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Abstract. For the past decade, new hardware able to generate very high
spatial resolution digital images called Whole Slide Images (WSIs) have
been challenging traditional microscopy. But the touted potential for au-
tomation is hindered by the large size of the files, possibly tens of billions
of pixels. We propose a fast segmentation method coupled with an intu-
itive multiclass supervised classification that captures expert knowledge
presented as morphological annotations to establish a cartography of a
WSI and highlight biological regions of interest. While our primary fo-
cus has been the development of a proof of concept for the analysis of
breast cancer WSIs acquired after chromogenic immunohistochemistry,
this method could also be applied to more general texture-based prob-
lems.
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1 Introduction

In recent years, the advent of digital microscopy deeply modified the way cer-
tain diagnostic tasks are performed. While the initial diagnostic assessment and
the interpretation histopathological staining results remain a domain of highly
qualified experts, digitization paved the way to semi-automated image analy-
sis solutions for biomarker quantification and accuracy control. With the ex-
pected increase of the number and quality of slide scanning devices, pathologists
are facing the challenge to integrate complex sets of relevant information, par-
tially based on conventional morphology, and partially on molecular genetics and
computer-assisted readout of single immunohistochemistry (IHC) parameters [4].

Despite their potential for automation to help reduce bias [15], the integration
of WSIs in routine diagnostic workflows in the clinical setting is not straightfor-
ward [3]. Indeed, these images can contain hundreds of millions or even billions
of pixels, causing practical difficulties for the storage, transmission, visualiza-
tion and processing by conventional algorithms in a reasonable time. Figure 1



presents an example of a “small” WSI of 18000 by 15000 pixels. Moreover, this
new technology is still perceived as ineffective by pathologists who are more
familiar with the use of classical light microscopy.

(a) (b)

Fig. 1: Example of a Whole Slide Image: (a) raw; (b) manually annotated by an expert
: the regions are outlined, each color represents a class; excluded regions (dark green)
are given as examples, which is why the image is not fully annotated.

This paper presents a new approach, based on an object-oriented analysis
(segmentation, classification) to establish an automatic cartography of WSI. The
main objective is to propose a decision support tool to help the pathologist to
interpret the information contained by the WSI.

Compared to former works on WSI analysis, our contributions are: (i) an
efficient computational framework enabling the processing of WSI in reasonable
time, (ii) an efficient texture descriptor based on quantized color histograms and
(iii) a multiclass supervised classification based on expert annotations allowing
a complete cartography of the WSI.

The paper is organized in 4 sections. First, existing approaches to analyze
WSI are presented (Sect. 2), followed by the different steps of the method
(Sect. 3). Then, experiments on WSI of breast cancer samples are described
to evaluate the benefits of this approach (Sect. 4). Finally, we conclude and
present some perspectives (Sect. 5).

2 Related work

As optical microscopy image analysis is a specific field of image analysis, a great
variety of general techniques to extract or identify regions already exists. The
main distinctive characteristic of the whole slide images (WSI) is their very
large size, which makes impossible the application of number of conventional
processing, despite their potential interest.



Signolle and Plancoulaine [14] use a multi-resolution approach based on
wavelet theory to identify the different biological components in the image, ac-
cording to their texture. The main limitation of this approach is its speed: about
1 hour to analyze a sub-image of size 2048 × 2048 pixels, and several hundred
hours for a complete image (60000× 40000 pixels).

To overcome this drawback, several methods have been developed to avoid the
need for analyzing entire images at full resolution. Thus, Huang et al. [7] noted
that, to determine the histopathological grade of invasive ductal breast cancer
using a medical scale called Nottingham Grading System [1,15], it is important
to detect areas of “nuclear pleomorphism” (i.e. areas presenting variability in
the size and shapes of cells or their nuclei), but such detection is not possible at
low resolutions. So, they propose a hybrid method based on two steps: (i) the
identification of regions of interest at a low resolution, (ii) multi-scale algorithm
to detect nuclear pleomorphism at a high resolution in the regions of interest
identified previously. In addition, through the use of GPU technology, it is pos-
sible to analyze a WSI in about 10 minutes, which is comparable to the time for
a human pathologist.

Indeed, the same technology is used by Ruiz [12] to analyze an entire image
(50000× 50000) in a few dozen seconds by splitting the image into independent
blocks. To manage even larger images (dozen of gigapixel) and perform more
complex analyzes, Sertel [13] uses a classifier that starts on low-resolution data,
and only uses higher resolutions if the current one does not provide a satis-
factory classification. In the same way, Roullier [11] proposed a multi-resolution
segmentation method based on a model of the pathologist activity, starting from
the coarsest to the finest resolution: each region of interest determined at one
resolution is partitioned into 2 at the higher resolution, through a clustering
performed in the color space. This unsupervised classification can be performed
in about 30 minutes (without parallelism) on an image of size 45000 × 30000
pixels.

More recently, Homeyer [6] used supervised classification on tile-based multi-
scale texture descriptors to detect necrosis in gigapixel WSI in less than a minute.
While tessellating an image with square tiles is simple and effective, the resulting
contours can exhibit a lack of smoothness. In order to address that, our method
combines supervised classification with a fast segmentation method close to the
superpixel lattices described by Moore [9].

The characteristics of our method compared to others are summarized in
Table 1.

3 Method

To achieve a fast and efficient classification of whole slide images, we propose
a methodology enabling to partition the initial image in relevant regions. This
approach is based on a superpixel segmentation algorithm and on a supervised
classification using a textural characterization of each region.



Table 1: Comparison of our method with some existing ones. H&E means Hematoxylin
and Eosin, a widely used staining.

Method PixelsColoration Classes Performance Parallelism

[12] 109 H&E 2 (supervised) 145 s
(GeForce 7950
GX2)

GPU

[14] 109 H, DAB 5 (supervised) >100 h
(Xeon 3 GHz)

Unknown

[13] 1010 H&E 2 (supervised) 8 min
(Opteron 2.4 GHz)

Cluster of
8 nodes

[7] 109 H&E 4 (supervised) 10 min
(GeForce 9400M)

GPU

[11] 109 H&E 5 (unsuper-
vised)

30 min
(Core 2.4 GHz)

Parallelizable

[6] 109 H&E 3 (supervised) <1 min
(Core 2 Quad 2.66
GHz)

Unknown

Proposed method 108 H, DAB,
PRD

6 (supervised) 10 min
(Opteron 2 GHz)

Parallelizable

3.1 Overview

The proposed method relies on two successive steps: (i) image segmentation into
segments or “patches”; (ii) supervised classification of these segments. The main
challenge of the segmentation step is to provide a relevant partioning of the
image in an efficient way due to the large size of whole slide images. To cope
with this problem, we propose to partition the image by using a set of horizontal
and vertical optimal paths following image high gradient values. We make the
assumption that the distribution of biological objects that a pathologist would
use to produce a decision can be described by a textural representation of a
region. Thus, the classification step is based on a textural approach where each
region is labelled according to its texture description.

A training set of texture descriptors is computed from a set of manually anno-
tated images enabling a supervised classification based on a k-nearest neighbor
strategy. The method overview is illustrated in Fig. 2 and Fig. 3.

3.2 Segmentation

Let f : E → V be a 2D discrete color image defined over a domain E ⊆ Z2 with
V = [0, 255]

3
. Let fi denotes the scalar image resulting of the projection of f on

its ith band. We suppose that E is endowed with an adjacency relation. A path
is a sequence of points (p1, p2, . . . , pn) such that, for all i ∈ [1, . . . , n− 1], pi and
pi+1 are adjacent points. Let W,H be respectively the width and the height of
f . The segmentation method is based on two successive steps.

First, the image f is partitioned into W/S vertical and H/S horizontal strips,
with S > 1 an integer controlling the width of a strip.



Fig. 2: Method overview. Left: image under analysis, image partitioning and regions
classification. Right: manually annotated images allowing the construction of the train-
ing set.

Second, a path of optimal cost is computed from one extremity of the strip to
the other in each image strip. The cost function is related to the local variations,
hence favoring the optimal path to follow high variations of the image. More
precisely, the local variation of f in the neighborhood of p is computed as:

g (p) = max
q∈N(p)

d (f (p) , f (q)) , (1)

where d is a color distance, and N(p) the set of points adjacent to p. In our experi-
ments we used d (a, b) = maxi |ai−bi| (L∞ norm) and N (p) = {q | ‖p− q‖∞ ≤ 1}
(8-adjacency).

The global cost associated to a path (pi)i∈[1...n] of length n is defined as:

G =

n∑
i=1

g (pi) (2)

From an algorithmic point of view, an optimal path maximizing this summa-
tion can be retrieved using dynamic programming [8] in linear time with respect
to the number of points in the strip, hence requiring to scan all image pixels at
least once. To speed up the process, a suboptimal solution is computed instead
by using a greedy algorithm: starting from an arbitrary seed at an extremity
of the strip, the successive points of the path are added by choosing, in a local
neighborhood, the point q where g (q) is maximal. By doing so, the values of g
are computed on the fly, only for the pixels neighboring the resulting path.

Some notable properties of this algorithm are: (i) its speed due to the fact
that not all pixels need to be processed, (ii) a low memory usage even for large
images because the only required structures are the current strip and a binary
mask to store the result, (iii) its potential for parallelization, because all strips
in a given direction can be processed independently.
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Fig. 4 illustrates the steps of the segmentation method and Fig. 5 gives an
example of the end result.
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Fig. 4: Path computation in horizontal and vertical strips, leading to an image partition.

3.3 Training

To create a training base, the reference images are segmented into patches. Using
the expert annotations, each patch is associated with a class or label. Then, by
computing a texture descriptor for each patch, we can create an association
between a texture and a group of labels. A texture can have several labels if it
is present in regions of different classes. As a result, the training base can be
modeled as a function B : T → G where T is the set of texture descriptors and
G = P (L) is the power set of all labels L.

When |B (t) | 6= 1, the texture t is ambiguous. Section 4.2 describes how to
measure this phenomenon and thus quantify the validity of the model. In order
to perform the classification, all B (t) must be singletons. To that end, B is
updated so that ambiguous textures are classified as excluded elements.



Fig. 5: Example of image partitioning based on our algorithm.

3.4 Classification

Some authors use distributions of descriptors to describe textures [10]. The cho-
sen descriptors can be arbitrarily complex, and, as a starting point, we decided
to use simple color histograms that are functions H : V → [0, 1] that associate
each pixel color to its frequency in a given patch. The ability of histogram to dis-
criminate between textures is illustrated in Fig. 6. Given the fact that all images
were obtained using the same process and equipment with the same settings, no
image preprocessing was deemed necessary.

In order to perform a supervised multi-class classification, we opted for a one
nearest neighbor classification because of its simplicity (no assumption needs to
be made on the distribution of the textures in the descriptor space) and the
sufficient amount of training samples available (which turned out to be a bit
excessive with sometimes up to several millions of elements). For this kind of
classification, we measure the distance between histograms using the euclidean
metric:

d (h1, h2) =

√∑
v

(h2 (v)− h1 (v))
2

(3)

This choice of metric is arbitrary and will serve as a reference for future work.
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Fig. 6: The most common argument against the use of histograms for texture char-
acterization can be visualized in the top row : the two presented images cannot be
distinguished by their histograms. But by performing a subsampling operation to re-
duce the resolution (example outlined in red), local constraints are introduced and the
middle row shows that the two images can now be distinguished by their histograms.
This ability disappears in this example after further subsampling, suggesting the pos-
sible existence of an optimal level of resolution to characterize a given set of textures
with their histograms.



4 Experiments and results

4.1 Data

Unlike most of the work published on the subject, our images are obtained using
a double-staining process [16]. More precisely, we used formalin-fixed paraffin-
embedded breast cancer samples obtained from Indivumed R©, Hamburg, Ger-
many. Manual immunohistochemistry staining was performed for CD8 or CD3
and Perforin, and antibody binding was visualized using 3,3-diaminobenzidine
tetrahydrochloride (DAB, Dako, Hamburg, Germany) and Permanent Red (PRD,
Zytomed, Berlin, Germany). Cell nuclei were counterstained with hematoxylin
before mounting. As a result, cancerous (in this type of tumor predominantly
large) and noncancerous (predominantly small) cell nuclei appear blue (hema-
toxylin). The chromogenic labeling of the lymphocyte lineage markers CD3 and
CD8 results in brown (DAB) staining of cell membranes and/or cytoplasm; the
antibody labeling for perforin is visualized in red (PRD) as granular cytoplasmic
color dots. Due to the small size of cells and sectioning effects, the blue nuclei
may sometimes be covered by brown or red color.

For our experiments, 7 whole slide images ranging from 1 ·108 to 5 ·108 pixels
have been annotated by a pathologist using 6 simplified labels (Fig. 7): invasive
tumor (defined as predominantly solid formations), invasive tumor (simplisticly
defined as less coherent tumor cell groups diffusely infiltrating pre-existing tis-
sues), intersecting stromal bands (defined as the non-malignant mesenchymal
tissue component regardless whether pre-existing, or induced by tumor growth),
DCIS (Ductal Carcinoma In Situ; in a simplified manner this class encompasses
real ductal invasive carcinoma in situ, and invasive tumor accidentally grow-
ing within ductal structures), non-neoplastic glands and ducts, and edges and
artifacts to be excluded.

The annotations do not explicitly provide quantifiable cell characteristics
that could be used to design a medically relevant cell-based region identification.
Instead, they take the form of outlines that may or may not match visual features
(Fig. 1). Even though some of these seem obvious, like the background, it is not
easy for an untrained eye to establish a set of intuitive rules that would explain
the expert’s opinion, even after trying some simple visual filters (quantization,
thresholding). Moreover, the classes are not uniformly represented in our data
(Fig. 8): while excluded elements are described by only a handful of annotations,
they actually account for the majority of the area of the images, especially
because of the background; on the other hand, ductal structures constitute a
minority and are sometimes completely missing.

Nonetheless, the delimited regions appear to exhibit a texture-related behav-
ior, and we can use that to decide on a model: a delimited region is made of a set
of patches that can be identified by their texture, and delimited regions of the
same class share the same set of textures. Thus, by partitioning the image into
patches and labeling each patch based on its texture, we can draw a color-coded
map like in Fig. 9.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7: (a,b) Annotation: Invasive tumor (solid formations).
Description: High concentration of cancerous cells.
Note: All classes can contain foreign objects, such as the brown lymphocytic infiltrate
that can be seen in (b), and sometimes the same objects (foreign or not) can be seen
in several classes (compare with c,d).
(c,d) Annotation: Invasive tumor (diffusely infiltrating pre-existing tissues).
Description: Cancerous cells disseminated in noncancerous tissue.
(e, f) Annotation: Intersecting stromal bands.
Description: Connective tissue.
(g, h) Annotation: DCIS and invasion inside ductal structures.
Description: A Ductal Carcinoma In Situ refers to cancer cells within the milk ducts of
the breast; the simplified definition used here encompasses ”real” ductal invasive carci-
noma in situ, in the sense of a ductal proliferation respecting the anatomical structure
of ducts, and invasive tumor components growing withing pre-existing ducts; some ex-
amples may include central necroses as shown in (h).
(i, j) Annotation: Nonneoplastic glands and duct.
Description: Noncancerous structures.
(k, l) Annotation: Edges and artefacts to be excluded.
Description: Nonbiological features (background, smudges, bubbles, blurry regions,
technician’s hair, ...) and damaged biological features (borders, defective coloration,
missing parts, ...).
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Fig. 8: Relative areas of all the classes: average for each training set. Standard deviation
is given as horizontal bars.

Fig. 9: Classification map obtained by the presented method; the colors match those
used by the expert, except for the excluded regions which are left untouched.



4.2 Model Evaluation

The method is evaluated with a leave-one-out cross-validation involving all the
annotated images: for each image (in our set of 7), a training base is created
with the other 6. All the values given in the rest of this article are obtained by
averaging the values from 7 experiments.

The quality of the model can be measured by computing the certainty of the
training base for each label l:

C(l) =
|B−1({l})|

|{t ∈ T : l ∈ B(t)}|
(4)

When the certainty is 100%, it means that the only group containing the label
is a singleton, and so the textures can be used to uniquely characterize the
corresponding class. On the other hand, a certainty of 0% means that the textures
are too ambiguous for a one-to-one mapping.

Since a human pathologist uses a multi-resolution approach [11], a whole
slide image is typically provided as a set of images corresponding to different
magnifications that can be used by visualization software to speed up display.
But they restrict the systematic study of the impact of the resolution level, and
can also cause additional degradation due to lossy compression. So, in order to
determine the information available at each level of detail (LOD), we compute
for each image I a pyramid defined by:

ILOD(x, y) =
1

4

∑
(i,j)∈{0,1}2

ILOD−1(2x + i, 2y + j) (5)

The original image is at LOD 0 (Fig. 10). It can be observed that high resolu-
tion is correlated with high data set certainty for the chosen texture descriptor
(Fig. 11).

Ideally, the segmentation algorithm should create patches of the right size,
so that each patch would contain just enough information to identify a class-
characteristic texture. Instead, we will assume the existence of a common texture
scale that applies to all classes: the segmentation parameter S (Fig. 10). At high
resolution, a texture described by its color histogram can help identify a class
with very little doubt (Fig. 11). But at lower resolutions, larger values of S in-
crease the ambiguity of the texture description, because the patches become large
enough to contain multiple textures from adjacent regions of different classes.

Finally, despite the use of sparse structures, a one nearest neighbor classifi-
cation using color histograms requires large amounts of memory and processing
time. A simple yet effective technique to mitigate this issue is to use a quanti-
zation scheme where the values used as histogram keys are 2Qb v

2Q
c instead of v,

and Q is the quantization parameter. Less memory is required because textures
with close descriptors are merged. As Fig. 11 shows, a mild quantization (Q ≤ 4)
barely affects the certainty of the training base.

By considering only this measure of the training base quality, we would ex-
pect to get the best results with high resolution, small patches and minimal
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(d) S 8 (e) S 16 (f) S 32

Fig. 10: (a-c) Visualization of the effect of the resolution parameter LOD on pixel data.
(d-f) Visualization of the effect of the segmentation parameter S on pixel data.

quantification. But we experimentally determined that the configuration (LOD
4, Q 4, S 32) yielded the best overall outcome when plotting the data in ROC
space (Fig. 11). The discrepancy between high training base certainty and lesser
classification results can have several causes, explored in the next section.

4.3 Classification results

By observing the confusion matrix for a chosen set of parameters (table 2), we
can see that the class of the excluded regions is the only one to be adequately
detected.

The structures of the DCIS class are difficult to identify because of the am-
biguity between seemingly ductal structures filled with cancerous cells, but also
due to their relative rarity in the current series of images. The latter holds also
true for the class of non-neoplastic ductal structures, which were rare in the
current series of WSIs as well. As expected for a highly differentiated epithelial
structure, the glands and ducts of the pre-existing mammary gland tissue were
more prone to textural characterization, but more examples would be needed for
confirmation.

The remaining 3 classes illustrate some limitations of the model. The “stroma”
class is detected as “excluded regions”, “stroma” and “diffuse invasion”. As it
turns out, “diffuse invasion” means that textures corresponding to cancerous cells
are mixed with textures corresponding to stroma. This mixing creates conflicts
which are resolved by assigning the “excluded regions” class to the ambiguous
textures (section 3.3). The same phenomenon explains why both “solid forma-
tions” (regions of high cancerous cell density) and “diffuse invasion” (regions
of low cancerous cell density) are detected as a mixture of “excluded regions”,
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Fig. 11: (a) Visualization of the effect of the resolution parameter LOD on the overall
certainty of the training base for different values of S and Q = 4. Standard deviation
is given as vertical bars.
(b) Visualization of the effect of the quantization parameter Q on the overall certainty
of the training base for different values of S and LOD = 4. Standard deviation is given
as vertical bars (barely visible because they are small).
(c) ROC points (light gray) for each parameterization are obtained by merging ex-
perimental data points for all the classes. For clarity, a convex curve (red) has been
synthesized from these points with one point that stands out; such a synthetic curve
makes sense because a classifier can be built for any interpolated point [2]. Standard
deviation is given as horizontal and vertical bars.



“solid formations” and “diffuse invasion”. Regarding the distinction between
“solid formations” and “diffuse invasion”, it is important to note that the cur-
rent annotation is by definition a preliminary one based on few samples that
needs to be iteratively improved in further studies. There is a poorly defined
range of variation between what descriptive reports would consider “diffusely
infiltrating” versus “solid”, or “coherent” growth, and this variability will even
increase with inclusion of breast cancer subtypes other than “unspecific type”
(synonymous with the former designation ”ductal invasive”). One possible work-
around for this problem could be to merge the two classes into one “tumor are”
class, which could result in a much higher detection rate of up to 90%. Another
way to address the challenge of tumor heterogeneity is to investigate a broader
range of samples and work on a closer approximation towards widely accepted
annotations concordant between experienced pathologists.

But the major underlying problem is that the model is flawed: a texture
unit defined by one patch is not enough to identify a class. The certainty of
the training bases is high because, unexpectedly, simple color histogram are not
only strong enough to describe such texture units, but they also capture small
variations that can almost identify the patches themselves, hence the large size
of the training bases (see next section). We conjecture that if we were to ignore
these variations, we would obtain a small set of textures (maybe a few dozens)
that could be used to identify regions like a pathologist does. With that in
mind, the confusion matrix could suggest that regions corresponding to stroma,
diffuse invasion and solid formations are made up of the same set of textures (as
described by color histograms of patches), but they differ by the proportions of
these textures; that phenomenon could be quantified by measuring their local
density distributions.

Another clue in support of that conjecture is the specificity data (table 3).
While the presence of a given texture is not always enough to identify only one
given class, its presence might still be a necessity and thus its absence can reli-
ably be used to exclude some classes, especially for stroma (sparsely populated
regions with a “sinuous” appearance) and solid formations (dense clumps of large
cancerous cell nuclei). The specificity for the excluded regions is lower because
of its role as “default class” to resolve ambiguities in our current method, as ex-
plained previously. At this time, we believe that we don’t have enough data on
DCIS and nonneoplastic objects to draw a definite conclusion on these classes.

Additional experiments were performed on small computer generated texture
mosaics available online as part of the Prague Texture Segmentation Datagen-
erator and Benchmark [5]. On the normal color set comprising 89 textures in 20
images, the parameterization (LOD 0, Q 5) with square patches of size 16x16
yielded a false positive rate of 0.2%±0.2 and a true positive rate of 79.8%±15.6.
At the time of testing, the benchmark website attributed to the results a “correct
segmentation” score of 55.44, corresponding to the 16th place. A detailed sum-
mary indicated that the quality of the classification depends on the nature of the
texture, with textile (Fig. 12) and wood being better characterized than glass
and plants. It is interesting to note that despite (0.2%, 79.8%) being a seemingly



Table 2: Confusion matrix for a particular parameterization (LOD 4, Q 4, S 32). Results
are given as mean and standard deviation computed from 7 values.

DCIS
Excluded
regions

Stroma
Solid for-
mations

Nonneoplastic
objects

Diffuse
invasion

DCIS 57% ± 49 29% ± 35 2% ± 5 4% ± 4 0.1% ± 0.2 8% ± 10

Excluded
regions

0.3% ± 0.4 85% ± 3 3% ± 1 3% ± 2 0.2% ± 0.2 9% ± 3

Stroma 1% ± 3 29% ± 10 31% ± 10 4% ± 3 0.1% ± 0.2 25% ± 10

Solid
formations

0.9% ± 2 19% ± 14 0.5% ± 0.6 44% ± 32 0.0% ± 0.1 35% ± 24

Nonneoplastic
objects

0% ± 0 11% ± 20 0.6% ± 1 6% ± 14 71% ± 45 12% ± 18

Diffuse
invasion

0.2% ± 0.2 37% ± 12 3% ± 3 11% ± 9 2% ± 3 47% ± 15

Table 3: Sensitivity and specificity for a particular parameterization (LOD 4, Q 4, S
32). Results are given as mean and standard deviation computed from 7 values.

Class Sensitivity Specificity

DCIS 57% ± 49 99.6% ± 0.6
Excluded regions 85% ± 3 67% ± 13

Stroma 31% ± 10 97% ± 2
Solid formations 44% ± 32 96% ± 3

Nonneoplastic objects 71% ± 45 99.8% ± 0.2
Diffuse invasion 47% ± 15 89% ± 4



good ROC point, the segmentation score is only 55.44, due to the distribution
of the textures in the images.

(a) (b) (c)

Fig. 12: Partial application of the method to an image of a texture segmentation bench-
mark available online (http://mosaic.utia.cas.cz): (a) original image; (b) ground
truth; (c) actual result.

4.4 Performance

The experiments were run on an AMD Opteron 2 GHz with 32 Gb of memory.
The segmentation step takes at most a few minutes even on large images (less
than 2 minutes for a gigapixel image with our current sequential Java imple-
mentation). But, as shown on Fig. 13, the main bottleneck of the method is the
size of the training bases, mostly because of the time needed to search a nearest
neighbor. So far, this has prevented us from testing our current algorithm with
high resolutions but we have verified that capping the training base size to 10000
elements (which is still large) can bring down the computing time to less than 2
hours for the highest resolution. That being said, our current results suggest that
lower resolutions may already have enough information to completely analyze
the image.

5 Conclusion and future work

The advent of whole slides images is a great opportunity to provide new diag-
nostic tools and to help pathologists in their clinical analyses. However, it also
comes with great challenges, mainly due to the large size of the images and the
complexity of their content. To achieve a fast and efficient classification of the
images, we proposed in this paper a methodology enabling to partition the ini-
tial image in relevant regions. This approach is based on an fast segmentation
algorithm and on a supervised classification using a textural characterization of

http://mosaic.utia.cas.cz
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Fig. 13: Mean sequential calculation time by image according to the size of the training
base. Each point corresponds to a setting (LOD, Q) for a segmentation of size 32
pixels. The colored discs symbolize the image size, related to the parameter LOD.
Some experiments at high resolution were not performed because of excessive time and
memory requirements. Standard deviation is given as horizontal and vertical bars.

each region. We carried out experiments on 7 annotated images and obtained
promising results.

In the future, we will extend the level of detail for annotations and increase
the range of tumor variability in order to identify biologically relevant structures
more precisely. We are confident that accurate automated detection of clinically
relevant regions of interest in cancer-related WSIs for subsequent in-depth analy-
sis is a key contribution to the development of novel tools for biomarker discovery
and validation. Increasing speed and accuracy of digital pathology workflows will
support the implementations of automated analysis modules into the diagnostic
work-up and thereby help to improve cancer therapy directed against targets
that are detectable in tissue biopsies.
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16. Wemmert, C., Krüger, J., Forestier, G., Sternberger, L., Feuerhake, F., Gançarski,
P.: Stain unmixing in brightfield multiplexed immunohistochemistry. IEEE Inter-
national Conference on Image Processing (2013)


	Efficient Region-Based Classification for Whole Slide Images

