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Abstract. Anatomical Pathology dates back to the 19th century when
Rudolf Virchow introduced his concept of cellular pathology and when
the technical improvements of light microscopy enabled wide-spread use
of structural criteria to define diseases. Since then, the quality of optical
instruments has been constantly evolving. However the central element of
the diagnostic process remains the knowledge and experience of patholo-
gists visually classifying observations according to internationally agreed
guidelines (e.g., World Health Organisation (WHO) classification), and
much of the pre-analytical steps of specimen preparation (e.g., fixation,
embedding, sectioning, staining) is only partially automated and still
requires many manual steps. Thanks to the recent advent and cost-
effectiveness of digital scanners, tissue histopathology slides can now be
fully digitized and stored as Whole Slide Images (WSI). With the avail-
ability and analysis of a much larger set of variables combined with so-
phisticated imaging and analytic techniques, the traditional paradigm of
pathology based on visually descriptive microscopy can be complemented
and substantially improved by digital pathology, utilizing screen-based
visualization of digital tissue sections and novel analysis tools potentially
combining the conventional evaluation by pathologists with a computer-
based diagnostic aid system. A central element of such evolving medical
utilities and decision support systems will be image analysis, a field in
which Deep Learning (DL) has recently made immense progress, notably
the work of Lecun et al. [33] on Convolutional Neural Networks (CNNs)
and especially the development of very large Artificial Neural Networks
(ANNs) that are revolutionizing the field. Indeed, they have surpassed all
existing image processing methods in most fields (segmentation, object
detection, classification, etc.). All current methods applied to histopatho-
logical image analysis will be presented as well as the future technological
issues and challenges of this discipline.

Keywords: machine learning, digital pathology, whole slide images, deep learn-
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1 Introduction

Pathology is the gold standard for the diagnostic evaluation and the under-
standing of many of the underlying biological and pathophysiological mecha-
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nisms. This typically involves visual evaluation by pathologists of a sample of
cells under a microscope, to identify structural tissue properties. Currently, vi-
sual evaluation of microscopic specimens is largely an unassisted process, and
pathologist’s accuracy is established through long training, standardization and
benchmarking, quality control by peer reviews, and personal experience. But
this field has experienced several technological revolutions in recent years with
the advent of virtual microscopy (conversion of glass slides into high-resolution
images i.e. digital slides), often referred to as Digital Pathology (DP). In this
domain, important efforts have been made to design image analysis tools, to
identify for example basic biological structures (e.g. stroma, immune cells), in
order to facilitate the task of biologists for (semi-) automated digital slide inter-
pretation. Digital Pathology is currently regarded as one of the most promising
avenues of diagnostic medicine in order to achieve better and faster diagno-
sis, prognosis and prediction of important diseases. With the recent advent of
Whole-Slide Imaging (WSI) i.e. the scanning of entire slides, the field of digital
pathology produces daily a massive amount of images with related metadata
(e.g. patient information, diagnosis, treatment).

At the same time, automatic image analysis algorithms have recently made
extraordinary progress, particularly with the advent of the Deep Learning (DL)
methods introduced by Lecun et al. [32]. Indeed, the performance of these meth-
ods has exploded in recent years, in particular allowing the detection, classifica-
tion and segmentation of objects of interest in images with very high precision
[21]. Although the technical progress holds great promise for digitization and
improvements regarding standardization and increasing efficiency, the majority
of institutes for pathology still prefer the conventional microscopy approach and
only few hospitals are moving towards a totally digital pathology service [59].
Apart from the huge investment cost for the hospital and the difficulty of chang-
ing the daily practices of an entire department, there are also many challenges
to overcome in order to integrate WSI in routine diagnostic workflows. Indeed,
these images contain billion of pixels and are highly heterogeneous (Fig. 1), in
terms of signal (acquisition devices, inter-centric variability [49]), and of seman-
tics (e.g. multiple types of cells), causing practical difficulties for the process-
ing/visualization by conventional algorithms. As pointed out in [28], the main
difficulties to analyze histopathological images are their huge size, the lack of
sufficient labeled data, the different levels of magnification resulting in different
levels of details, the nature itself of WSI (which are more like texture images),
the color variations and presence of artifacts.

The rest of the chapter is organized as follows: In section 2, we first present
current existing DL models for WSI analysis and explain their strength and
limits. In section 3, all the challenges and opportunities, induced by this emerging
domain, are discussed. Finally in the last section, we conclude that even if DL
has proven its efficiency in the field of histological images analysis, its broad use
and acceptance in clinical routine remains challenging.



Fig. 1: Example of digitized WSI of a breast cancer surgical resection after pre-
vious diagnostic biopsy and subsequent neoadjuvant chemotherapy stained with
Haematoxylin&Eosin (18000× 15000 pixels).

2 Current deep learning models for digital pathology

Numerous DL approaches have been proposed in the last years [23,36]. In this
section, we present the most popular ones and analyze their strengths and weak-
nesses after having introduced what is DL and how it can be applied to solve two
major tasks in histopathological image analysis: classification and segmentation.

2.1 What is deep learning?

DL methods are a family of Machine Learning (ML) methods that are based on a
representation of a model to be estimated in the form of a so-called deep Artificial
Neural Networks (ANN). The concept of learning from an ANN is not new and
dates back to the 1960s with Rosenblatt’s definition [48] of the perceptron (Fig.
2). The learned model is a function of the form: y = f(

∑n
i=1 Φixi).

Subsequently, the 1980s saw the emergence of multilayer ANNs [38]. Each
neuron is an elementary processing unit and the entire ANN allows a representa-
tion of a non-linear model. The learning is based on the gradient backpropagation
method [50], which remains very computationally intensive (Fig. 3).
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Fig. 2: The perceptron proposed by Rosenblatt in 1958.
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Fig. 3: A multilayer perceptron with multiple layers of neurons, p neurons in the
input layer and K neurons in the output layer.

It is in the 2010’s, following the democratization of Graphics Processing Units
(GPU) cards allowing to have very important computing powers, that this tech-
nology got popular, with ANNs containing many layers and offering exceptional
performances on many problems. In particular, in the field of image analysis
(object detection, classification, segmentation, etc.), the so-called Convolutional
Neural Networks (CNN) make it possible to achieve unprecedented levels of ef-
ficiency. An example of this type of architecture is given in Fig. 4.

To train the model fΘ(x)→ y, the algorithm needs a training set composed
of labeled samples: (x1, y1), . . . , (xn, yn). Then, the training of the ANN consists
in an optimization problem of a loss function ∆(ŷ, y) ∈ R+ as follows:

Θ∗ = arg min
Θ

1

n

∑
∆(fΘ(xi), yi)

2.2 Deep learning for classification

The classification task is the classical task for ANNs, in digital pathology ap-
plication it aims to label patches extracted from WSIs. For this purpose, CNNs
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Fig. 4: Example of CNN, the LeNet architecture[33].
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Fig. 5: Example of deep CNN for classification, the VGG16 architecture [55].

are the most effective and most widely used ANNs today. They have a similar
methodology to traditional supervised image classification methods: they receive
input images, extract features of each of them, and then train a classifier (fully
connected multi-layer perceptron like in Fig. 3) on them. However, features are
automatically learned by the ANN. Indeed, during the training phase, the clas-
sification error is minimized in order to optimize the classifier parameters and
the features to be extracted from the image (in the form of convolutions ap-
plied at different levels of image resolution). The first architecture developed
was the LeNet ANN (Fig. 4) by LeCun et al. [33]. Soon, more convolution layers
were added to achieve deeper architectures, allowing better results like VGG16
proposed in [55] (Fig. 5).

This type of architecture has been widely applied to histopathological im-
age analysis for different tasks mainly in cancer: detection of particular cells or
regions of interest, tissue classification, scoring.



Detection Mitosis detection is an important topic in cancer diagnostic, in [52]
the authors proposed an interesting approach which uses both DL and hand-
crafted features. The idea is to train a CNN, composed of five convolutional
layers and two fully connected layers to classify mitosis image patches and non
mitosis image patches and to combine it with 55 hand-crafted features plugged
to the first fully connected layer. Adding hand-crafted features greatly improves
the DL approach results.

In [12], the authors compared the efficiency of classical pre-defined features
and features learned from a DL architecture, more precisely an autoencoder
CNN [6], for basal-cell carcinoma cancer detection. The learned representations
performs better than the the pre-defined and allows better cancer prediction.

Scoring Tumor Proportional Scoring (TPS) plays an important role in the
identification of non-small-cell-lung-cancer, as it represents the level of the Pro-
grammed Death-Ligand 1 (PD-L1) expression [67]. In [26], the authors propose
to use an Auxiliary Classifier - Generative Adversarial Network (AC-GAN) [42]
which works as a classical Generative Adversarial Network (GAN) [19] but in-
stead of just using noise as input for the generator also use hot-encoded desired
class information. To be able to produce TPS score, discriminator not only indi-
cates if the input patch is fake or real but also predict it class (positive tumor cell
region or negative tumor cell region) which is further used to compute the TPS
score. The performance of this network are good and allows to quickly obtain
the TPS score in seconds.

In [53] used DL classification to estimate the spatial organization of immune
cells in the tumor microenvironment. For this, they generate maps of Tumor-
Infiltrating Lymphocytes (TILs) using CNNs enabling to evaluate a prognostic
factors, like the Immunoscore [17], that quantify such spatial TILs densities in
different tumor regions.

Tissue classification Gecer et al. [18] proposes a cascade architecture, first four
fully CNNs aims to detect salient regions of interest which are then classified by
a CNN into five different type of diagnostics.

Alternatively, in [11], the authors aims to classify tissue between adenocarci-
noma, squamous cell carcinoma and normal tissues using inception-v3 [62] ANN.
Moreover, their ANN is able to predict six of the ten most commonly mutated
genes in adenocarcinoma which could have a great impact on treatments.

In [70], the authors deal with the problem of not having enough annotated
histological data for a specific tissue type. To tackle this problem, they propose
to train a GoogLeNet architecture [63] on a different annotated dataset (with
other tissue type) and then fine-tuning it on their dataset with less annotations.

Deep Multiple Instance Learning [45] is a rising topic in biomedical ML. The
basic idea is to use multiple labels to annotate an area, with multiple examples,
the network will learn which structure belongs to which labels. It is useful for
WSI classification. It has been used for classification of breast histopathology [13]
and precursor lesions of esophageal adenocarcinoma [66].



2.3 Deep learning for segmentation

While CNNs have proven their efficiency for classification tasks, by splitting
images into small patches to be classified, specific architectures have quickly
emerged to obtain more accurate detection of objects of interest with their out-
lines [47,4].

These architectures consist of two parts (Fig. 6), one for encoding the infor-
mation contained in the image given to the input layer (composed of a succession
of encoder layers) and the other for decoding (composed of a succession of de-
coder layers). Each encoder layer applies convolution, batch normalization and
non-linearity, then applies a max pooling on the result. Decoders are similar to
encoders, but they oversample their input, using indices stored from the encod-
ing step. After the final decoder, the output is sent to a classifier which gives the
final prediction corresponding to the segmentation of the image given as input
(each channel of the prediction corresponds to a class of objects to segment).
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Fig. 6: Example of CNN for segmentation, the UNet architecture[47].

More recently, He et al. [21] proposed a novel approach (Mask-R-CNN) to
detect objects in an image while simultaneously generating a high-quality seg-
mentation mask for each instance. The architecture of this ANN is presented on
Fig. 7. It is based on the Faster-R-CNN network proposed in [46]. The Mask-R-
CNN network is composed of the classical R-CNN performing the classification
and bounding box regression and of a branch for predicting segmentation masks
on each instance extracted.

All these methods have been applied to histopathological data mainly for two
types of applications: the segmentation of cell nuclei to go beyond an estimation
of cell density by colorimetric deconvolution of images, and the segmentation of
larger or composite objects of interest (tumor, glomeruli, lobules, etc.).

Cell segmentation The analysis of histopathological images and the resulting
diagnosis are mainly done by quantifying the immune or cancerous cells present
in the biopsy or by observing the morphology of the cells. To go beyond simply
estimating the density of cells or to analyze the morphology of the cell nucleus,



Fig. 7: The Mask-R-CNN architecture for instance segmentation [21].

it is important to segment each cell precisely and individually. This is why a lot
of work is being conducted on cell segmentation in WSI of any type (brightfield
or immunofluorescence).

Naylor et al. [39] studied multiple DL segmentation methods on a same
dataset (publicly available 1). Three different approaches were compared: FCN
[35], PangNet [43] and DeconvNet [41]. The authors proposed a post-processing
of the probability map which resulted in a F-score of around 0.8 for the individual
cell segmentation.

Many recent work have been proposed based on new architectures dedicated
to this specific problem [51,40,57], using adversarial ANN [3] or Mask-R-CNN
[71].

Large regions of interest or composite objects segmentation The ANNs
presented in the previous section have also been applied to larger objects seg-
mentation. Indeed, they are very efficient at capturing the texture and shape of
composite or complex objects, since they are based on convolutional layers at
several levels of resolution (encoder part of the ANN).

For example, they were successfully applied many times in breast cancer
for region of interest segmentation (stroma, tumor area, etc.) [60,29,72] or for
objects segmentation like lobules [2] or glands [10]. Other organs or pathologies
were also investigated like, for example, colon cancer [9,24,68,64,56], brain cancer
[73,61] or glomeruli segmentation in renal pathology [65,14,25].

3 Challenges and opportunities

As seen before, artificial learning methods, notably ANNs, have demonstrated
their interest in the field of computer vision and more specifically in the analysis

1 https://peterjacknaylor.github.io/

https://peterjacknaylor.github.io/PeterJackNaylor.github.io/2017/01/15/Isbi/


of histopathological images. However, there remains many challenges to be over-
come before seeing the emergence of tools in clinical routine that are sufficiently
reliable, generic and whose diagnostic proposals are explicable. The main chal-
lenge, far more important than the definition of new learning or image analysis
algorithms, concerns the data themselves. In fact, the majority of new methods
that are emerging in computer vision and that could be applied to medical im-
ages come up against a problem of access to data, the creation of a sufficiently
large learning set (annotations) and/or data quality (heterogeneity of data, etc.)
in the majority of projects.

3.1 Annotations

Acquiring annotated data is difficult and time consuming in all ML project.
While large databases of annotated simple objects (e.g. car, dog, car, bridge, etc.)
are now available through public datasets like ImageNet [15] or COCO [34], large
repositories of annotated biomedical images are still rare. This is probably due
to the high degree of qualification required to discriminate between pathology
from images compared to annotating a dog or a cat in an image.

This problem is particularly present in DL where ANN models generally re-
quire thousands of images to be trained efficiently. Furthermore, medical images
are sensitive data, and they also requires a carefully data privacy policy to be
able to share and distribute the images. In addition, expensive hardware is of-
ten required to capture the images compared to everyday objects that can be
obtained using a simple smart-phone. However, despite these limitations, some
current projects are now available and contain medical images, like The Cancer
Genome Atlas Program (TCGA) [69].

However, the data are rarely annotated and only the raw images are available.
Another point concerns the high degree of class unbalancing that can appear in
medical image applications. For example, for many tasks, (e.g. mitosis detection),
a negative label (”no mitosis”) is much more frequent than the positive label
(”mitosis”). This can disturb the training of an ANN that will naturally over-fit
the most present class.

Multiple solutions are currently developed by the ML community to try to
cope with these limitations. For example, data augmentation [44] which consists
in creating synthetic data from real data is most of the time used in current
DL model. Performing data augmentation allows to perform an explicit regu-
larization of the ANN. An alternative to obtain more annotated data is to use
crowdsourcing [20], which consists in using a population of annotators to perform
annotations manually. It has been shown that the level of expertise of the anno-
tators can be limited [20] and reliable annotation can be obtained by merging of
combining multiple ”weak” annotations of the same image (i.e. the power of the
crowd [1]). Finally, domain adaptation or transfer learning [54] consists in using
a pretrained ANN instead of using a brand new, randomly initialized model.
This is particularly promising as it allows to avoid starting ”from scratch” every
time a new task has to be performed. It has been shown in [27] that results ob-



tained using pretrained ANNs are quite competitive compared to newly trained
ones.

Finally, recent results [58,8] have demonstrated that models can be trans-
ferred and adapted to solve different, but related, tasks.

3.2 Multiple stainings

An important part of digital pathology is the analysis of multiple digitized WSI
from differently stained tissue sections. It is common practice to mount consec-
utive sections containing corresponding microscopic structures on glass slides,
and to stain them differently to highlight specific tissue components. These mul-
tiple staining modalities result in very different images but include a signifi-
cant amount of consistent image information. DL approaches have recently been
proposed to analyze these images in order to automatically identify objects of
interest for pathologists.

The analysis and integration of information from different stainings is usually
performed with reference to a specific organ, structure, or pattern observed in
the tissue. For example, to diagnose pathologies such as breast cancer or kidney
allograft rejection it is necessary to study the inflammatory microenvironment of
the organ. In these cases, the relevant information is the distribution of immune
cells (e.g. macrophages or lymphocytes) in relation to important structures of
the organ, such as glomeruli for the kidney, or lobules for the breast.

To automatically perform such an analysis, the structure of interest (glomeruli,
lobules, etc.) should be detected in each section irrespective of the individual
staining modality. In order to avoid having to annotate each staining, strategies
have been proposed in [31] to build an ANN that is robust to color variations
between the WSI.

Another source of heterogeneity comes from slides originating from different
hospital or centers. Indeed, depending of the operator preparing the slide, section
thickness, chemical formulations, lab protocols etc. two images, even using the
same staining, can look very different [37]. In order to address this problem of
inter-centric heterogeneity, several teams proposed approaches based on domain
adaptation [16,30].

3.3 Generative Adversarial Network

A Generative Adversarial Network (GAN) is a class of ML systems invented by
Ian Goodfellow [19]. These models are composed of a generative ANN that gener-
ates candidates and a discriminate network that evaluates them. The generative
ANN learns to map from a latent space to a data distribution, while the discrim-
inative ANN distinguishes candidates produced by the generator from the true
data. GAN is use extensively in computer vision and are starting to be used in
DP too. For example, Neslihan et al. [5] proposed a method that uses dimension
reduction and conditional adversarial generative ANNs to transform unstained
hyperspectral tissue image to their Haematoxylin&Eosin (H&E) equivalent. The



goal is to create a virtual digital H&E staining that could automate some of the
tasks in the diagnostic pathology workflow.

Zanjani et al. [74] also explored how GAN could be used to normalize stain-
ings. By replacing the latent representation of a source image with those ex-
tracted from a template image in the trained model, the proposed model can
generate a new color copy of the source image while preserving the important
tissue structures.

Alternatively, Burlingame et al. [7] proposed the SHIFT method that uses
GAN to translate histopathological images to immunofluorescent images. This
method has the potential to improve our understanding of the mapping of his-
tological and morphological profiles into protein expression profiles. decision-
making.

GAN can also be used to cope with the lack of annotated data (see section
3.1). For example, Hou et al. [22] used GAN to synthesize histopathological
images, in order to train supervised CNN with the generated data. The synthetic
images are generated with the mask corresponding to the expected segmentation
and adapted to the reference style. This enables to boost the performance of the
trained CNN by using onthe-fly generated adversarial examples.

4 Conclusion

Thanks to the recent advent and increasing cost-effectiveness of digital scanners,
tissue histopathology slides can now be completely digitized and stored as digi-
tal images. With the availability and analysis of a much larger set of variables
combined with sophisticated imaging and analytic techniques, the traditional
paradigm of pathology and microscopy could quickly be complemented and po-
tentially also partially replaced by digital pathology, based on a screen-based vi-
sualization of digital tissue sections and an analysis combining a pathologist and
a computer-based diagnostic aid system. In this chapter, we presented challenges
and opportunities of using DL techniques to process these data. We discussed
current DL models for digital pathology and discussed the problems related to
the acquisition of annotations and the heterogeneity of the data (e.g. slides com-
ing from multiples centers, different types of stainings, etc.). With the broad
access to state-of-art of DL models and the availability of efficient computation
systems, DL for digital pathology will continue to make progress in the coming
years.
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