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Abstract. Accurate annotation of anatomical structures or pathologi-
cal changes in microscopic images is an important task in computational
pathology. Crowdsourcing holds promise to address this demand, but so
far feasibility has only be shown for simple tasks and not for high-quality
annotation of complex structures which is often limited by shortage of
experts. Third-year medical students participated in solving two com-
plex tasks, labeling of images and delineation of relevant image objects
in breast cancer and kidney tissue. We evaluated their performance and
addressed the requirements of task complexity and training phases. Our
results show feasibility and a high agreement between students and ex-
perts. The training phase improved accuracy of image labeling.

Keywords: Crowdsourcing · human decision making · image classifica-
tion · image delineation · digital pathology · annotation.

1 Introduction

Crowdsourcing (CS) in digital pathology has been largely limited to less com-
plex tasks such as identification of cancer cells [11,6], scoring of cell nuclei based
on immunohistochemistry (IHC) [2,11,4,6], malaria diagnostics [9], and creation
of training sets for convolutional neural networks [1,5]. In general, intrinsically
motivated contributors in voluntary CS perform better compared to paid “crowd-
workers” [10]. Quality of CS depends on training and adaptation of task design
to contributors’ background knowledge [3,7].

In this paper, we investigate annotation of complex structures by medical stu-
dents without pathology expertise but with profound understanding of anatomy
and disease mechanism and a need to learn pathology as a strong incentive to
recapitulate anatomy. We show that medical students can acquire skills to label
images and delineate image objects in kidney and breast pathology, and dis-
cuss the influence of task complexity and training on CS approaches to produce
high-quality annotations for machine learning.
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2 Materials and Methods

2.1 Setting

We studied performance of a crowd of “educated” contributors: 142 third-year
medical students, who were entering the curricular pathology course and thus
had basic knowledge about microscopic anatomy but no expertise in pathology
nor experience in annotating histological images.

We considered four independent experiments, each with 1–3 sessions on differ-
ent days (Table 1). Each experiment started in a room equipped with computers
with a short teaching session on relevant anatomical structures and pathological
conditions, and explanations of the tools. The latter evolved from face-to-face
lessons into a video tutorial, ready for use in experiment 4. The crowd were asked
to work on two different tasks:

1. Labeling of regions of interest (ROIs)
select one of several proposed categories for each of a set of images
Used tools: software developed for the project that displays the current im-
age, a progress line, and radio buttons for each class

2. Delineation of ROIs
draw the outlines of all objects of some well-defined classes and mark the
class names in an image showing a tissue region
Used tools: Aperio ImageScope by Leica Microsystems (experiment 1), Cy-
tomine [8] running on an own server (experiment 2–4)

Table 1. Overview over the crowds participating in independent experiments.

Crowd Size
Session 1 Session 2 Session 3

labeling delineation labeling delineation labeling delineation

Experiment 1 36 9 10 4 9 4 0
Experiment 2 14 4 12 0 6 0 0
Experiment 3 26 23 23 12 11 0 0
Experiment 4 66 41 27 28 22 0 0

The labeling task included an obligatory training phase in the beginning in which
the correct solution was immediately shown to the participants and a test phase
without feedback. Training for ROI delineation was introduced in experiment 4
as optional work on images with the possibility to switch on/off GT. Students
received detailed feedback on both tasks after each session.

Images source were whole slide images (WSIs) from sections stained for H&E
or IHC markers (ethical approval review board of Hannover Medical School).

2.2 Answer Aggregation and Evaluation

As final annotations, we aggregated individual statements as majority vote (MV:
relative majority) or weighted vote (WV: weights calculated by training phase
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results of individuals). Equal votes result in unclassified objects and were counted
as false negatives.

Two experts (one for each tissue type) provided annotations, such that there
is a ground truth (GT) for each image to measure the performance of the crowd.
To evaluate ROI labeling, we measured the accuracy averaged over each class,

ACC =
1

|C|
∑
i∈C

TPi + TNi

TPi + TNi + FPi + FNi
(1)

where C is the set of classes, TP , TN , FP , and FN are the numbers of true
positives, true negatives, false positives, and false negatives, respectively. This
is compared to the expected value of random labeling, estimated as 1/|C|.
In ROI delineation, due to comparably large tissue areas without occurrence of
any considered class, we calculated the F1 score averaged over each class:

F1 = 2 · PPV · TPR

PPV + TPR
(2)

with the precision (PPV ) and the recall (TPR)

PPV =
1

|C|
∑
i∈C

TPi

TPi + FPi
and TPR =

1

|C|
∑
i∈C

TPi

TPi + FNi
(3)

both computed per class and averaged over all classes. This was calculated for
each pixel that is part of the tissue.

3 Results and Discussion

3.1 Feasibility and Role of Task Complexity

We compared the crowd results with expert annotations for high-level structures
in breast and kidney tissue in independent experiments confirming feasibility
even for complex ROIs representing pathologically relevant tissue conditions.

ROI Labeling Our results suggested that the class complexity has a stronger
effect on crowd performance than the tissue type as mistakes occurred predomi-
nantly in the distinction of classes defined by complex object features (Table 2).

In experiment 1, automatically detected ROIs intended to show epithelial
structures in normal breast tissue was categorized into: “lobule”, “duct”, “FP”
(session 1), and additionally “lobule with extralobular ducts” (session 2 and 3).

In experiment 2, the crowd classified images from breast cancer cases, distin-
guishing between (1) “technical artefact”, (2) “invasive cancer”, (3) “intraepithe-
lial neoplasia”, (4) “glandular epithelium”, and (5) “other anatomical structure”.
As a single image could include normal and neoplastic structures, a more com-
plex class definition was required. We used a hierarchical order such that the
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images should be classified by occurrence of highest order class. For example, if
an image contained mainly glandular epithelium and some invasive tumor, then
the image should be classified as “invasive tumor”. Accuracy of WV (weighted
by training phase precision) was 0.976. Even the lowest accuracy for individuals
was detectably higher than the corresponding probability by chance.

In experiment 3, kidney structures from biopsies were labeled into four types
(“normal”, “pathologically changed”, “sclerotic”, “no” glomerulum). In both
sessions, WV (session 1: 0.940, session 2: 0.832) was clearly higher than average
but, some individuals outperformed the best combinations (Supp. Mat., Fig. 1).
A particular challenge for the crowd was the class of “pathologically changed
glomerula”, most likely because the class definition included semi-quantitative
criteria such as hypercellularity, thickened Bowman’s capsule, mesangial sclero-
sis, collapse or retraction of the capillary tuft.

Experiment 4 considered four categories (“normal”, “partially sclerotic”,
“sclerotic”, “no” glomerulum). Highest accuracy was achieved by WV (session 1:
0.973, session 2: 0.942). In the case of “partially sclerotic glomerula”, the preci-
sion was quite low for MV. Combining both classes “partially sclerotic glomeru-
lum” and “sclerotic glomerulum” clearly increased the accuracy and precision.

Table 2. Overall accuracies (ROI labeling), displayed are expected value (1/|C|), min-
imum (min), maximum (max), average (avg), and majority vote (MV).

Crowd 1/|C| min max avg MV Crowd 1/|C| min max avg MV
ex1, se1 0.333 0.789 0.923 0.878 0.937 ex3, se1 0.250 0.820 0.940 0.885 0.910
ex1, se2 0.250 0.733 0.808 0.765 0.810 ex3, se2 0.250 0.730 0.840 0.791 0.818
ex1, se3 0.250 0.813 0.869 0.847 0.879 ex4, se1 0.250 0.880 0.975 0.934 0.973
ex2, se1 0.200 0.847 0.948 0.911 0.951 ex4, se2 0.250 0.838 0.928 0.891 0.942

ROI Delineation To present the results, images are referred to as I, with
experiment, session, and an id. For example, Iex3,se2,1 denotes the first image
of the second session of the third experiment. If necessary, participant groups
are referred to in the image name as G with group number. Fig. 1 shows the
difference of the MV to the reference for one image from each experiment. Table 3
shows the overall F1 scores for all experiments (further measures in Supp. Mat.
Table 2–5) indicating general feasibility. The quality decreases with increasing
complexity, number of classes, and image size. For structures with well-defined
borders, such as glomerula (kidney) or lobules (breast), the borders of the objects
have been drawn quite accurately in contrast to fractal-like outlines of tumor.

Experiment 1 tested the crowd’s delineation performance on two image sub-
sets representing renal tissue, using a duplex staining for immune cells (session 1)
or immune cells and vascular endothelium (session 2). For delineating “glomeru-
lum”, “artery”, and “tubulus”, the overall scores were distinctly lower for the
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Fig. 1. Difference of majority vote to ground truth (GT) in examples of kidney
(A: Iex1,se1,1, C: Iex3,se1,G1,2) and breast (B: Iex2,se1,2, D: Iex4,se1,1) tissue. Green:
agreement with GT, red: difference to GT. B: illustrates problems at tumor border. D:
illustrates confused structures.

Table 3. Overview overall F1 Scores (ROI delineation), where n is the number of
participants, MV the majority vote, and avg the average.

Image n MV avg Image n MV avg
Iex1,se1,1 10 0.902 0.865 Iex2,se1,1 9 0.616 0.551
Iex1,se2,1 9 0.645 0.606 Iex2,se1,2 12 0.775 0.592
Iex3,se1,1 22 0.879 0.785 Iex2,se2,1 6 0.694 0.598
Iex3,se1,G1,2 8 0.789 0.740 Iex2,se2,2 5 0.565 0.605
Iex3,se1,G2,2 10 0.713 0.672 Iex4,se1,1 27 0.716 0.661
Iex3,se2,1 11 0.884 0.744 Iex4,se1,2 22 0.710 0.626
Iex3,se2,G1,2 5 0.797 0.649 Iex4,se2,1 22 0.535 0.530
Iex3,se2,G1,3 5 0.940 0.848 Iex4,se2,2 21 0.585 0.553
Iex3,se2,G2,2 6 0.815 0.764
Iex3,se2,G2,3 6 0.726 0.621

second session than for the first session. Precision for the “artery” class in ses-
sion 2 was markedly lower due to mislabeling of other blood vessels such as
veins and smaller arterioles. To check how participants would be influenced by
the provided classes, we used classes in session 2 that could potentially occur
in kidney tissue but were not included in the specifically provided image. Sev-
eral participants mistook narrow peritubular interstitial tissue for such a class
(“collageneous tissue/septae”). We assume that in small, single images there is
a tendency to annotate more objects in contrast to batches of larger images.

Experiment 2 tested a more complex setting for breast cancer and surround-
ing tissue. Classes e.g. included “invasive tumor”, “duct”, “lobule”, and “large
blood vessel”. In most cases, the F1 scores of MV were better than the F1 scores
on average. For the class “large blood vessel” in Iex2,se1,2, for example, the recall
value was on average 0.472 and for the MV 0.826, without loss of precision. Some
objects in this complex setting, however, were challenging. For example, blood
vessels in Iex2,se2,1 and Iex2,se2,2 were missed by two thirds of the crowd. Com-
mon differences between MV and GT occurred in (1) individual variations in the
object border delineation, most pronounced at the tumor border and (2) con-
fusions between the visually similar structures (epithelial/epitheloid) “lobule”,
“duct”, and “invasive tumor”.
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Experiment 3 used eight WSIs of kidney tissue and focused on “glomerulum”,
“artery”, and occasionally included “muscle”. We split the crowd into roughly
equally sized groups G1 and G2. In each session, both groups worked on a com-
mon image (Iex3,se1,1 or Iex3,se2,1, stained for H&E) and additionally annotated
one further image(s) stained for a macrophage marker. The class “glomerulum”
had the highest scores. In five images, its MV precision was higher than 0.990,
with virtually no FPs, and the outlines of the glomerula were close to GT.

In experiment 4, four images of breast cancer were used, with similar com-
plexity to experiment 2, but with more participants. Classes were “duct”, “intra-
epithelial neoplasia”, “tumor”, “lobule”, and “necrosis”. The MV results were in
the same range as for experiment 2. The results of experiments 2 and 4 suggested
that most objects could be found reliably already with a small crowd while some
difficult objects could not be identified by most participants.

Overall, there seemed to be a role for certain pathological changes mimicking
or hiding ROIs: In the renal images (experiment 1 and 3), sclerotic glomerula
and arteries were sometimes confused and arteries were also frequently com-
pletely missed. In two images (experiment 2 and 4), lobules with heavy immune
infiltration were missed by all participants.

3.2 Role of Training Phase

ROI Labeling For experiment 3, we compared the accuracy during the training
phase, in which the correct label was shown to the participants immediately after
their decision, with the test accuracy (Fig. 2A). Most students performed better
during the test phase in both sessions, especially high-performer (based on test
accuracy). Nevertheless, several results of the training phase were close to the
test phase in session 1 (Spearman’s correlation coefficient: 0.41). To investigate a
suitable size of the training phase, we varied them in experiment 4 (three student
groups in each session: 20, 40, or 60 images). For this, we kept the same images
in the same order. The number of correctly labeled images was similar with a
trend to increase with increasing size of trainings phase (Fig. 2 (B)). Students
that participated in both session 1 and 2 showed higher correctness in the second
training phase compared to students first time participating. Fig. 2 (C) shows
that the second training phase did also not increase their accuracy for the most
difficult class of partially sclerotic glomerula. We conclude out of this, that the
training phase covering a broad variability of representatives for each class was
helpful to increase the performance of the crowd.

ROI Delineation The participants could annotate a “training image” with
the option to see the GT in experiment 4. To measure the training effect, we
compared two group of individuals that either received a small training image
(40% of test image size, not all classes represented) or a large training image
(80% of test size). No clear effect of the size on F1 score could be seen (Fig. 2D).
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Fig. 2. Training phase effects in ROI labeling(A–C) and ROI delineation(D)
A: Correlation between training and test accuracy for individuals (blue) and aggrega-
tions in experiment 3, session 1 (left) and session 2 (right). B: Changes of individual
(lines) performance during experiment 4. C: Role of training phase length for difficult
class “partially sclerotic glomerulum”. Shown is the difference between accuracy of the
first 20 images and of images 21–40, 41–60, and 61–153. D: Influence of size of optional
training image (blue: 80% of test image size, red: 40% of test image size) on F1 score.

4 Conclusion

Our study shows general feasibility of CS for the annotation of complex his-
tological images by participants with medical background, but without specific
expert knowledge. To ensure annotation quality, it is necessary to design the
tasks with well-defined objects and to include a sufficient training phase. Our
approach can be adapted to individual project requirements and shows the im-
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portance of finding an adequate match between level of task complexity and
previous knowledge of the crowd. Future work should focus on the comparison
of “educated” contributors and nonexperts, and the usefulness of this type of
noisy training data for machine learning.
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