– We propose new hand-crafted filters to detect peaks,

increasing and decreasing trends.
– We create novel hybrid models of existing architectures

by incorporating hand-crafted filters within them.
– We evaluate these hybrids models on the UCR Archive

and show the large impact of hand-crafted filters on
performances.

The rest of the paper is organized as follows: in Section II
we review some state of the art methods addressing TSC, in
Section III we describe in details the proposed hand-crafted
filters and introduce our resulting hybrid models, in Section IV
we evaluate and discuss the impact of our hand-crafted filters
for TSC and finalize with a conclusion in Section V.

II. RELATED WORK

TSC aims at associating a given time series to a correspond-
ing class label using a classifier. This classifier can be for in-
stance a linear regression, a decision tree, a Nearest Neighbor
or a Deep Neural Network. The following paragraphs review
some of the most relevant existing approaches addressing TSC.

A. On Raw Data

A first set of TSC methods worked on the definition of
a metric computing the similarity between two raw time
series. Hence, the Dynamic Time Warping (DTW) metric
has been widely employed as it allows to compare two raw

time series independently to their temporal distortions. For
instance, in [18], the authors employed the DTW metric
with a nearest neighbor classifier (NN-DTW). The authors
of [19] further proposed an adaptation of DTW, shapeDTW,
that avoids aligning point to point between two time series.
The resulted metric, when used with the Nearest Neighbor
algorithm (NN-ShapeDTW), significantly improved the TSC
performance, setting a new benchmark on the UCR Archive.
In addition, the authors of [20] introduced a way of averaging
time series using the DTW metric. This algorithm aligns point
to point two time series and average over the aligned time
steps. This method was evaluated in a TSC problem using
NN-DTW.

B. Deep Neural Networks

Deep Learning was proven to be powerful in performance
on images since [21]. Several adaptations have been proposed
for time series [5], [22]–[24]. A Fully Convolution Network
was proposed by [5], consisting of three convolution blocks
followed by a batch normalization and a ReLU activation.
The authors also adapted the Residual Network (ResNet)
for time series, originally proposed in [25] for images. The
authors used three residual blocks, each made of a FCN with
different number of filters. More recently, in [6], the authors
used the idea of residual connection but instead of regular
convolution blocks, they proposed multiple convolution layers
in parallel in order to capture patterns at different scale
using different kernel sizes. This more complex architecture,
named InceptionTime, is currently the best performing Deep
Learning-based approach for TSC. Differently, while more
and more complex Deep Learning architectures has been built
for TSC, other work focused on alleviating such increasing
complexity. For instance, in [10], knowledge distillation has
been employed in order to decrease the size of the FCN model
without decreasing too much the TSC performances.

C. Convolutions

As explained before, the most efficient Deep Learning ap-
proaches are based on convolutions. This is emphasized in [26]
where several Deep Learning approaches are compared. This
review shows that the use of convolutions allows to capture
relevant features on time series. Instead of learning these
convolutions, the authors in [27] introduced ROCKET, a novel
approach using random convolution kernels and classifying the
captured information with a RIDGE classifier [28]. ROCKET
beats the state of the art Deep Learning architectures for
TSC. Some variations of ROCKET have been introduced in
other work such as MINIROCKET [29], S-ROCKET [30],
MultiRocket [31], HYDRA [32].

The success of these methods motivated us to explore the
use of hand-crafted convolution filters for TSC. Such hand-
crafted filters have been widely employed in image processing
like the Sobel filters [15], [16] for edge detection. In partic-
ular, these Sobel filters have been successfully employed for
boosting image classification in [17]. In this work, we aimed
at building hand-crafted convolution filters dedicated to time



series and explore their impact on TSC when combined with
convolutions trained using Deep Learning.

III. METHOD

A. Definitions

Before describing our proposed method, we introduce im-
portant definitions that are employed in the rest of this paper.

a) Univariate Time Series: Let x be a univariate time
series of length L, a sequence of data points equally separated
in time.

b) Univariate Time Series Dataset: A dataset D =
{(x0, y0), ..., (xN , yN )} is a set of N pairs of univariate time
series of length L and a label y associated to it.

c) One Dimensional Convolution: An operation using a
filter w of length k on a time series x to obtain s = x ∗ w as
follows:

∀t ∈ [0;L− 1] s[t] =
k−1∑
i=0

x[t+ i].w[i] (1)

d) Activation of Filter: When the convolution operation
results in a positive response, the filter is considered as
activated. In this paper, such an activation is depicted by a
orange point in the following figures.

e) Increasing Trend: A sub-sequence of a time series x
where the values are strictly increasing in time.

f) Decreasing Trend: A sub-sequence of a time series x
where the values are strictly decreasing in time.

g) Stationary Trend: A sub-sequence of a time series x
where the values vary of a small difference ε.

h) Peak: A sub-sequence of a time series x where the
values changed with a large variation increasingly and then
decreasingly.

B. hand-crafted Filters For Time Series

In this paper, we propose hand-crafted filters adapted to time
series in order to detect specific patterns. These hand-crafted
filters are described in the following paragraphs.

1) Increasing Trend Detection Filter: In order for a filter
to detect an increasing trend, it should detect the difference in
values between time steps. Therefore, we define an increasing
trend filter of length k as follows: wIk = [(−1)(i+1) for i ∈
{0, ..., k−1}. To ensure that there would not be any time steps
left untouched when applying the convolution, k should be an
even number. For instance, the increasing trend detection filter
of length 12 is defined as:

wI12 = [−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1] (2)

The resulting convolution operation with an increasing trend
detection filter of size k = 16 can be seen in Figure 2. We can
observe that activation points in orange are mainly localized
in the increasing parts of the time series.
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Fig. 2. hand-crafted increasing trend detection filter of length k = 16 applied
on the Beef dataset of the UCR Archive. The time steps where the filter is
activated (in orange) is only on the increasing intervals of the time series (in
blue).
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Fig. 3. hand-crafted decreasing trend detection filter of length k = 16 applied
on the Beef dataset of the UCR Archive. The time steps where the filter is
activated (in orange) is only on the decreasing intervals of the time series (in
blue).

2) Decreasing Trend Detection Filter: Similarly to the
increasing trend detector, the decreasing trend detection filter
should detect the difference in values between time steps.
However, it should be activated when applied on a decreasing
interval. Hence, we define the decreasing trend detection filter
of length k as follows: wDk

= [(−1)i for i ∈ {0, ..., k − 1}].
For the same reason as the increasing trend detection filter, k
should be an even number. For instance, the decreasing trend
detection filter of length 12 is defined as:

wD12 = [1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1] (3)

Figure 3 shows the application of the decreasing detection
filter of size k = 16 on a time series. This filter is mainly
applied on decreasing parts of the time series, as depicted by
orange points.

3) Peak Detection Filter: We consider a peak as an increas-
ing trend followed by a decreasing trend with a large variation
between them. To capture such a peak in a time series, it
requires to detect a change of convexity. To do that, we propose
to mimic the shape of the negative second derivative of the
Gaussian function illustrated in Figure 4. Such shape can be
defined by using the squared parabolic function f(x) = x2.

As our goal is to create fixed and generic filters than can be
used for any datasets, we do not directly employ the Gaussian
filter in order to avoid randomness of choosing the mean and
variance in the filters. Hence, we propose to create this kind of
filter by dividing it into three parts of equal length as follows:
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Fig. 4. Inverted second derivative Gaussian. This function is mimicked using
a second order polynomial . By this approach we created the hand-crafted
peak detection filter. We held off using the Gaussian filter to avoid having
hyperparameters as which mean and variance to use.
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Fig. 5. hand-crafted peak detection filter of length k = 48 applied on the
Beef dataset of the UCR Archive. The time steps where the filter is activated
(in orange) is only on the peaks intervals of the time series (in blue).

(1) a negative parabolic part detecting the first increasing trend,
(2) a positive parabolic part detecting the peak , (3) a negative
parabolic part detecting the decreasing trend. For instance, the
peak detection filter of length 12 is defined as:

wP12 = [−0.25,−1,−1,−0.25, 0.5, 2,
2, 0.5,−0.25,−1,−1,−0.25]

(4)

A visualization of the convolution operation using the peak
detection filter of size k = 48 can be seen in Figure 5.

In order to capture variable length patterns we use in this
paper a set of n variations of the hand-crafted increasing,
decreasing and peak detection filters. Once the hand-crafted
filters are defined, our aim is to employ them as generic fea-
tures extractors within Deep Learning architectures for TSC.
In this work, we consider two different architectures: the Fully
Convolutional Network (FCN) and the InceptionTime. These
architectures and their required adaptation to incorporate hand-
crafted filters are described in the two following subsections.

C. The Fully Convolution Network (FCN) Adaptations

1) Two Layers FCN: We first consider the FCN architec-
ture [5], [26] because of it’s simplicity compared to other
architectures [5], [6], [26], [27]. In order to use the hand-
crafted filters defined above, we create an adaptation of FCN
called Customs Only FCN (CO-FCN). A detailed example
of the CO-FCN architecture is depicted in Figure 6. In this
first adaptation, we simply replaced the first layer of FCN
by n variations of each hand-crafted filter. The rest of the
architecture in FCN is not changed according to the original
architecture proposed in [5].

2) Hybrid FCN: The CO-FCN architecture assumes that
learning convolutions at the first layer is not required. How-
ever, although the hand-crafted filters allow to detect three
different kind of patterns, we believe that the model can find
additional relevant patterns. Hence, we design the Hybrid
FCN (H-FCN), whose an example can be seen in Figure 7.
Instead of replacing the entire first convolution layer by the
hand-crafted filters, we propose to enhance it. In order to
do that, features extracted using our hand-crafted filters are
concatenated to the features extracted by the first trainable
convolution layer of the original FCN. The original FCN
proposed in [5] is made of three convolution blocks with
128,256 and 128 filters respectively. In this work, we believe
that with the help of our hand-crafted filters, it is sufficient
to limit the number of trainable filters to 64,128 and 64,
respectively. We note that as our hand-crafted convolution
filters do not include a bias, we also remove the bias from
the trainable convolution layers.

D. The InceptionTime Adaptation

1) Hybrid Inception: We now consider the more complex
architecture Inception [6] as it is currently the best performing
Deep Learning model for TSC on the UCR Archive. In order to
incorporate our hand-crafted filters into Inception, we propose
the Hybrid Inception (H-Inception). Similarly to H-FCN, we
concatenate the features captured using our hand-crafted filters
with those captured by the first Inception block. The rest of
the architecture remains the same as the original. We note
that unlike H-FCN, we do not reduce the number of trainable
filters per convolution layer as it is already low in the Inception
model.

2) Hybrid InceptionTime: In [6], an ensemble of five In-
ception models is also proposed. We adapt the same idea with
the H-InceptionTime which is an ensemble of five different
H-Inception models. A detailed architecture of a H-Inception
model can be seen in Figure 8.

IV. EXPERIMENTAL EVALUATION

A. Datasets And Implementation Details

For evaluating the proposed models, we use the UCR
Archive 2018 [1], made of 128 datasets of labeled univariate
time series. For a fair comparison with existing approaches,
z-normalization is applied on each dataset. We trained each
model using the Adam optimizer [33] with a learning rate
decay monitoring the training loss. The best model obtaining
the best loss during training is kept for evaluation on the test
set. In order to be less dependant on random initialization,
the whole process is repeated five times. Hence, the results
shown in the rest of the paper are averaged over five different
initialization. All of the experiments were done on a NVIDIA
GeForce GTX 1080 with 8GB of memory. The code is
available here : https://github.com/MSD-IRIMAS/CF-4-TSC.

B. Results On Adapted Architectures

We compared the performance of our adapted architectures
using hand-crafted filters with the original models. For a
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Fig. 6. An example of the Two Layers FCN architecture. The input time series is fed to the non learned hand-crafted filters in order to extract the
corresponding features. Features are then concatenated and fed to the rest of the architecture made of two convolution blocks (in orange) each followed by
a Batch Normalization and a ReLU activation. A global average pooling is then applied on the second convolution block (black connections) followed by a
fully connected classification layer (red connections).
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Fig. 7. An example of the Hybrid FCN architecture. The input time series is fed to a convolution block (in orange, bottom left) and to the hand-crafted
filters (in green). Features are then concatenated and fed to the rest of the architecture including two convolution blocks in series (in orange) each followed
by a Batch Normalization and a ReLU activation. A global average pooling is then applied on the third convolution block (black connections) followed by a
fully connected classification layer (red connections).

pair of models, we compared the obtained accuracy on each
dataset and computed the number of wins, ties and losses.
Such comparative results are reported using Win/Tie/Loss one-
vs-one plot, as shown in Figures 9, 10 and 11. These plots
show the Win/Tie/Loss count between two different classifiers
on the 128 datasets of the UCR Archive. Each point in the
plots of represents a single dataset of the UCR Archive. The
axes show the accuracy of each classifier (averaged over five
initialization) between 0 and 1. Moreover, in order to assess
how significant the comparison is, the Wilcoxon Signed Rank
Test [34]–[36] is performed for each pair of classifier. The
resulting statistical measure, the P-value, is shown in the
legend of each plot. If the P-Value between two classifiers is

below a threshold, it means they are significantly statistically
different in performance. Usually the threshold of this P-Value
for this kind of decision is 0.05.

1) CO-FCN: To train this model we used the same formula
of batch size used in the original FCN and the same number
of epochs [5], [26]. Hence, the batch size is the minimum
between 16 and the number of samples in the training set
divided by 10, while the number of epochs is set to 2000. For
the increasing and decreasing detection filters we used 6 vari-
ations of lengths [2i for i ∈ {1, ..., 6}]. For the peak detection
filters we used 6 variations of lengths [3, 6, 12, 24, 48, 96].

In Figure 9, the Win/Tie/Loss plot shows that the CO-FCN
obtains better performances than original FCN on the majority
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Fig. 9. One-VS-One plot showing the Win/Tie/Loss count and the P-Value
when comparing the proposed CO-FCN and the original FCN on the 128
datasets of the UCR Archive.

of datasets. The low P-Value suggests that this difference is
significantly meaningful. This shows that in most of the cases
hand-crafted filters can be used to extract features at the first
in replacement of learn convolutions. However, it can also
be seen that for 50 datasets, the original FCN works better
than our CO-FCN. This suggests that combining hand-crafted
filters with trainable filters may improve the overall results.
This combination is done in our H-FCN model.

2) H-FCN: Similarly to the previous section, for training
our H-FCN model, we used the same batch size and number
of epochs as the original FCN so that the comparison can
be as fair as possible. For the increasing and decreasing
detection filters we employed 6 variations of lengths [2i for
i ∈ {1, ..., 6}]. For the peak detection filters we used 5

variations of lengths [6, 12, 24, 48, 96].
In Figure 10, we can see that the H-FCN model obtains

significantly better performances than the original FCN model
(top left) but also than ResNet (top right). However, when
comparing H-FCN to the more complex Inception model (bot-
tom left), we can see that H-FCN obtains slightly lower results.
In addition we compared our H-FCN model to the state-of-
the-art InceptionTime approach. For a fair comparison, we
also created an ensemble of H-FCN models resulting in H-
FCNTime. Results reported in Figure 10 (bottom right) show
that InceptionTime is significantly better than H-FCNTime.
This suggests that even if hand-crafted filters allow to im-
prove the performance of FCN, the limitations of the FCN
architecture restrain the capture of more complex features to
be competitive with deeper architectures.

3) H-InceptionTime: In order to evaluate the contribution
of our hand-crafted filters in a deeper architecture, we tackled
the InceptionTime model. As in the original work [6], we
employed a batch size of 64 and trained the model for
1500 epochs using an Adam optimizer with a learning rate
decay. For the increasing and decreasing detection filters we
used 6 variations of lengths [2i for i ∈ {1, ..., 6}]. For the
peak detection filters we considered 5 variations of lengths
[6, 12, 24, 48, 96]. We compared our adapted H-Inception and
H-InceptionTime models with the state of the art models
Inception, InceptionTime and ROCKET. Results, averaged
over five runs, are reported in Figure 11 using Win/Tie/Loss
plots.

We can first observe that H-Inception has more wins than
Inception (top left) with a P-Value less than 0.05, meaning
that both models are significantly different. Moreover, the
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Fig. 10. One-VS-One plot showing the Win/Tie/Loss count and the P-
Value when comparing the proposed H-FCN with the original FCN, ResNet,
Inception and InceptionTime models on the 128 datasets of the UCR Archive.
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comparison between H-Inception and InceptionTime (bot-
tom left) shows that InceptionTime, thanks to the ensemble,
is significantly better than our H-Inception model. Never-
theless, after comparing the performances of the ensemble
methods H-InceptionTime and InceptionTime (top right), we
can see that our H-InceptionTime model significantly over-
comes the original Inception time. Finally, by comparing H-
InceptionTime with ROCKET (bottom right), we can notice
that H-InceptionTime beats ROCKET in the Win/Tie/Loss
count over the 128 datasets of the UCR Archive. However,
the P-Value suggests that their is not a significant difference
between these two classifiers.
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Fig. 12. CD-Diagram showing the average rank between multiple classifiers
on the 128 datasets of the UCR Archive. We colored our approaches that
include the hand-crafted filters in red.

C. Multi-Classifiers Comparison

After comparing pairs of classifiers, we also proposed to
compare our adapted models using hand-crafted filters with
existing approaches all together. To do that, we used the
Critical Difference Diagram (CD-Diagram) proposed in [36].
A comparison using this method is reported in Figure 12.
The CD-Diagram shows the ranking of each method averaged
over the 128 datasets of the UCR Archive. In addition, the
P-Value is calculated between each pair of classifiers. The
algorithm decides if two classifiers are significantly different
by comparing the P-Value with a threshold followed by the
Holm Correction [37], [38]. A black line is drawn between
two classifiers if they are not significantly different. It can be
seen in the CD-Diagram of Figure 12 that H-InceptionTime is
the second best classifier on the average rank metric. The best
classifier is MultiROCKET [31]. Moreover, by analyzing the
ranking of our models highlighted in red with their original
counterparts, we can clearly see that for each architecture,
the addition of the hand-crafted filters allows to increase the
performance.

In addition to the CD-Diagram comparison, and motivated
by [31], we also compared all these methods using the pairwise
statistical significance matrix shown in Figure 16. Similarly
to [31], each cell in the matrix shows the Win/Tie/Loss count
between two classifiers and the P-Value calculated using the
Wilcoxon signed-rank test. In addition, we also computed
the difference in accuracy over the 128 datasets of the UCR
Archive for both winning and loosing cases. For instance, the
cell comparing H-InceptionTime with InceptionTime shows
that H-InceptionTime obtains on average 2.31% higher ac-
curacy on the 60 winning cases. Conversely, it obtains on
average 1.35% lower accuracy on the 41 loosing cases. To
emphasize such a difference in accuracy, a colormap is used
in Figure 16. Higher differences in winning cases are shown
with warm colors, while loosing cases are depicted with cold
colors. The figure shows that our H-InceptionTime model is
significantly more accurate than most of the methods.

D. Trainable VS Non Trainable Filters

In order to assess the relevance of our hand-crafted filters,
we proposed to compare them with the learned filters in the
original models. Our first aim was to analyse if original models
are learning filters similar to our hand-crafted ones. In this
experiment, we considered the 128 filters learned by first layer
of the original FCN model on the CinCECGTorso dataset. For
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Fig. 13. hand-crafted increasing trend detection filter of size k = 8 and its
closest learned filter on the CinCECGTorso dataset. The learned filter is from
the first layer of the original FCN.

each hand-crafted filter, we found the closest learned filter by
computing the DTW distance for each pair of filters, after
Z-normalizing the learned filters. We acknowledge that using
Euclidean Distance (ED) can be a more trivial approach for
comparing filters. However, we were interested in detecting
similarities between filters taking into consideration the shift-
ing between them. For this reason, DTW was more suitable
than ED given its ability to consider temporal alignment.

For instance, the hand-crafted increasing filter of size k = 8
and its closest learned filter on CinCECGTorso dataset are
shown in Figure 13. As we can see, the original FCN model
learned a similar filter detecting increasing trends in the time
series. The learned filter is a weighted version of our hand-
crafted filter. In addition to that, the shape of the first part
of the learned filter seems to be shaped as the peak detection
filter and the rest of the filter as an increasing trend detection.
This suggests that FCN learned how to construct a filter that
captures multiple patterns at the same time. This is in line
with our motivation of not only using hand-crafted filters in
the first layer but also allowing some filters to be learned, as
done in our H-FCN model.

In addition, we also proposed to asses the impact of hand-
crafted filters incorporated in the H-FCN model. We compared
the 64 learned filters by the first layer of H-FCN and the
128 filters learned by the first layer of the original FCN. We
also incorporated our hand-crafted increasing and decreasing
filters in the comparison. Once the DTW distance computed
for each pair of filters, we project them into into a two-
dimensional space using the T-distributed Stochastic Neighbor
Embedding (T-SNE) [39], as shown in Figure 14 on the
CricketY dataset. We can observe that H-FCN learned filters
(in orange) are quite similar to the FCN learned filters (in
blue). However we can notice some empty areas in the H-FCN
filters distribution, as highlighted by red and green ellipsoids.
This areas correspond to the hand-crafted increasing filter (red
triangle) and decreasing filter (green triangle). These hand-
crafted filters can then be seen as representative prototypes of
several FCN learned filters. These hand-crafted filters allow to
reduce the number of learned filters in H-FCN while letting
the model focusing more on learning other meaningful filters.
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Fig. 14. T-SNE two-dimensional projection of the 128 filters learned by the
first layer of the original FCN and the 64 filters learned by the the first layer
of the H-FCN on the CricketY dataset of the UCR Archive. The two hand-
crafted increasing and decreasing trend detection filters are also projected in
the two-dimensional space. We used the DTW as a metric for the T-SNE.

E. Generalization With The Help Of hand-crafted Filters

Experimental results in Section IV-B demonstrated that
incorporating hand-crafted filters in Deep Learning models
increases the performances. However, we have shown in
Section IV-D that hand-crafted filters in H-FCN are similar to
some learned filters in the original FCN. These observations
raise the following question: If the FCN model can learn by
itself the hand-crafted filters, why does the the incorporation
of hand-crafted filters in H-FCN help to be more accurate?
We believe that this can be explained by the better capability
of generic hand-crafted filter to generalize to unseen time
series. Indeed, without any hand-crafted filters like in FCN, the
model optimizes the filter weights in order to capture weighted
patterns that almost perfectly fit the training set. It is then more
likely to overfit on the training set, a well known issue in
Deep Learning-based approaches for TSC. Conversely, in H-
FCN, the incorporation of generic hand-crafted filters allows to
capture general patterns that are more likely to be also relevant
for unseen time series during the test phase.

In order to validate this hypothesis, we proposed to compare
the training and validation curves for both FCN and H-FCN
models on the FiftyWords dataset, as shown in Figure 15.
We note that validation loss was computed on the test set as
the UCR Archive only provides training and test sets. This
was done only for monitoring the generalization behavior and
not to fine-tune any hyper-parameters. We can clearly observe
that the validation loss of H-FCN converges to a much lower
value than the validation loss of FCN. This shows that H-FCN
generalizes better on the FiftyWords dataset and explains why
it obtains a 15% higher accuracy on the test set in comparison
to FCN.

V. CONCLUSION

In this paper we addressed the problem of Time Series
Classification using Convolutional Neural Network architec-
tures. We proposed to enhance such architectures by combin-
ing the learned filters with hand-crafted filters. In particular,
we designed three generic hand-crafted filters for detecting
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increasing trends, decreasing trends and peaks. We evaluated
the impact of incorporating these hand-crafted filters within
state of the art architectures using the UCR Archive. Results
demonstrated significant improvements for not only for the
basic FCN architecture but also for the more complex Incep-
tionTime. Further analysis of filters suggested that our hand-
crafted filters allow better generalization on unseen datasets.
We believe that this work is a first step in discovering generic
convolution filters allowing to not only boost the performances
of deep architectures but also reduce their number of param-
eters to train. As future work, we aim at investigating new
hand-crafted filters by exploring other generic patterns or by
combining more than one pattern to recognize.
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[35] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[36] A. Benavoli, G. Corani, and F. Mangili, “Should we really use post-hoc
tests based on mean-ranks?” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 152–161, 2016.

[37] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian journal of statistics, pp. 65–70, 1979.

[38] S. Garcia and F. Herrera, “An extension on” statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons.” Journal
of machine learning research, vol. 9, no. 12, 2008.

[39] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

H-InceptionTime H-Inception H-FCNTime H-FCN TL-FC ltiROCKET ROCKET InceptionTime Inception ResNet FCN

H-InceptionTime

H-Inception

H-FCNTime

H-FCN

MultiROCKET

ROCKET

InceptionTime

Inception

ResNet

FCN

H-InceptionTime H-Inception H-FCNTime H- N MultiROCKET ROCKET InceptionTime Inception ResNet FCN

H-InceptionTime

H-Inception

H-FCNTime

H-FCN

MultiROCKET

ROCKET

InceptionTime

Inception

ResNet

FCN

CO-FCN

CO-FCN

-

105 / 6 / 17

1.11 / 0.55

0.0

76 / 20 / 32

5.51 / 2.47

0.0

92 / 6 / 30

5.32 / 2.04

0.0

96 / 6 / 26

7.1 / 3.27

0.0

46 / 15 / 67

3.05 / 4.11

0.0396

64 / 9 / 55

3.73 / 3.85

0.4725

60 / 27 / 41

2.31 / 1.35

0.0253

89 / 12 / 27

2.4 / 1.28

0.0

92 / 6 / 30

6.98 / 2.84

0.0

101 / 5 / 22

8.79 / 3.0

0.0

- -

68 / 6 / 54

5.07 / 2.07

0.0662

80 / 4 / 44

5.05 / 1.87

0.0001

88 / 4 / 36

6.65 / 2.66

0.0

37 / 8 / 83

2.61 / 4.08

0.0

49 / 4 / 75

3.63 / 3.44

0.0664

41 / 7 / 80

1.95 / 1.3

0.0003

67 / 7 / 54

1.86 / 0.96

0.0422

85 / 4 / 39

6.51 / 2.64

0.0

89 / 7 / 32

8.93 / 2.51

0.0

- - -

97 / 9 / 22

1.2 / 1.27

0.0

86 / 7 / 35

4.18 / 2.94

0.0

35 / 17 / 76

3.1 / 7.68

0.0

49 / 7 / 72

2.91 / 6.33

0.0117

43 / 13 / 72

2.91 / 5.3

0.0027

64 / 8 / 56

2.71 / 5.97

0.8743

79 / 8 / 41

4.26 / 2.92

0.0

94 / 7 / 27

5.8 / 2.36

0.0

- - - -

74 / 8 / 46

3.77 / 2.41

0.0034

27 / 8 / 93

3.14 / 6.97

0.0

44 / 6 / 78

2.48 / 6.55

0.0001

34 / 7 / 87

3.04 / 5.16

0.0

54 / 5 / 69

2.58 / 5.63

0.0456

75 / 4 / 49

3.58 / 2.85

0.0063

92 / 4 / 32

5.02 / 2.16

0.0

- - - - -

24 / 6 / 98

3.26 / 8.26

0.0

36 / 6 / 86

2.49 / 7.66

0.0

33 / 7 / 88

3.64 / 7.2

0.0

39 / 6 / 83

3.64 / 6.73

0.0

59 / 3 / 66

4.75 / 4.84

0.5617

73 / 6 / 49

5.71 / 3.91

0.0105

- - -

78 / 11 / 39

3.27 / 2.4

0.0002

73 / 10 / 45

4.71 / 2.79

0.0031

83 / 9 / 36

4.94 / 2.66

0.0

95 / 6 / 27

8.27 / 3.45

0.0

104 / 5 / 19

9.89 / 3.78

0.0

- - - -

64 / 9 / 55

4.12 / 3.77

0.5016

75 / 7 / 46

4.28 / 3.66

0.0082

86 / 3 / 39

7.81 / 3.61

0.0

96 / 4 / 28

9.16 / 3.01

0.0

- - - - -

97 / 18 / 13

1.09 / 0.76

0.0

91 / 6 / 31

6.09 / 2.59

0.0

102 / 6 / 20

7.85 / 3.13

0.0

- - - - - -

78 / 4 / 46

6.15 / 2.21

0.0006

89 / 6 / 33

8.17 / 2.59

0.0

- - - - - - -

84 / 4 / 40

4.1 / 2.0

0.0

- - - - - - - -

6

4

2

0

-2

-4

-6

H-InceptionTime wins 60
times with an average

of 2.31 %

InceptionTime wins 41
times with an average

of 1.35 %

27 ties between
H-InceptionTime

and
InceptionTime

The P-Value between
the two classifiers is

0.0253 < 0.05 meaning
the two are significantly

different
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