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Abstract—Time series classification has achieved significant
advancements through deep learning models; however, these
models often suffer from high complexity and computational
costs. To address these challenges while maintaining effectiveness,
we introduce COCALITE, an innovative hybrid model that
combines the efficient LITE model with an augmented version
incorporating Catch22 features during training. COCALITE
operates with only 4.7% of the parameters of the state-of-the-art
Inception model, significantly reducing computational overhead.
By integrating these complementary approaches, COCALITE
leverages both effective feature engineering and deep learning
techniques to enhance classification accuracy. Our extensive eval-
uation across 128 datasets from the UCR archive demonstrates
that COCALITE achieves competitive performance, offering a
compelling solution for resource-constrained environments.

Index Terms—Time Series Classification, Deep Learning, Fea-
ture Engineering, LITE Model, Catch22, Hybrid Model

I. INTRODUCTION

Time Series Classification (TSC) is a crucial research area
with broad applications. It is used in healthcare [1], finance [2],
and human activity recognition [3], as well as other key
domains. The UCR Time Series Archive [4] has been pivotal in
advancing research by providing a comprehensive repository
of benchmark datasets.

Over time, various approaches have been developed for
TSC, ranging from distance-based and feature-based methods
to interval-based, dictionary-based, and shapelet-based tech-
niques. More recent innovations include convolutional and
deep learning models, as well as hybrid approaches that
integrate these methods for improved performance.

Despite these advancements, TSC models often face the
challenge of balancing high performance with computational
cost. Hybrid approaches, such as HIVE-COTE v2.0 (HC2) [5],
achieve state-of-the-art performance by independently training
and combining multiple classifiers. Similarly, deep learning
models like InceptionTime [6] excel due to their superior
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Fig. 1. Comparison of multiple models on the CinCECGTorso dataset,
evaluating accuracy versus computational efficiency. The y-axis represents
accuracy, while the x-axis denotes the log10 of Floating-point Operations
Per Second (FLOPS). Circle sizes correspond to the number of trainable
parameters. COCALITE, with nearly 20k parameters and a log10 FLOPS
value of 7.8, achieves the highest accuracy on the test set in this comparison.

performance, leveraging deep neural networks. However, these
models are resource-intensive, which limits their practical use
in environments with constrained computational resources.

To address the limitations of current TSC models, we
propose a hybrid approach that integrates deep learning models
with feature-based methods. Our approach aims to combine the
strengths of deep learning’s representation capabilities with the
efficiency and interpretability of feature-based methods.

As part of this approach, efficient deep learning models
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like LITE [7] represent a key advancement. LITE utilizes
DepthWise Separable Convolutions and other techniques to
significantly reduce the number of parameters, making it a
viable solution for constrained environments, with parameters
reduced to just 2.34% of those in InceptionTime.

In addition to LITE, automatic feature engineering has
proven to be an effective approach for TSC [8]. TSFresh and
hctsa are among the leading tools in this domain, with the
Catch22 feature set offering a notable advancement. Intro-
duced by [9], Catch22 comprises 22 computationally efficient
features selected for their strong classification performance
and minimal redundancy from the 7,700 features available in
the hctsa toolbox [10]. These features provide a lightweight
complement to the LITE model’s 32 latent features. In con-
trast, using a larger feature set, such as the 777 features
from TSFresh, could overwhelm the classifier, potentially
skewing its focus towards external features and diminishing
the effectiveness of the model’s learned representations.

Combining these elements, we introduce COCALITE, a
hybrid model that integrates the base LITE architecture with
an augmented version incorporating Catch22 features during
training. This approach seeks to balance high performance
with computational efficiency by leveraging the complemen-
tary strengths of both models. Rather than merely integrating
LITE with Catch22 features as initially suggested, we have
extended our approach to employ an ensemble strategy to fully
exploit their respective advantages. The rationale behind this
strategy will be elaborated in Section IV, where we analyze
how this strategy contributes to superior performance and
efficiency.

Our experimental results, evaluated using datasets from
the univariate UCR Time Series Archive [4], show that
COCALITE not only improves performance but also has
significantly lower complexity compared to the state-of-the-
art Inception model [6]. This is exemplified by the CinCECG-
Torso dataset, as illustrated in Figure 1.

Our main contributions in this work are:

• We propose COCALITE, a hybrid model that achieves
only 4.7% of the parameters of the Inception model, while
maintaining competitive performance.

• We conduct a detailed ablation study to explore various
strategies within COCALITE, clarifying the model’s mo-
tivation and demonstrating its effectiveness.

• We present a reduced version of COCALITE that main-
tains similar performance, while achieving approximately
half the complexity.

The paper is organized as follows: Section II reviews related
work, including recent advancements in feature engineering,
deep learning and hybrid approaches for TSC. Section III
provides a detailed explanation of our proposed model. Sec-
tion IV analyzes and discusses the results. Finally, Section V
summarizes the key findings and suggests future research
directions.

II. BACKGROUND AND RELATED WORK

A. Definition

A univariate time series of length L is an ordered set of real
values over time, denoted as:

X = (x1, x2, . . . , xL). (1)

Given a dataset D = {(Xi,Yi)}Ni=1, consisting of N time
series Xi with corresponding one-hot encoded labels Yi,
where Yi is a vector of length K with each element j ∈ [1,K]
set to 1 if Xi belongs to class j and 0 otherwise. The goal is
to learn a function f : X → Y that accurately classifies each
input time series into one of the predefined categories.

B. Feature Engineering for Time Series Classification

Feature engineering is essential in TSC, as it extracts
meaningful characteristics from raw time series data to im-
prove classification. Several approaches have been developed,
each offering different advantages and trade-offs in terms of
accuracy and computational efficiency.

One comprehensive approach is the Highly Comparative
Time-Series Analysis (HCTSA) toolbox [10], which provides
over 7,700 features, offering a powerful but computationally
intensive solution. To address this, the Canonical Time Series
Characteristics (Catch22) [9] feature set was developed, con-
taining 22 carefully selected features chosen for strong clas-
sification performance and minimal redundancy. The Catch22
set significantly reduces computation time by a factor of 1000
while achieving a mean classification accuracy of 71.7%,
only 7.5% less than the full HCTSA set. Despite Catch22’s
effectiveness, its limited feature set may struggle with datasets
where subtle class distinctions necessitate advanced extraction
techniques to capture complex temporal dynamics beyond
its capabilities. This suggests that integrating Catch22 with
lightweight deep learning models could effectively address
their respective limitations without significantly increasing
computational cost.

Another popular approach, Time Series Feature Extraction
based on Scalable Hypothesis Tests (TSFresh) [11], provides
nearly 800 features spanning time, frequency, and wavelet
domains, using hypothesis testing to retain the most relevant
ones. However, TSFresh can be computationally demanding,
particularly on large datasets.

C. Deep Learning for Time Series Classification

Deep learning has significantly advanced the field of TSC
by enabling the automatic extraction of complex patterns from
raw data. Unlike traditional machine learning approaches that
relied on handcrafted features and required domain expertise
and extensive preprocessing. As mentioned in the review [12],
early deep learning models for TSC, such as Multi-Layer
Perceptrons (MLP), demonstrated the potential of neural net-
works but were limited in their ability to capture temporal
dependencies due to their fully connected nature. On the other
hand, Fully Convolutional Networks (FCNs) [13] improved
upon traditional architectures by using convolutional layers



followed by Batch Normalization and ReLU activation, avoid-
ing local pooling to preserve the time series length and capture
temporal relationships within the data. ResNet architectures,
also introduced by the same authors [13], utilized shortcut
connections to maintain information across layers and mitigate
the vanishing gradient problem.

InceptionTime [6], inspired by the Inceptionv4 architec-
ture [14], advances TSC by employing an ensemble of In-
ception models, each using convolutional kernels of varying
sizes to capture diverse temporal patterns. This approach has
achieved state-of-the-art results across multiple benchmark
datasets. Building on this success, researchers developed Hy-
brid Inception (H-Inception) [15], which enhances the original
Inception architecture by integrating handcrafted convolutional
filters. An extension of this concept, Hybrid InceptionTime (H-
InceptionTime), further improves classification performance
by ensembling five H-Inception models, thus combining di-
verse feature representations to refine accuracy in TSC tasks.

Advancing this field, Light Inception with Boosting Tech-
niques (LITE), proposed in [7], presents a parameter-efficient
alternative, utilizing only 2.34% of InceptionTime’s param-
eters while maintaining competitive performance. This effi-
ciency arises from DepthWise Separable Convolution (DWSC)
and techniques such as multiplexing [6], hand-crafted fil-
ters [15], and dilated convolutions [16]. Consequently, LITE
is 2.78 times faster in training and consumes 2.79 times less
power than InceptionTime, making it suitable for resource-
constrained environments. While LITE’s limited parameters
contribute to its efficiency, they may also increase sensitivity
to variance during training; however, this can be effectively
addressed by employing an ensemble approach, known as
LITETime.

D. Hybrid Approaches in Time Series Classification

Hybrid approaches in TSC combine multiple methodologies
to enhance performance and robustness. The Hierarchical Vote
Collective of Transformation-Based Ensembles (HIVE-COTE)
[17] has evolved through several versions, starting with HIVE-
COTEα (HCα) that combined classifiers like Elastic Ensemble
(EE) and Time Series Forest (TSF). HIVE-COTE v1.0 (HC1)
[18] simplified the model by reducing the number of clas-
sifiers, while the latest version, HIVE-COTE v2.0 (HC2) [5],
introduced new classifiers, including the Transform-Based En-
semble (TDE) and DrCIF, as well as an ensemble of ROCKET
classifiers [16] known as Arsenal. Despite its advancements,
HIVE-COTE faces challenges related to computational com-
plexity and training times.

Hydra-MultiRocket [19] is another notable hybrid model
that combines randomly generated convolutional kernels orga-
nized into competitive groups with MultiRocket’s [20] diverse
pooling strategies. This integration captures various temporal
patterns, enhancing feature extraction and classification perfor-
mance. While Hydra-MultiRocket enables rapid training and
inference, its implementation can be complex and resource-
intensive for large datasets.

E. Complexity and Computational Cost

Our approach addresses the limitations of existing time
series classification methods, which often struggle to balance
performance and computational efficiency. We introduce a
unified framework that combines deep learning with automatic
feature extraction, as illustrated in Figure 2. Specifically,
we integrate the lightweight LITE model with the efficient
Catch22 feature set to develop a time series classification
model suitable for resource-limited environments. While this
work focuses on one instantiation, our adaptable framework
encourages exploration of other promising combinations in
future research.

III. PROPOSED APPROACH

A. Backbone Deep Learning Architecture

As a deep learning backbone, we employ the LITE model,
originally proposed in [7]. It is designed to optimize the trade-
off between performance and computational efficiency in TSC.
The LITE architecture leverages multiples boosting techniques
including:

• Dilated Convolutions [16]: By introducing gaps between
the kernel elements, dilated convolutions increase the
receptive field of the model without adding additional pa-
rameters, allowing it to capture long-range dependencies
within the time series data.

• Multiplexing [6]: By applying multiple convolutional
layers with different kernel sizes in parallel, multiplexing
enables the model to learn features at multiple scales
simultaneously, enhancing its ability to capture complex
temporal patterns in the data.

• Depthwise Separable Convolutions (DWSC) [7]: By
decomposing the standard convolution operation into
depthwise and pointwise convolutions, DWSC reduces
computational cost and the number of parameters, while
still capturing complex patterns in the time series data.

• Hand-crafted Filters [15]: Using hand-crafted filters to
identify specific patterns in the data without additional
learning enables the model to focus on learning more
complex patterns.

The LITE architecture includes an initial layer with stan-
dard convolutions using hand-crafted filters and multiplexing,
followed by dilated DWSC in subsequent layers. A Global
Average Pooling (GAP) layer aggregates information across
the time dimension, reducing dimensionality before the final
fully connected layer, which outputs class probabilities.

B. Feature Extraction Method

As a feature extraction method, we employ the Catch22
feature set [9] due to its notable advantages:

• Computational Efficiency: With near-linear complexity,
O(N1.16), Catch22 significantly reduces computational
demands compared to more resource-intensive methods.

• Robust Performance: It achieves a mean classification
accuracy of 71.7%, which is only marginally lower than
that the full HCTSA feature set [9].
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• Lightweight and complementary: The compact nature
of the Catch22 feature set complements the latent features
from the LITE model, ensuring a balanced and effective
classification framework without over-reliance on either
set.

C. Integration Strategy

To incorporate Catch22 features into LITE, we integrate
these features into the model’s latent space, enhancing its
capacity to capture nuanced patterns (see Figure 2 for an
overview). The process is outlined as follows:

1) Feature Extraction: Catch22 features FCatch22(X) are
extracted once from the input series, precomputed for efficient
reuse, avoiding repetitive calculations.

2) Latent Space Integration: At each training epoch, the
latent features FLITE(X) of size dLITE = 32 are concatenated
with Catch22 features FCatch22(X) of size dCatch22 = 22,
forming an integrated vector:

Fintegrated(X) = FLITE(X)⊕ FCatch22(X), (2)

where ⊕ denotes concatenation, resulting in a 54-dimensional
feature vector.

3) Batch Normalization: Although Catch22 features are
precomputed and normalized before integration, combining
them with the evolving latent features from the LITE model
can lead to internal covariate shifts. To counter these shifts
and maintain training stability, we apply batch normalization to
Fintegrated(X), stabilizing the input distribution for the classifier.

The normalized features are then passed to a Dense Softmax
classifier for final class prediction.

D. Proposed Hybrid Model: COCALITE

The integration strategy enhances LITE by allowing it to
focus on complex patterns beyond those captured by Catch22
features. This suggests that a hybrid model could leverage
distinct, complementary representations learned by both the
original LITE and the Catch22-enhanced version. We propose

COCALITE (COmbining CAtch22 and LITE), an ensemble
model inspired by the ensemble learning approach of HC2 [5].

As shown in Figure 3, COCALITE comprises two models:
• LITE model: Trained solely on raw time series data,

serving as the ensemble’s baseline.
• LITE-Catch22 model: Utilizes the same LITE backbone

with the same initialization but integrates pre-computed
Catch22 features for a richer feature set.

The final prediction of COCALITE is obtained by averaging
the class-wise predicted probabilities from both models:

PCOCALITE(c) =
1

2
(PLITE(c) + PLITE-Catch22(c)) , (3)

where PCOCALITE(c) denotes the probability for class c in
the COCALITE model, while PLITE(c) and PLITE-Catch22(c)
represent the probabilities for class c from the LITE and LITE-
Catch22 models, respectively.

To preserve each model’s unique contributions, we avoid
online training, which could dilute Catch22’s impact and
reduce learning efficiency. Separate training fully optimizes
each model.

E. Ensemble of Hybrid Models: COCALITETime

In TSC ensemble learning, “Time” refers to models that
average class-wise predicted probabilities across multiple in-
stances (typically five) with different initializations, all using
the same architecture and hyperparameters [6], [7], [15]. This
approach enhances stability and performance by mitigating
variability from random initialization. In contrast, without
the “Time” designation, model performance is evaluated by
averaging the accuracies of these instances, offering a simpler
but less refined performance metric.

Building on the effectiveness of ensemble learning for
TSC [21], we propose COCALITETime, an ensemble of
COCALITE models designed to enhance performance and ro-
bustness while maintaining lower computational requirements
than state-of-the-art models.
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Fig. 3. Architecture of the proposed COCALITE hybrid model.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Datasets: To evaluate our proposed model against state-
of-the-art models, we use the UCR time series Archive [4],
which contains 128 univariate time series datasets for classi-
fication, with the latest update in 2018.

For consistency with prior research, we applied the pre-
processing methods outlined in [4]: each dataset was z-
normalized, varying time series lengths were addressed
through zero-padding, and missing values (NaNs) were im-
puted via linear interpolation.

2) Implementation details: We trained each model using the
Adam optimizer [22], with a learning rate that decays based
on the monitored training loss. Each model was trained with
a batch size of 64 for 1500 epochs, and the version achieving
the lowest training loss was selected for evaluation on the
test set. To ensure consistency with established performance
benchmarks, we utilized hyperparameters identified as optimal
in the original LITE model’s development, facilitating direct
comparison with the base model’s performance.

To account for the effects of random initialization, we
repeated the training process five times with different random
seeds. The results presented in this paper are averaged across
these five runs, providing a robust assessment of model per-
formance.

Feature extraction was performed using the aeon Python
toolkit to compute Catch22 features [23]. All experiments were
executed on an NVIDIA GeForce GTX 1080 GPU with 8 GB
of memory, and the code will be made publicly available upon
publication.

3) Comparison tool: The primary evaluation metric used is
accuracy, which measures the proportion of correctly classified

instances. To statistically validate our results, we employ the
Multi-Comparison Matrix (MCM) evaluation tool [24], which
is robust to the addition and removal of classifiers. Unlike
traditional approaches that rely on average rank [25], the MCM
uses Mean-Accuracy—the average accuracy of a classifier
on the UCR datasets—as the ordering metric. Additionally,
it includes a Mean-Difference value, which indicates the
average difference in accuracy between two classifiers across
all datasets. Positive Mean-Difference values suggest better
performance of the classifier in the row, while negative values
suggest the opposite.

The MCM also includes a Win/Tie/Loss metric, which cap-
tures the number of datasets, where the row classifier performs
better, equally, or worse compared to the column classifier.
To further assess the significance of these comparisons, the
Wilcoxon signed-rank test [26] is applied, using a p-value
threshold of 0.05. A p-value below this threshold indicates a
statistically significant difference between classifiers, meaning
the observed performance difference is unlikely due to chance.
These significant p-values are highlighted in bold within the
matrix.

B. Comparison with State-of-the-Art

1) Considered methods: We compare our COCALITETime
model with leading approaches from the literature [27], includ-
ing the top hybrid model HiveCote2 (HC2), the convolution-
based method MultiRocket, and the best deep learning models,
InceptionTime and H-InceptionTime. Additionally, we include
the feature-based method combining Catch22 features with
the Rotation Forest classifier (RotF) [28], which has proven
superior for real-valued features [29].

This comparative study involves 127 datasets, excluding the
Fungi dataset due to HC2’s requirement for cross-validation
to tune its parameters. Since the Fungi dataset contains only
one training sample per class label, it is unsuitable for this
comparison.

2) Comparative results: Comparative results are presented
in the MCM shown in Figure 4. The proposed COCALITE-
Time method ranks third in average accuracy across the 127
datasets, outperforming Catch22-RotF with a statistically sig-
nificant difference indicated by a low p-value. When compared
to more complex deep learning methods like InceptionTime
and H-InceptionTime, COCALITETime demonstrates compa-
rable performance, with high p-values suggesting no statis-
tically significant differences. Notably, COCALITETime uses
approximately 20k parameters per model, while InceptionTime
uses 420k parameters, achieving similar performance with
only 4.7% of the parameters. Figure 4 also indicates that
our method has lower average performance than HC2 and
MultiRocket, with statistically significant results. However,
considering the trade-off between model complexity and com-
putational resources, COCALITETime remains a competitive
option with significantly fewer parameters and reduced com-
putational demands.
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Fig. 5. The Multi-Comparison Matrix illustrates the one-vs-one performance comparisons between COCALITE and its components.

C. Ablation Study

1) Comparison Setup: To further assess the impact of our
hybrid model on the original LITE model, we compare our
COCALITE model with:

• The baseline LITE model.
• The LITE model enhanced with Catch22 features, re-

ferred to as LITE-Catch22.
2) Comparative Results: The results in Figure 5 indicate

that the LITE model enhanced by our integration strategy
(LITE-Catch22) does not outperform the original LITE model,
suggesting that while the integration may help learn mean-
ingful features for some datasets, it degrades classification
performance on 89 datasets.

However, Figure 5 also highlights that COCALITE sig-
nificantly outperforms the original LITE model, supporting
our hypothesis that the features learned by both models are
complementary. This enhances generalization and robustness,
especially in noisy datasets. For a fair comparison, each LITE-
Catch22 model shares initialization with its LITE counterpart
to isolate the impact of Catch22 features.

To further illustrate our hypothesis, we compared the filters
learned by the two models. The t-SNE scatter plot in Figure 6
visualizes the last convolutional layer’s filters, showing distinct
clustering of LITE (blue) and LITE-Catch22 (red) points. This
suggests that incorporating Catch22 results in different filter
representations, capturing a broad range of features.

D. Complexity Reduction in COCALITETime

Building on findings from [30], which showed that an
ensemble of 10 LITE instances (LITETime-10) outperforms an
ensemble of 5 instances (LITETime), we conducted a fair com-
parison by evaluating an ensemble of 5 COCALITE instances
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Dim 1

3

2

1

0

1

2

Di
m

 2

LITE_last_conv
LITE_Catch22_last_conv

Fig. 6. t-SNE scatter plot of 2D filter representations from the last convolu-
tional layer of the COCALITE components: LITE (blue) and LITE-Catch22
(red) models, trained on the FaceAll dataset.

(COCALITETime) against LITETime-10. Figure 7 indicates a
low p-value, confirming the statistical significance of the per-
formance differences and suggesting that COCALITETime’s
hybrid design and ensemble learning contribute to its superior
performance in most scenarios.

To explore reducing COCALITETime’s complexity, we
halved the number of filters in each convolutional layer,
creating COCALITETime-16-filters. This adjustment reduces
the number of trainable parameters by approximately 50% (see
Table I). As shown in Figure 7, COCALITETime-16-filters
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Fig. 7. The Multi-Comparison Matrix is used to show the performance of COCALITETime, COCALITETime-16-filters, and LITETime-10 in one-vs-one
comparisons.

TABLE I
CONVOLUTIONAL LAYER FILTER COUNT AND TRAINABLE PARAMETERS BREAKDOWN BY MODEL AND COMPONENT.

Model Components Nbr. Filters per
Conv. Layer

Nbr. of Parame-
ters per Compo-
nent

Nbr. of Parame-
ters per Model

COCALITE
LITE 32 9 814

19 736
LITE-Catch22 32 9 922

COCALITE-16-Filters
LITE 16 4 070

8 216
LITE-Catch22 16 4 146

demonstrates no statistically significant performance differ-
ence compared to LITETime-10, indicating that the reduced-
complexity model maintains comparable performance while
substantially lowering the parameter count.

V. CONCLUSION

In this paper, we tackled the Time Series Classification
challenge by blending statistical features and ensemble learn-
ing with deep learning models, specifically LITE. We in-
troduced LITE-Catch22, which combines LITE’s powerful
feature extraction with Catch22’s rich statistical insights, and
COCALITE, a hybrid model that brings together the best of
both models to boost performance.

Our experiments reveal that COCALITE often surpasses the
standard LITE model by capturing the complementary features
of each model. We also propose a reduced version, which
delivers comparable performance to LITETime-10 but with
about half the parameters, making it more efficient.

We aimed to find the right balance between performance
and computational cost, and the results suggest we have made
progress towards that objective. Future research could explore
applying this approach to other deep learning models and
experimenting with additional feature sets beyond Catch22.

In summary, our models provide a promising and efficient
approach for time series classification, and we hope this work
encourages further advancements in optimizing deep learning
architectures.

ACKNOWLEDGMENT

This work was supported by the ANR DELEGATION
project (grant ANR-21-CE23-0014) of the French Agence
Nationale de la Recherche. The authors would like to ac-
knowledge the High Performance Computing Center of the
University of Strasbourg for supporting this work by providing
scientific support and access to computing resources. Part
of the computing resources were funded by the Equipex
Equip@Meso project (Programme Investissements d’Avenir)
and the CPER Alsacalcul/Big Data. The authors would also
like to thank the creators and providers of the UCR Archive.

REFERENCES

[1] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Evaluating surgical skills from kinematic data using convolutional neu-
ral networks,” International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 214–221, 2018.

[2] L. Anghinoni, L. Zhao, Q. Zheng, and J. Zhang, “Time series trend
detection and forecasting using complex network topology analysis,”
International Joint Conference on Neural Networks, pp. 1–7, 2018.

[3] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2012.

[4] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The ucr time series archive,” in
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 6, 2019, pp. 1293–
1305.

[5] M. Middlehurst, J. Large, M. Flynn, J. Lines, and A. Bagnall, “Hc2:
A new family of classifiers for time series classification,” ACM Trans-
actions on Knowledge Discovery from Data, vol. 14, no. 5, pp. 1–29,
2022.

[6] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt,
J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean,
“Inceptiontime: Finding alexnet for time series classification,” Data
Mining and Knowledge Discovery, vol. 34, no. 6, pp. 1936–1962, 2020.



[7] A. Ismail-Fawaz, M. Devanne, S. Berretti, J. Weber, and G. Forestier,
“Lite: Light inception with boosting techniques for time series classifi-
cation,” in Proceedings of the 2023 IEEE International Conference on
Data Science and Advanced Analytics (DSAA), 2023.

[8] A. Renault, A. Bondu, V. Lemaire, and D. Gay, “Automatic feature
engineering for time series classification: Evaluation and discussion,”
in Proceedings of the 2023 International Joint Conference on Neural
Networks (IJCNN), Gold Coast, Australia, June 2023, pp. 1–10.

[9] C. H. Lubba, S. S. Sethi, P. Knaute et al., “catch22: canonical time-
series characteristics,” Data Mining and Knowledge Discovery, vol. 33,
no. 6, pp. 1821–1852, 2019.

[10] B. Fulcher and N. Jones, “hctsa: A computational framework for
automated time-series phenotyping using massive feature extraction,”
Cell Systems, vol. 5, no. 5, pp. 527–531, 2017.

[11] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, “Time series
feature extraction on basis of scalable hypothesis tests (tsfresh–a python
package),” Neurocomputing, vol. 307, pp. 72–77, 2018.

[12] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining
and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[13] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in Proceedings of the
2017 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2017, pp. 1578–1585.

[14] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 31,
2017.

[15] A. Ismail-Fawaz, M. Devanne, J. Weber, and G. Forestier, “Deep
learning for time series classification using new hand-crafted convolution
filters,” in Proceedings of IEEE Big Data 2022, 2022, pp. 1–8.

[16] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: Exceptionally
fast and accurate time series classification using random convolutional
kernels,” Data Mining and Knowledge Discovery, vol. 34, no. 6, pp.
1454–1495, 2020.

[17] J. Lines, S. Taylor, and A. Bagnall, “Time series classification with hive-
cote: The hierarchical vote collective of transformation-based ensem-
bles,” ACM Transactions on Knowledge Discovery from Data, vol. 12,
no. 5, pp. 1–36, 2018.

[18] A. Bagnall, M. Flynn, J. Large, and et al., “On the usage and per-
formance of hive-cote v1.0,” in Proceedings of the 5th Workshop on
Advanced Analytics and Learning on Temporal Data, 2020.

[19] A. Dempster, D. F. Schmidt, and G. I. Webb, “Hydra: Competing
convolutional kernels for fast and accurate time series classification,”
Data Mining and Knowledge Discovery, vol. 37, no. 5, pp. 1779–1805,
2023.

[20] C. W. Tan, A. Dempster, C. Bergmeir et al., “Multirocket: multiple
pooling operators and transformations for fast and effective time series
classification,” Data Mining and Knowledge Discovery, vol. 36, no. 6,
pp. 1623–1646, 2022.

[21] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep neural network ensembles for time series classification,” in
Proceedings of the 2019 International Joint Conference on Neural
Networks (IJCNN). Budapest, Hungary: IEEE, 2019, pp. 1–6.

[22] D. P. Kingma and J. B. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[23] M. Middlehurst, A. Ismail-Fawaz, A. Guillaume, C. Holder, D. G. Rubio,
G. Bulatova, L. Tsaprounis, L. Mentel, M. Walter, P. Sch”afer et al.,
“aeon: a python toolkit for learning from time series,” arXiv preprint
arXiv:2406.14231, 2024.

[24] A. Ismail-Fawaz, A. Dempster, C. W. Tan, M. Herrmann, L. Miller,
D. F. Schmidt, S. Berretti, J. Weber, M. Devanne, and G. F. et al.,
“An approach to multiple comparison benchmark evaluations that
is stable under manipulation of the comparate set,” arXiv preprint
arXiv:2305.11921, 2023.

[25] A. Benavoli, G. Corani, and F. Mangili, “Should we really use post-hoc
tests based on mean-ranks?” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 152–161, 2016.

[26] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in Statistics. Springer, 1992, pp. 196–202.
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