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Abstract

Objective: This article presents an automatic image processing framework to extract quantitative high-level information
describing the micro-environment of glomeruli in consecutive whole slide images (WSIs) processed with different staining
modalities of patients with chronic kidney rejection after kidney transplantation.

Methods: This four-step framework consists of: 1) approximate rigid registration, 2) cell and anatomical structure
segmentation 3) fusion of information from different stainings using a newly developed registration algorithm 4) feature

extraction.

Results: Each step of the framework is validated independently both quantitatively and qualitatively by pathologists.
An illustration of the different types of features that can be extracted is presented.

Conclusion: The proposed generic framework allows for the analysis of the micro-environment surrounding large
structures that can be segmented (either manually or automatically). It is independent of the segmentation approach
and is therefore applicable to a variety of biomedical research questions.

Significance: Chronic tissue remodelling processes after kidney transplantation can result in interstitial fibrosis and
tubular atrophy (IFTA) and glomerulosclerosis. This pipeline provides tools to quantitatively analyse, in the same
spatial context, information from different consecutive WSIs and help researchers understand the complex underlying

mechanisms leading to IFTA and glomerulosclerosis.
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1. Introduction

More than 90000 kidney transplants are performed
each year!. Kidney replacement therapy after renal failure
can restore renal function for many years, thereby reducing
the burden for individual patients and for health systems
that are associated with hemodialyis. In the past decades,
successful therapy strategies were developed to avoid acute
rejection, and substantially reduce the risk of chronic re-
jection. This shifted attention towards slowly progressing
fibrotic changes that can contribute to the decline of graft
function.

*odyssee.merveille@creatis.insa-lyon.fr
1 www.transplant-observatory.org/download/2017-activity-data-
report

Chronic tissue remodeling is histologically characterised
by the appearance of Interstitial Fibrosis and Tubular At-
rophy (IFTA) and glomerulosclerosis. In recent years,
works studying the mechanisms leading to these patholo-
gies have been carried out [1, 2]. In particular, macrophages
have recently been identified as a key player in the inflam-
mation and fibrosis process [3]. Depending on their pheno-
type (“M1-like” or “M2-like”), macrophages can be pro or
anti-inflammatory and they also play a role in the activa-
tion of fibroblasts inducing IFTA and glomerulosclerosis.

A common approach in histopathology is the visual
evaluation of consecutive, differently stained, biopsy sec-
tions by trained pathologists. Each stain provides specific
information on the tissue (see Fig. 1) and the pathologist
integrates this information into a written report.

With the emergence of system biomedicine, there has
been an increasing trend to study complex mechanisms
based on quantitative data such as inflammation [4, 5],
cancer clonal evolution [6], or immune reactions [7]. In this
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(a) Periodic Acid Schiff (PAS)

(b) CD3

108 pm

(c) Sirius Red

Figure 1: An example of three consecutive WSIs of a kidney nephrectomy sample with three common stains. Each
staining provides different information on the tissue: general structural information in PAS, distribution of T lymphocytes
in CD3, specific structures such as collagen or muscular fibres in Sirius Red.

context, Whole Slide Images (WSI) with different stains
are studied separately [8, 9], and the fusion of informa-
tion from these different stainings is required to obtain
a comprehensive data set. Pathologists mentally perform
this fusion while analysing a piece of tissue. This trivial
task for trained pathologists, commonly referred to as slide
registration, is highly complex for computers and requires
specifically designed algorithms.

WHSI registration algorithms should take into account
several specificities intrinsic to histopathology: the tissue
shape and orientation of two consecutive slides may vary
because of the sample preparation (fixation, embedding,
sectioning, etc.); the composition of the tissue between two
slides can vary significantly as the cells and structures may
appear, disappear, or have different appearance depending
on the sectioning level; finally, the set of stainings used
may highlight different structures or cells which results in
slides that look quite different (see Fig. 1).

Algorithms used for WSI registration in the literature
usually apply non-rigid deformations resulting in visually
pleasing registration. Most methods use the mutual in-
formation similarity metric to register two WSIs with dif-
ferent stainings [10, 11, 12] as it relies on statistical re-
lations between the intensities of two stainings instead of
direct correlations. Nevertheless, these methods may fail
for stainings with very different appearances as they are
only based on raw intensities. To overcome this, Cooper
et al. [13] proposed to rely on purely geometric features
for the registration. More recently, Song et al. [14] devel-
oped an unsupervised content classification algorithm that
computes more complex features describing the structures
of each image. Even though these non-rigid methods yield
good visual registration, they introduce spatial deforma-
tions that change the statistical properties of the neigh-
bouring area, and therefore induce significant bias when
extracting geometric features. To avoid this, this article
proposes a registration strategy in which structures are
matched without tissue deformation, therefore preserving
pertinent spatial information between slides. As an alter-
native to mutual information, Schwier et al. [15] propose
to histogram match two WSIs, then threshold them to ex-

tract vessels for registration. Gupta et al. [16] use this to
calculate a non-rigid registration in order to warp the seg-
mentation mask from one WSI to another. This does not
therefore account for glomeruli that appear, disappear, etc
between slides and such an approach is unlikely to work as
the distance between slides increases (such as with multi-
ple consecutive WSIs). Other works exist that focus on the
registration of segmentation masks directly [17, 18]. These
focus on pairs of images, not multiple (> 2) WSIs, nor ex-
plicitly result in the fusion of information between slides.
Ultimately, these algorithms also perform non-rigid regis-
tration, and therefore fall victim to the same limitation as
direct registration of the WSIs.

The remainder of this article is organised as follows:
Section 2 presents the complete analysis pipeline and Sec-
tion 3 presents the data used for evaluation. A number of
experiments are conducted in Section 4 to validate the
pipeline: the proposed matching algorithm is validated
both independently and in the context of the pipeline; the
application of the complete pipeline to four consecutive
nephrectomy WSIs; and an illustration of several interest-
ing features that can be computed from such an analysis
framework, along with their analysis.

2. Analysis Framework

This article presents an automatic pipeline to analyse
histology slides from patients with chronic renal graft re-
jection. Many features quantifying the inflammation can
be extracted from this pipeline and used by pathologists
for diagnosis purposes. More complex features, such as
spatial correlations between cell populations, can also be
extracted to describe the tissue state and help researchers,
clinicians and pathologists to better understand the mech-
anisms leading to IFTA and glomerulosclerosis.

Instead of applying non-rigid registration, we propose
to merge the information from consecutive slides by finding
common landmarks across stainings and locally superim-
posing the regions from each staining around these land-
marks. Glomeruli are spherical structures with a diameter
of around 150 pm and are one of the key functional units of
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Figure 2: An overview of the proposed analysis framework. First, rigid registration is performed on two consecutive WSIs
with staining s; and ss to approximately align the tissue. Glomeruli segmentation, then matching is then performed
from s; to so (G — H) and from sz to s; (H — G). Only matchings that are found in both directions are kept.
Patches around each matched glomeruli are extracted and for each of them several features are computed. Feature
matrices from both stainings are concatenated so that in each column (i.e. for each matched glomeruli) we have features

extracted from the two stainings s; (in red) and sy (in blue).

the kidney, responsible for the filtration of primary urine
from the blood. They are thereby good candidates for
landmarks as they have a high probability to be present
in several consecutive slides (the average slice of tissue is
3um thick) and they present an isotropic structure mak-
ing them easily detected in each slide whatever the cutting
direction.

In order to merge the information from several con-
secutive slides, we propose to match the glomeruli across
slices and then locally superimpose each glomerulus neigh-
bourhood to perform the multi-stain analysis. Thus, our
framework is four fold: 1) rigid registration to approxi-
mately align the tissue, 2) cell and structures segmenta-
tion, 3) glomeruli matching, 4) feature extraction from dif-
ferent stainings in the same spatial reference. An overview
of this framework is presented in Fig. 2.

Rigid registration and segmentation are open problems
in histopathological imaging, and numerous approaches
exist. The purpose of this article is not to propose new
approaches in these areas, therefore the following assumes
that the tissue can be approximately rigidly registered us-
ing one of the available algorithms [19, 20, 21], and that we
have accurate (but not necessarily perfect) segmentation
of the cells and glomeruli. In this work a U-Net was used
for glomeruli segmentation [22, 23] and stain deconvolu-
tion for cell segmentation [24]. More details of these two
steps are provided in Section 1.1 of the Supplementary
Material. For alternatives, we refer the reader to recent
reviews [25, 26].

The key contributions of this article are as follows.

e A new stain registration strategy to avoid tissue de-

formation based on glomeruli matching. This match-

ing algorithm is validated on real data showing ro-
bust performance (see Section 2.1).

e An automatic pipeline able to extract quantitative
features from consecutive WSIs with different stain-
ings. Combined with the matching algorithm, this
pipeline allows for the registration of features from
different stainings in the same spatial context, lead-
ing to a global multi-stain analysis pipeline.

2.1. Glomeruli Matching

This section presents a novel glomeruli matching algo-
rithm in order to locally superimpose glomeruli neighbour-
hoods between slices.

Let G be the set of glomeruli in a WSI and H be the
set of glomeruli in a WSI consecutive to it. The cardinality
of a set A is denoted |A|, such that |G| and |H| are the
number of glomeruli respectively in G and H.

Matching G to H can be seen as an inexact graph
matching problem. Let § = (G,Eq) and H = (H, Eg)
be two graphs where Eg (resp. Ex) is a set of edges be-
tween the glomeruli G (resp. H). The inexact matching
problem is defined as

T = argminZE(Gk,Hwk), (1)
reX A

where X € INIG! is the set of all possible matchings from G
to H and F : G x H — R is a matching energy function.
Inexact graph matching is an NP-complete problem
that is usually solved by finding an approximate solution
using heuristic search strategies. In this work, the com-
plexity of the global inexact graph matching problem is re-
duced by incorporating prior knowledge regarding the so-



lution and adopting a subgraph assignment splitting strat-
egy inspired by the work of Raveaux et al. [27].

The largest contribution to the complexity of general
graph matching comes from the combinatorial problem of
trying to match every vertex in G to every vertex in H
regardless of their respective spatial location. Herein, it is
assumed that the position of the same glomerulus in two
consecutive slides should be similar relative to the sur-
rounding tissue, since in the previous step the tissues in
both slides have been approximately rigidly registered.

Based on this observation, the global inexact graph
matching problem of G to H is transformed into |G| sub-
graph (sub) assignment problems. Each sub-problem, i.e.
for each g € G, attempts to find the best matching subset
of vertices in H, the number of candidate vertices of H
is reduced to those having similar spatial positions to g
relative to the tissue.

In the following, the general matching strategy is first
developed, then the assignment energy used to match two
glomeruli is presented.

2.1.1. From Global to Local Matching

Let G and H be embedded in R?. We define the
set of edges of both graphs such that Eg = {(z,y) €
G?, D(z,y) < dsup} and Ey = {(x,y) € H?, D(z,y) <
dsup}, where D : R x R — R is a function returning
the Euclidean distance between two points (vertices) and
dsyp € R is the maximum length of an edge in the sub-
graph.

Instead of finding a global matching, i.e. Equation (1),
that could lead to the matching of glomeruli far from each
other in consecutive WSIs, the problem is reduced to |G|
sub-problems defined by finding for each vertex g € G, its
best match h € H , among all vertices of H that are close
to g, such that

Erateh (97 h), (2)

h = argmin
hENZmatCh (g)

where Nimstet () = {h € H,D(h,g) < dmaten} is the set
of vertices of H that have spatial positions similar to g (in
the rigidly registered image) and Epaten (g, b) is the energy
of matching h to g that will be defined in the next section.
An illustration of N}_if“"“c“ (g) is presented in Fig. 3.

Since a glomerulus of H can only be matched to one
glomerulus of G, the matching with the lowest energy
Fraten 18 retained for each g.

2.1.2. Assignment of Glomeruli Neighbourhood

It can be observed in WSIs that although the shape
and size of a glomerulus slice may vary significantly be-
tween consecutive slides, its position relative to neighbour-
ing glomeruli is relatively constant (see Fig. 4). To con-
strain the matching strategy with this observation, the
matching energy of two glomeruli slices g and h is defined
to be the minimal assignment energy of their respective

neighbourhoods. More formally, let G5*P =
be a subgraph centred on g; € G such that

(G, )

G = {gr € G, (9:,9) € Ec} U gi,
EZ" ={(z,9:) € Eg, © € G}.

Fig. 3 presents examples of such sub-graphs.
Let G§"P = G5\ g; be the set of vertices connected to
gi- The assignment of G5°P to H ;“b is defined such that

N
Bunaten(9i,hy) = min " RE, (B4 (9, f(9)), g € G™),
=1

(3)
where '/ is the set of all possible mappings of a vertex
in G$"P to a vertex of H JS»“b, and RF} is the rank filter of

order k such that RFy ((a;)ieq1,n)) is the minimum and

RFy ((ai)ieq1,n)) is the maximum. The term Ergléhj is the
energy of assigning neighbouring (nb) vertices such that

|D(gig) — D(hy, h)]|
D(gi,9)

1

B4 (g,h) =
nb (g’ ) 90

(4)

where A(g,hj,h) € [0,180] is the angle g/hﬁL in degrees
(see Fig. 3).

As such, the energy Ematcn(9i, hj) is the sum of the
N neighbour associations with the lowest F,;, with N <
|G5UP|. The parameter N allows flexibility in the neigh-
bourhood pattern matching, which is necessary as some
neighbours can appear or disappear between two slides.
As N increases, the matching is less flexible. This match-
ing strategy is performed bidirectionally, i.e. from G to H
and H to G, to increase its robustness. The matchings
that are consistent between the two are kept to form the
set of matched glomeruli M.

2.1.3. Parameter values

The proposed algorithm has two parameters: the max-
imum distance within which a match can be found, dyatch,
and the number of neighbour associations to compute the
assignment energy, IV; and a hidden parameter dg,1,, which
is the distance defining the subgraphs.

In practice, dg,p is defined based on the glomeruli dis-
tribution and the number of associations N required to
compute the assignment energy. As the assignment en-
ergy is defined based on N associations, most glomeruli
should have at least IV neighbours. In practice dgyp, is de-
fined such that most of the glomeruli in the image have at
least N +1 neighbours to take into account the appearance
and disappearance of glomeruli between consecutive slides.
The values of N and datcn should be set experimentally
depending on the density of glomeruli in the WSI.

The robustness of this algorithm to centroid shifts and
disappearance (which can be caused by the natural dis-
section of a glomeruli, as well as segmentation errors) was
experimentally assessed on synthetic data (see the accom-
panying supplementary material).



Figure 3: An illustration of the glomeruli matching steps of two graphs G (a) and H (b). (a) Example of two sub-
graphs G5" in red and G§*" in green of G. (b) The set of vertices of H that can be matched to go: Nfmateh(gy) =

{h1,ha, hs, hy, hs,hs}. (c) The energy Eﬁﬁ’hs (g1, 1) is computed based on the angle A(g1,hs, h1) and the distances

D(hl, hg) and D(gl,gg).

In the example of matching G5*® to H5™, the matching energy for N = 3 would be

Eraten(g2, hs) = Eg]ihs (g1,h1) + Eglz)ha (95, ha) + ng)hs (94, hs).

Figure 4: Illustrating glomeruli matching on two consecutive WSIs. Consecutive glomerulus cuts may present different
shapes and sizes (cf. glomeruli number 1 and 7) but their position in the tissue relative to other glomeruli is similar.

2.2. Feature Extraction

Once segmentation and matching across WSIs is com-
plete, the following two types of features, that integrate in-
formation derived from different stains in the same glomeru-
lus neighbourhood, can be extracted from the correspond-
ing segmentations, as illustrated in Fig. 5.

Multi-WSI features derived from multiple single WSIs,

for example mean M0 macrophage (CD68) or M2 macrophage

(CD163) densities inside each glomerulus.

Intra-WSI features, that combine information derived
from multiple WSIs, for example, the mean distance from
MO macrophages (CD68) to a subtype of M2 macrophages
(CD163).

3. Dataset

Tissue samples were collected from four patients who
underwent allograft nephrectomy for various reasons, de-
scribed in Section 1.3 of the Supplementary Material. Each

paraffin-embedded sample was cut into four consecutive
3pm thick sections, each being stained with one of the
following combination of immunohistochemistry markers
using an automated staining instrument (Ventana Bench-
mark Ultra) (the details of the staining material are given
in Section 1.4 of the Supplementary Material): CD3-CD68
(T cells & macrophage lineage marker), CD3-CD163 (T
cells & M2-like macrophages), CD3-CD206 (T cells & M2-
like macrophages), or CD3-MS4A4A (T cells & M2-like
macrophages). The 4 M2-like macrophage stainings de-
tect different subsets of M2 macrophages polarised along
the large spectrum of alternatively activated (“M2-like”)
macrophages 2.

Whole slide images were acquired using an Aperio AT2
scanner at 40 x magnification (a resolution of 0.253 pm/pixel).

2This dataset was built in the context of a research project focus-
ing on the role of macrophages in IFTA and glomerulosclerosis, hence
the non-routine macrophage-centred stains. The proposed pipeline
allows for the comparison of the spatial distributions of macrophages,
which is of great interest for this specific project. Nonetheless, this
pipeline is generic and any stain may be used.
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Figure 5: After matching, the same glomerulus (in green) and surrounding tissue in two different stain modalities (a)
and (b), the cells of different types are segmented (in red and blue). Two types of features can therefore be computed:
features depending on each single WSI concatenated to obtain features relevant to the same glomerulus (c); and features

that combine information from both stain modalities (d).

Table 1: Number of glomeruli per patient and stain.
The numbers in brackets for patient 2 are the number of
glomeruli before removing those situated in areas affected
by staining irregularities, please refer to the text for more
information.

Patient CD3-CD68 CD3-CD163 CD3-CD206 CD3-MS4A4A
1 445 482 480 470
2 185 (271) 173 (255) 180 (267) 176 (253)
3 135 128 130 122
4 285 254 274 244
Total 1050 1037 1064 1012

All the healthy and sclerotic glomeruli in each WSI were
annotated by outlining them using Cytomine [28] and val-
idated by pathology experts. The number of glomeruli for
each patient and in each staining is summarised in Table
1. For technical reasons (most likely due to uneven tissue
fixation), staining artefacts occurred in patient 2, that re-
sulted in the need for manual removal of some areas. As
the affected tissue was removed from the evaluation, Ta-
ble 1 reports both the number of glomeruli including the
ignored tissue (in parentheses) and the final corrected re-
sults. The WSIs and annotations of patient 1 are shown
in Fig. 6 and larger scale crops in Fig. 7.

To validate the matching algorithm?®, approximately
270 glomeruli were manually associated with each other
between the four slides of patient 1 (including 220 that ex-
ist within all four slides), and approximately 185 glomeruli
in patient 2 (including 169 that exist within all four slides).

4. Results

In this section, the proposed matching algorithm is val-
idated and then the results of the full pipeline are pre-
sented.

3The code is publicly available from: https://gitlab.in2p3.fr/
odyssee.merveille/glomeruli_matching-cmpb-2021.git.

The following metrics are used to evaluate matching
performance: Sensitivity (S = %), Precision (P =
TgifFP), and Specificity (SP = %) and Negative Pre-
dictive Value (NPV = %) to account for the possi-
bility of false positive—a centroid incorrectly associated
to another—and true negative associations—unpaired cen-
troids not associated with another correctly. The values of
TP, FP, and FN were measured in terms of associations,
such that a TP is a correct association, an FP is an incor-
rect association, and an FN occurs when an association is

missed.

4.1. Validation on Glomeruli Ground-Truth Segmentation

The matching algorithm was first validated indepen-
dently of the pipeline, more specifically of possible segmen-
tation errors, by matching the glomeruli of the nephrec-
tomy dataset obtained by manual segmentation (Fig. 6).
The results of these experiments are shown in Table 2 and
Fig. 8.

The matching algorithm has little trouble finding cor-
rect associations in all but a very few cases as shown by
the very high sensitivity and precision. Moreover the false
associations are usually understandable as they concern
glomeruli that are in close proximity, and the ground truth
matching was problematic even for experts (see Fig. 9).
Most of the errors concern false detections, as shown by the
NPV score. The variance of NPV is high as it is computed
on a small number of samples (one more false negative as-
sociation will decrease the NPV by a few tens of percent).
When a clear association cannot be found, the algorithm
tends not to match the glomerulus, which is a desired be-
haviour for the discussed applications since it ensures that
associations are reliable and will not bias further statistics
that could be built upon them.

4.2. Matching on Glomeruli Segmentation

The stainings in this study present similar visual char-
acteristics, see Fig. 7, which lends to training one ‘multi-
stain’ U-Net by combining the training sets of each stain
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(a) CD3-CD68 (b) CD3-CD163

(c) CD3-CD206 (d) CD3-MS4A4A

Figure 6: Fully annotated consecutive kidney nephrectomy WSIs used in this study (patient 1, see Table 1). Each green

disk is an individual glomerulus.

Figure 7: Subsamples of the four consecutive kidney nephrectomy WSIs of Patient 1 used in this study. From left to
right row: CD3-CD68, CD3-CD163, CD3-CD206, CD3-MS4A4A. The number in the bottom row shows the glomeruli

matching ground truth.

and applying the same network to all stains. To better
utilise the limited amount of data, one network was trained
for each patient in a leave-one-out fashion, such that the
segmentor for patient 1 was trained using data from pa-
tients 2, 3, and 4; and the one for patient 2 was trained
using the data derived from patients 1, 3, and 4. The
training set comprised patches centred on all glomeruli

from the training patients and seven times the number
of tissue patches (to account for the variance observed in
non-glomeruli tissue), 20% of this data was reserved for
validation.

The segmentation performance of this approach is de-
scribed in Table 3.

The centroids of each detected glomerulus were ex-
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Figure 8: A random subset of the glomeruli matchings between the four WSIs, in which TN matched glomeruli are in

green, TP in blue (the green line represents the correct asso

ciations between WSI), FN in purple, and FP in red.

Table 2: Matching performance on ground-truth (GT) vs. on segmentation (Segm) with dpaten = 300 and N =4 (S =
Sensitivity, SP = Specificity, P = Precision, NPV = Negative Predictive Value).

S

Stain Pair GT  Segm

SP P NPV
GT Segm GT Segm  GT  Segm

CD3-CD68 — CD3-CD163  93%  86%
CD3-CD163 — CD3-CD206 98%  94%
CD3-CD206 — CD3-MS4A4A  96%  93%

90% 89% 99% 97%  43%  58%
100%  100% 100% 100% 75%  55%
100%  57% 100%  98%  43% 2™%

Patient 1

S

Stain Pair GT  Segm

SP P NPV
GT Segm GT Segm  GT  Segm

CD3-CD68 — CD3-CD163  95%  92%
CD3-CD163 — CD3-CD206  98%  93%
CD3-CD206 — CD3-MS4A4A  94%  95%

94% 74% 99% 90%  80%  T6%
100%  67% 100%  94% 84% 57%
95% 85% 99% 95%  70%  82%

Patient 2

tracted to form the sets G and H, which are the input
to the matching algorithm. Pairwise matching was then
performed on each consecutive image to determine the as-
sociations between all WSIs. The results are presented
in Table 2. The sensitivity and precision are still very
high compared to the ground-truth baseline, which demon-
strates the algorithm’s detection robustness. Specificity
sometimes drops significantly and these drops are not ac-
companied by a significant drop in sensitivity or precision.
This is explained by the very small number of negative
matchings in these stainings, and each single false positive

match yields a large specificity drop. This behaviour is
not problematic in a global scale as the number of false
positive matches remains very low.

4.8. Multi-WSI Analysis

At this stage of the pipeline, it is possible to register
each matched glomerulus and its surrounding, allowing the
superimposition of the segmentations from each consecu-
tive WSI. Fig. 10 shows the result of this for a glomerulus
of Patient 1. It should be emphasised that this image
illustrates something that would not be possible with con-
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Figure 9: False positive matching occurring in patient 1
between CD3-CD68 and CD3-CD163 (in orange) when ap-
plying the matching algorithm to the ground-truth seg-
mentation. The correctness of this association is debatable
even for experts

Figure 10: Illustrating the segmentation of different cell
types around the same glomerulus through 4 consecutive
slides. (a) T cells (red) and MO macrophages (green)
in CD3-CD38 WSI, (b) M2 macrophages (blue) in CD3-
CD163 WSI, (¢) M2 macrophages (pink) in CD3-CD206
WSI, (d) M2 macrophages (yellow) in CD3-MS4A4A WSI,
(e) superimposition of all cell types in CD3-CD68 WSI.
Note that each subtype of macrophage is present in only
one of the consecutive slides.

ventional staining techniques: a glomerulus with the com-
bined information requiring five separate stainings (MO
macrophages, 3 different polarisations of M2 macrophages,
and T-cells). The proposed framework therefore enables
features of the tissue to be extracted that were previously
not possible. Both Multi-WSI and Intra-WSI features can
be computed and used for diagnosis and research purposes.

To illustrate the type of analysis that can now be ach-
ieved, a ‘toy’ unsupervised glomerulus ranking score based
on the information derived from each stain has been de-
veloped. The Multi-WSI and Intra-WSI features can also
be used to perform other analyses such as clustering the
glomeruli to expose different groupings, training a super-
vised classification model using the features, or performing
in-depth statistical analyses.

(a) Score 0.000 (b) Score 0.035
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(f) Score Histogram

Figure 11: Patient 1 matched glomerulus ranking: a) and
b) bottom two, ¢) middle score, and d) and e) top two.
Scores have been normalised to between 0 and 1. The
images for each glomerulus are (from left to right): CD3-
CD68, CD3-CD163, CD3-CD206, CD3-MS4A4A.
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(f) Score Histogram

Figure 12: Patient 2 matched glomerulus ranking: a) and
b) bottom two, c¢) middle score, and d) and e) top two.
Scores have been normalised to between 0 and 1. The
images for each glomerulus are (from left to right): CD3-
CD68, CD3-CD163, CD3-CD206, CD3-MS4A4A.

Table 3: Segmentation performance of the detection algorithm based on pixels (average Fy score of five repetitions, with

standard deviations in parentheses).

Patient CD3-CD68 CD3-CD163

CD3-CD206

CD3-MS4A4A Overall

1 0.803 (0.010)
2 0.860 (0.003)

0.801 (0.020)
0.863 (0.005)

0.822 (0.015)
0.859 (0.015)

0.818 (0.014)
0.865 (0.011)

0.811 (0.014)
0.862 (0.003)




Figure 13: Patient 1 glomerulus ranking spatial distribu-
tion in which transparency is proportional to rank (i.e.
more transparent blue regions are ranked lower).

To create this score, a matrix F = RIMI*19 where | M|
is the number of matched glomeruli, is constructed with
the following 19 features extracted from a neighbourhood
of size 258 pm centred on each matched glomerulus, these
19 features comprised the following 12 multi-stain features:

- mean M0 macrophage (CD68), M2 macrophage (CD163)

M2 macrophage (CD206), M2 macrophage (MS4A4A)
density inside glomeruli;

M2 macrophage (CD206), M2 macrophage (MS4A4A)
density outside glomeruli;

mean distance from MO macrophage (CD68), M2
macrophage (CD163), M2 macrophage (CD206), M2
macrophage (MS4A4A) to glomeruli;

and 7 intra-stain features:

- mean T-cells (CD3) density inside glomeruli over all

stainings;
mean T-cells (CD3) density outside glomeruli over
all stainings;
mean distance from MO macrophage (CD68), M2
macrophage (CD163), M2 macrophage (CD206), M2
macrophage (MS4A4A) to T-cells (CD3);
mean distance from T-cells (CD3) to glomeruli over
all stainings.
It should be emphasised, that this fusion of information
(combination of cell features from different stainings) would
not be possible without the proposed framework. Princi-
pal component analysis is used to extract the first principal
component that explains the most correlated variance be-
tween the features, and the glomerulus ranking score is the
value of this component.

The glomeruli associated with the two highest scores,
the two lowest scores, and the one falling in the middle
of the scale are presented in Fig. 11 for patient 1 and in
Fig. 12 for patient 2. Histograms of the score distribu-
tions for each patient are also presented and these show
that patient 1’s glomeruli are skewed towards the lower
ranked end of the scale whereas patient 2’s glomeruli are
distributed around intermediate scores.

Visual inspection suggests that the scores are associ-
ated with the severity of glomerular sclerosis: in general,
low scores are associated with more severe glomeruloscle-
rosis when compared to high scores. This may indicate a

mean M0 macrophage (CD68), M2 macrophage (CD163)
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role of the inflammatory micro-environment surrounding
glomeruli for pro-fibrotic changes. This is interesting, be-
cause the score is not directly reflecting cell numbers but
instead is driven by the 19 features reflecting density and
complex neighbourhood relationships of immune cells. In
addition, the analysis provides information on the spatial
distribution of glomeruli in their micro-environment, e.g.
for patient 1, the more severely affected glomeruli with low
scores tend to be localised more superficially (close to the
renal capsule) and in association with dense inflammatory
infiltrates. In contrast, largely normal glomeruli with high
scores are clustered in moderately inflamed areas (Fig. 13).

This is a very naive demonstration of this pipeline to
demonstrate its viability and usefulness. The next stage of
research will be to develop more complex scores based on
multi-stain features that are clinically relevant in order to
further study the glomeruli microenvironment in relation
to IFTA and glomerulosclerosis.

'5. Conclusions

In summary, this article has presented a novel frame-

'work for the study of tissue micro-environment of renal

glomeruli across multiple WSIs that allows their compre-
hensive evaluation without technically challenging multi-
plexing, by integrating multiple staining modalities in con-
secutive tissue sections. The framework involves approxi-
mate rigid registration and segmenting glomeruli and cells
in each WSI, which can be achieved using standard algo-
rithms, then matching them across the WSIs to integrate
the information contained within each. The result of this
can then be used to perform analyses on the glomeruli and
surrounding tissue.

The proposed framework is generic and independent of
the presented use-cases. It can be used for the analysis
of the micro-environment surrounding other large struc-
tures, under the assumption that such structures are large
enough to exist across multiple WSIs and can be seg-
mented (either manually or automatically). Furthermore,
it is independent of the segmentation algorithm used and
can therefore be applied to a variety of biomedical research
questions beyond transplantation medicine, for example
immuno-oncology and other scientific fields working with
biopsy samples.

In the future, this approach could support the diag-
nosis of renal grafts by time-efficient quantification and
evaluation of glomeruli (e.g. the distinction between nor-
mal and altered glomeruli of different underlying patholog-
ical processes and severity grades) and precise number and
localisation of infiltrating leukocytes (e.g. glomerulitis ac-
cording to the internationally used Banff classification for
renal grafts [29]). Counting glomeruli with the described
methods could also be performed for 3D reconstruction
(research purposes) in consecutive tissue slides and thus
enable an estimation of glomeruli numbers in the whole
kidney; reduced renal allograft survival [30], hypertension



and the risk of chronic kidney disease [31] are associated
with low glomeruli number.
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Supplementary Material

1.1. Glomeruli and Cell Segmentation

1.1.1. Glomeruli Segmentation

Two approaches can be taken to segment the glomeruli
slices in all stainings: develop a segmentation model for
each staining [32, 33, 34, 35, 36, 37, 38], or a stain invariant
/ multi-stain segmentation model [23].

Computer vision approaches such as perceptual organ-
isation [32], histogram of gradients [33], colour profiles
[33], local binary patterns [34, 39], and combinations of
approaches [35] integrate background knowledge into the
task. Nevertheless, there is no general consensus on the
type of features to extract and so data driven approaches
have gained in popularity. Most recently, deep learning
approaches [38, 36, 37] have become the de-facto standard
for segmentation due to their state-of-the-art performance,
however, being data driven they require a large amount of
training data. To overcome this, pretrained networks such
as GoogleNet, AlexNet [36], and VGG16 [40] can be used.

The proposed matching framework is agnostic to the
segmentation algorithm used. In the demonstrated appli-
cation, segmentation is performed using a U-Net [22] as
it has been proven to be successful in biomedical imaging
[41], in particular in glomeruli detection [37, 23]. Never-
theless, any of the above-mentioned (or other) approaches
can be used to produce the segmentation for this stage of
the pipeline in case of difficulty applying the U-Net.

Glomeruli segmentation is framed as a two classes prob-
lem: glomeruli and tissue. The slide background (non-
tissue) is manually removed from consideration. The in-
put to the network are patches centred on glomeruli (as
defined by the ground truth, see Sec. 3), and those that
do not contain a glomerulus, randomly sampled.

The U-Net was implemented as described in the origi-
nal article [22] using the cross entropy loss and trained for
multi-stain segmentation (see Section 4.2). The follow-
ing parameter values were used: batch size of 8, learning
rate of 0.0001, 60 epochs, and the network that achieves
the lowest validation loss is kept. The input patch size is
508 x 508 pixels, which is sufficient to contain a glomerulus
at a resolution of 0.506 pm/pixel.

The following data augmentation is performed with an
independent probability of 0.5:
elastic deformation: using the parameters o = 10, o =
100;
affine: random rotation sampled from the interval [0°, 180°],
random shift sampled from [—205, 205] pixels, random mag-
nification sampled from [0.8,1.2], and horizontal/vertical
flip;
noise: additive Gaussian noise with o € [0, 2.55];

4Because of the relatively small amount of training data in the
experiments presented in Section 4, and the large variance observed
between the stainings and characteristics of each patient, the U-Net
used upsampling instead of transposed convolution to reduce the
number of learnable parameters.

blur: Gaussian filter with o € [0, 1];

brightness enhance with a factor sampled from [0.9, 1.1];
colour enhance with a factor sampled from [0.9, 1.1];
contrast enhance with a factor sampled from [0.9,1.1].
These values were chosen to produce realistic images. All
samples are standardised to have a minimum value of 0 and
maximum of 1 and normalised by the mean and standard
deviation of the training set.

During application, the U-Net was applied using the
‘overlap-tile strategy’ [22]. Furthermore, the output of the
U-Net was postprocessed by removing the smallest con-
nected components and closing small holes.

1.1.2. Cell Segmentation

Our dataset is composed of 4 double-stained consecu-
tive WSIs for each patient, each staining highlighting dif-
ferent cell types (see Sec. 3). In total, 5 different cell types
are highlighted: T cells (CD3) and 4 different types of M2-
like macrophages (CD68, CD163, CD206 and MS4A4A).
The goal of this step is to segment each cell type resulting
in 5 binary images that will be used to compute features.

The image resulting from the digitisation of a WSI is
a mixture of the signals from two stains (e.g. CD3 and
CD68) and the counter-stain (e.g. haematoxylin). The
classic method to unmix the stains from an RGB image
was proposed by Ruifrok et al. and called colour decon-
volution [24]. This method transforms the RGB channels
of the WSI into optical densities of each staining that are
linearly related to their concentrations in the tissue. Once
each slide is unmixed, a simple thresholding of the channels
of interest is enough to segment the structures targeted by
the main stain.

Colour deconvolution requires a predetermined stain
vector for each staining that represent the proportion of
optical densities of this staining in each RGB channel. In
this work, the stain vectors for each staining were mea-
sured from the dataset, however, unsupervised methods
have been proposed for situations in which stain vector
measurement is not an option. These methods are based
on singular value decomposition [42], blind deconvolution
[43], dictionary learning [44], multilayer perceptron net-
works [45] or non-negative matrix factorisation [46].

1.2. Glomeruli Matching Synthetic Validation

To evaluate the performance of the proposed algorithm
to variations in the data, a simulated dataset was created.
Fifty 300 x 300 image pairs were generated, each pair rep-
resenting two consecutive slides. For each image in a pair,
30 centroids were generated located at the same position in
both images. The following two variations to the centroids
were analysed.

Shift — For each second image in a pair, the x and y
position of each centroid was shifted by values drawn
independently from a Gaussian distribution with p =
0 and o € {0...11} (that is 0 to 3.6% of the image
size in each dimension).



0 2 3 1 5 6 0 10 20 30 40 50

(a) Simulated shift varia- (b) Simulated unpaired cen-
tions troids

Figure 1: The results of the matching algorithm on syn-
thetic data with dpatcn = 80 and N = 3.

Unpaired — Spurious unpaired centroids were randomly
added to each image in a pair. The number of cen-
troids added to each image ranged from 0% to 50%
of the initial number of centroids in the image. An
addition of 50% means that both images in a pair
contains 45 centroids but only 30 should be matched.

The Shift experiment was designed to evaluate the nor-
mal spatial variations of glomeruli slices in consecutive
WSI whereas the Unpaired experiment evaluates the al-
gorithm’s behaviour to glomeruli appearance and disap-
pearance between slides, and to errors during glomeruli
segmentation.

Sensitivity (S = Fppy ), and precision (P = sposp)
were measured during the Shift experiment. The values
of TP, FP, and FN were measured in terms of associa-
tions, such that a TP is a correct association, an FP is
an incorrect association, and an FN is when no associ-
ation is made incorrectly. During the Unpaired experi-
ment, Specificity (SP = %) and Negative Predictive
Value (NPV = %) were also measured to account
for the possibility of false positive—a centroid incorrectly
associated to another—and true negative associations—
unpaired centroids not associated with another correctly.

The average measure (over the 50 repetitions of each
setup) for each experiment is presented in Fig. 1. These
experiments show that the proposed algorithm is robust to
shift and unpaired centroids. It is interesting to see that
precision remains high with the increase of each parameter
(shift and the number of added centroids) even though the
specificity decreases more quickly. This means that the al-
gorithm tends to avoid falsely associating glomeruli, which
is a highly desirable behaviour when the goal is to extract
statistical measures based on quantitative data extracted
from image processing algorithms.

1.8. Patients’ Characteristics

Patients’ characteristics are described in the following
table, in which Banff assessments are made according to
the 2013 Banff consensus [47], Tx means Transplant, and
NA means Not Available.
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1.4. Staining Characteristics

Immunohistochemstry staining was performed on con-
secutive 3pm thick paraffin section using an automated
staining instrument (Ventana Benchmark Ultra) following
the manufacturer’s recommendations, and using 3,3 di-
amino benzidine (DAB), or alkaline phosphatase (AP) /Fast-
Red as chromogens. The primary antibodies used are de-
scribed in the following table.

Antigen Clone Provider Order Number
CD3 Polyclonal rabbit DAKO/Agilent A0452
CD206 5C11 (Monoclonal mouse) BioRad MCA5552Z
MS4A4A Polyclonal rabbit Sigma HPA029323
CD163 MRQ-26(Monoclonal mouse) Cell Marque 163M-14
CD68 PG-M1 DAKO/Agilent GA613
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