
End-to-end deep representation learning for time series
clustering: a comparative study

Baptiste Lafabregue · Jonathan Weber · Pierre Gançarski · Germain Forestier

This is the author’s version of an article published in Data Mining and Knowledge Discovery. The final
authenticated version is available online at: https://doi.org/10.1007/s10618-021-00796-y.

Abstract Time series are ubiquitous in data mining applications. Similar to other types of data,
annotations can be challenging to acquire, thus preventing from training Time Series Classification
(TSC) models. In this context, clustering methods can be an appropriate alternative as they create
homogeneous groups allowing a better analysis of the data structure. Time series clustering has
been investigated for many years and multiple approaches have already been proposed. Following
the advent of deep learning in computer vision, researchers recently started to study the use of
deep clustering to cluster time series data. The existing approaches mostly rely on representation
learning (imported from computer vision), which consists of learning a representation of the data
and performing the clustering task using this new representation. The goal of this paper is to
provide a careful study and an experimental comparison of the existing literature on time series
representation learning for deep clustering. In this paper, we went beyond the sole comparison of ex-
isting approaches and proposed to decompose deep clustering methods into three main components:
(1) network architecture, (2) pretext loss, and (3) clustering loss. We evaluated all combinations of
these components (totaling 300 different models) with the objective to study their relative influence
on the clustering performance. We also experimentally compared the most efficient combinations
we identified with existing non-deep clustering methods. Experiments were performed using the
largest repository of time series datasets (the UCR/UEA archive) composed of 128 univariate and
30 multivariate datasets. Finally, we proposed an extension of the Class Activation Maps (CAM)
method to the unsupervised case which allows to identify patterns providing highlights on how the
network clustered the time series.

Keywords Clustering · Deep Learning · Time series

B. Lafabregue
IRIMAS, Université de Haute Alsace, Mulhouse, France
ICube, Université de Strasbourg, Strasbourg, France
E-mail: baptiste.lafabregue@uha.fr

J. Weber · G. Forestier
IRIMAS, Université de Haute Alsace, Mulhouse, France
E-mail: firstname.lastname@uha.fr

P. Gançarski
ICube, Université de Strasbourg, Strasbourg, France
E-mail: gancarski@unistra.fr

https://doi.org/10.1007/s10618-021-00796-y

2 Baptiste Lafabregue et al.

Acknowledgements The authors would like to thank the creators and providers of the datasets: Hoang Anh
Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat
Ann Ratanamahatana, Eamonn Keogh, and Mustafa Baydogan. The authors would also like to thank the
Mésocentre of Strasbourg for providing access to the GPU cluster. The authors would also like to thank
Hassan Fawaz that gave free access to his code on time series processing and cd-diagrams. This work was
supported by the ANR TIMES project (grant ANR-17-CE23-0015) of the French Agence Nationale de la
Recherche.

General notations used in this paper

– X: the dataset to cluster
– x: an element of X
– xi: the ith element of X
– N : the number of elements in X
– k: the number of expected clusters
– |.|: the cardinatlity of the set
– f(): the encoder non-linear function
– g(): the decoder non-linear function
– Z: projection of X in the latent space, equals to f(X)
– z: an element of Z
– zi: the ith element of Z

1 Introduction

Automated acquisition systems and the growing storage capacity have made time series data avail-
able in a wide range of domains. It includes a wide range of applications such as finance stock
prices, electrocardiogram measurements, blood pressure in health, satellite images, earthquake in
earth observation, or even social media (Dau et al., 2019). Similar to other types of data, annota-
tions can be challenging to acquire, thus preventing from training Time Series Classification (TSC)
models (Dempster et al., 2020; Fawaz et al., 2019; Kotsiantis et al., 2007; Wang et al., 2017).

In this context, clustering can be seen as an alternative to partition time series into homogeneous
groups allowing a better analysis of the structure of the data (Saxena et al., 2017). The specificity of
the time dimension makes the use of traditional clustering methods challenging. Indeed, each time
step cannot be seen as an independent feature. Two time series can represent similar objects but
the time signal can be delayed, stretched, or subject to noise. This may result in high differences
in the Euclidean space, even though time series denote a similar signal. Thus, clustering methods
dedicated to time series have been proposed in the literature (Aghabozorgi et al., 2015; Liao, 2005;
Rani and Sikka, 2012).

Most of the existing methods consist in applying a standard clustering method but uses either
a specific dissimilarity measure or a time series representation (Aghabozorgi et al., 2015). The
dissimilarity measures are tailored to take the specificity of the time dimension into account (i.e.
stretches or shifts). Representation learning methods seek to remove the time dimension while
keeping neighbors’ structure or to rectify the comparison by aligning time series. Some approaches
define a stochastic model of the time series, e.g. Hidden Markov Model (Panuccio et al., 2002), or
split time series into characteristic segments, e.g. Symbolic Aggregate ApproXimation (Lin et al.,
2007), or shapelets, e.g. Unsupervised Salient Subsequence Learning (Zhang et al., 2018). Others

End-to-end deep representation learning for time series clustering 3

aim to apply a transformation operation, e.g. Discrete wavelet transform (Chan and Fu, 1999), or
realign time series, e.g. Dynamic Time Warping (Sakoe and Chiba, 1978).

Meanwhile, in computer vision, advances in Deep Neural Networks (DNNs) allowed to make
significant progress in clustering domain (Caron et al., 2018; Ghasedi Dizaji et al., 2017; Guo et al.,
2017a; Xie et al., 2016; Yang et al., 2019). In addition to their high performance, DNNs consist
in an end-to-end system that does not require extra pre-processing steps, resulting in saving time
on designing complex frameworks. We will refer to them as deep clustering methods. In parallel,
DNNs have proved to have the capacity to achieve competitive performance in time series supervised
classification (Dempster et al., 2020; Fawaz et al., 2019). However, to the best of our knowledge,
no previous work has been done to largely adapt state-of-the-art deep clustering methods from
computer vision to the specificities of the time series domain.
The main contributions of this paper are:

– We establish a review of both existing types of neural network architecture for time series and
existing end-to-end clustering methods based on DNNs.

– We detail how these clustering methods can be adapted to process time series.
– We evaluate all combinations on two standard time series benchmarks, the UCR (128 univariate

data sets) (Dau et al., 2019) and UEA archives (30 multivariate data sets) (Bagnall et al., 2018).
– We provide insight on the advantages and limitations of these methods for time series.

The rest of this paper is organized as follows. In Sec. 2, we present the major components used
in deep learning for clustering and for time series. In Sec. 3, we present the different approaches
selected in this study and how we evaluate them. In Sec. 5, we present the results obtained from
this evaluation and propose tools to give more insight to the reader on the deep clustering utility
for data mining in Sec. 6. Then, we summarize and discuss the main observations that we made in
this study in Sec. 7 and conclude in Sec. 8.

2 Background

2.1 Clustering, Deep learning and Time series

Let X be a set of N objects :
X = {x1, ..., xN} (1)

and d(xi, xj) a measure of dissimilarity between the objects xi and xj .
The clustering task can be defined as separating X into a partition C = {c1, ..., ck} of K

clusters, that both maximize the similarity between objects of the same cluster and maximize the
dissimilarity between objects of different clusters.

The use of deep learning methods in clustering usually consists in learning a new representation
of the data and performing clustering on this new representation instead of the raw data. This
representation is obtained from encoding the data with a deep neural network (DNNs), that is
called an encoder. An encoder is a non-linear mapping fΘ : X −→ Z, where Θ are the learnable
parameters of the encoder. Z is the representation of X as learned by the DNN. The new space
created by the DNN is called the latent space, in opposition to the original data space. Thus, the
task is now to partition the set Z defined as:

Z = {z1, ..., zN} = {fΘ(x1), ..., fΘ(xN)} (2)

in respect to the dissimilarity measure dz(zi, zj). Most of the methods in the literature use the
Euclidean distance for dz and K-Means as partitioning method (Bo et al., 2020; Guo et al., 2017a;

4 Baptiste Lafabregue et al.

Jiang et al., 2016; Ma et al., 2019; Xie et al., 2016; Yang et al., 2019). Therefore, the objective is
to find the mapping function fΘ that allows to obtain a relevant partition C for time series data.
In the following sections, fΘ() may be referred as f().

Time series is a specific kind of data, where each object can be seen as a sequence of time steps.
Therefore a time series of length T can be noted as:

xi = [xi,1, xi,2, ..., xi,T] (3)

where xi ∈ Rd×T , d being the number of features for each time step. Time series can be univariate,
d = 1 or multivariate, d > 1. In this paper, we will refer to time series as multivariate and consider
univariate time series as a specific case of multivariate ones where the number of features is equal
to one.

In the following sections, we present the main methods proposed in the literature for deep
clustering. We present the different types of layers that can be used for time series and then the
different types of losses used to learn the model parameters. But first, in the next section, we will
introduce the challenges of clustering time series.

2.2 Time dimension and clustering

Usually, classes of a time series dataset represent a view of a phenomenon in a given period of time
(e.g. person’s electrocardiogram, coordinate evolution of a specific hand gesture). This phenomenon
may happen multiple times, on a shifted time-lapse, or/and on a distorted time lapse. It may be
quick (e.g. a sudden share price increase) or spread over a long period (e.g. the daily highway traffic).
Clustering methods are used in this context to create groups that contain time series representing
the same phenomena.

Classically, the data is studied in the Euclidean space. Hence, the distance between two objects
is computed as:

deucl(xi, xj) = deucl(

xi,1...
xi,T

 ,
xj,1...
xj,T

)

=
√

(xi,1 − xj,1)2 + ...+ (xi,T − xj,T)2

(4)

Therefore, each time step is seen as an independent feature. The use of this distance as similarity
causes different problems with time series due to the nature of this dimension. Indeed, a simple
shift or stretch of the time series may result in a high distance in the Euclidean space. Examples are
shown in Fig. 1 where CBF is a synthetic dataset designed to discriminate between three shapes,
Cylinder, Bell, and Funnel, and Trace is a synthetic dataset designed to simulate instrumentation
failures in a nuclear power plant.

Clustering method are expected to take into account this possibility and be able to recognize
shifted or stretched patterns. In the literature, each method uses a different strategy to tackle this
issue. For the Symbolic Aggregate ApproXimation method (Lin et al., 2007), this is achieved by
dividing the time series into segments and computing and replacing this segment with a computed
approximation, reducing the time series dimension. For the Dynamic Time Warping metric, it
consists in computing a warped path to align time series and computing the distance in the resulting
warped dimension.

For DNNs, this issue can be solved by the non-linear transformation learned during the training.
A specific focus will be given in Sec. 6.3 to evaluate the DNNs’ capacity to handle stretching and
shifting.

End-to-end deep representation learning for time series clustering 5

0 50 100 150 200 250

2

1

0

1

2

3

4

(a) Class 1 sample 1 from Trace

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Cylinder sample 1 from CBF (

0 50 100 150 200 250
2

1

0

1

2

3

(c) Class 1 sample 2 from Trace

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(d) Cylinder sample 2 from CBF

Fig. 1 Examples of time series belonging to the same class with a shift (Figs. 1a and 1c) and a stretch
(Figs. 1b and 1d)

2.3 Encoder architecture

DNNs are structured as a set of layers that follow each other. In this paper, the term architecture
only refers to the set of layers used and their hyperparameters. In a DNN, layers are divided into
three types in the following order: the input layer that corresponds to the actual input, followed
by hidden layers, and then the output layer. For encoders, this last layer is usually called the
embedding layer, lz. Each layer is a non-linear function, and the network, with L hidden layers,
can be noted as:

fΘ(x) = lz(θz, lL(θL, lL−1(θL−1, ...(l1(θ1(x)))))) (5)

where θk are the learning parameters of the layer lk. Multiple types of DNNs layers have been used
in the literature to handle time series. They can be divided into three families: Fully connected
layers, Convolutional layers, and Recurrent layers.

6 Baptiste Lafabregue et al.

2.3.1 FCNN: Fully Connected Neural Network Layers

This is the simplest form of layers for DNNs (Rosenblatt, 1958). In this type of layer, every neuron
from the layer is connected to every neuron from the previous layer. The layer’s result can be
expressed for the ith layers, li, by the following equation:

outl0 = x,

∀0 < i < L, outli = ali(Wlioutli−1
+ b),

(6)

with Wli ∈ Routm×m being the set of weights, where outm is the dimension of outli−1
vector and

m the number of neurons in layer li, b the bias term and ali an activation function (e.g. relu, tanh
or linear).

FCNN layer can be used for any kind of data, regardless of the input number of dimensions or
size, as long as the input has a fixed size. Note that the input can be padded to reach the fixed input
size. This makes them easy to use in various domain, such as image (Guo et al., 2017a; Xie et al.,
2016), modelization (Sun et al., 2013), or time series (Fawaz et al., 2019). However, this makes it
also difficult for them to capture specific dimension’s relations such as space or time. Indeed, for a
time series, each time step has its own weight and the link to its time neighbor is lost during the
computation of the layer in Eq. 6.

It has to be noted that FCNN layers are in general used for the embedding layer lz to get rid of
the specific dimensionality of the data, the number of time steps T , and the number of features d in
our case. Thus, we obtain a representation in the form of a vector of fixed size given by the user. It
allows to use a partitioning method agnostic to data specific structure and uniform the processing
of this data.

2.3.2 CNN: 1D Convolutional Neural Network Layers

Convolutional layers allowed huge progress in DNNs performance, especially in computer vision (Krizhevsky
et al., 2012; LeCun et al., 1998). Contrary to FCNN layers that treat all time steps independently,
they aim to take advantage of hierarchical patterns in the data by learning small and simple
patterns in the first layers and assemble them when going towards the last layers. For images,
2D-convolutions are used to capture spatial patterns. Identically, 1D-convolutions are used to cap-
ture temporal patterns. They have already demonstrated their good performance in supervised
tasks (Fawaz et al., 2019; Wang et al., 2017).

For 1D-convolutions each layer consists in applyingm filters of kernel size k to the input sequence
outli−1, with outl0 = x. For each time step t we compute:

outli,t = ali(F.[outli−1,t−b k2 c
, outli−1,t−b k2 c+1, ..., outli−1,t+b k+1

2
c]) (7)

where outli,t is in Rm and F ∈ Rm×k is a matrix composed of the stacked m filters. Then we obtain
the following output sequence:

outli = (outli,1+b k2 c
, outli,2+b k2 c

, ..., outli,T−b k2 c
) (8)

where outli ∈ Rm×T−(k−1). For 2D-convolutions, different values of stride and padding are often
used. Stride is a parameter that controls the step made by the filter when sliding through the
sequence. The padding defines how the border of a sample is handled by the filter, by padding the

End-to-end deep representation learning for time series clustering 7

sequence with a certain number of zeros. This results, for a stride of value s, and a padding value
of p into:

outli = (outli,1+δ+0×s, outli,1+δ+1×s, ..., outli,dT−δs e) (9)

where δ = bk2c − p.
A half padding (padding of half the kernel size) is often used, otherwise, if the kernel size, k, is

larger than 1, the convolution would crop away the outputted sequence’s border. Even though these
parameters are often modified in image processing, a stride of 1 and a half padding is generally
used for time series (Fawaz et al., 2019; Xiao and Cho, 2016; Wang et al., 2017). In consequence,
the output of each layer conserves its time dimension size.

However, an alternative padding technique is sometimes used for time series to take into account
the specificity of the time dimension, called causal padding. Instead of padding on both sides of
the input sequence, a padding of k − 1 is added at the beginning of the sequence. In consequence,
the time step t of the outputted sequence is computed/predicted, only based on time step t or prior
to it from the input sequence. Note that in this case the padding is only added at the beginning,
the time dimension size being also conserved after each CNN layer.

Causal padding is, in general, combined with another parameter called dilation (Yu and Koltun,
2015). Dilated convolution works like stride, but the stride effect is applied on the kernel instead
of the input sequence. Thus, Eq. 7 can be rewritten with a dilation factor d as:

outli,t = ali(F.[outli−1,t−b k×d2 c+0×d, outli−1,t−b k×d2 c+1×d, ..., outli−1,t+b k×d+1
2
c]) (10)

It can be noted that a dilation factor of 1 corresponds to the vanilla convolution. Usually, the factor
d is set in an exponential manner, the dilation factor getting multiple by 2 at each layer. Also, the
first layer uses a dilation factor of 1 to preserve the dependency to the previous time step.

2.3.3 RNN: Recurrent Neural Network Layers

Recurrent layers have been proposed specifically to take into account the time dimension (Hochre-
iter and Schmidhuber, 1997; Hopfield, 1982). This type of layer allowed huge progress in speech
recognition (Sak et al., 2014) and language translation (Sutskever et al., 2014). Contrary to other
layer types, the input sequence is fed to the layer time step by time step to update the hidden state
of the layer. This state can be seen as the memory of the previous steps. The layer itself consists of
applying recursive function g that takes as input the current step xt and the previous hidden state
ht and output the new hidden state:

ht = g(xt, ht−1) (11)

In general, h0 vector is filled with zero values. Originally, the recursive function was defined as
follow:

ht = tanh(Wxt + Uht−1 + b) (12)

where ht is a vector of size u, also called the number of units, W ∈ Ru×d and U ∈ Ru×u being the
weights and b ∈ Ru the bias vector of the layer that are learned during training. However, this type
of recursive function, also called a cell, often leads to a vanishing gradient (Bengio et al., 1994),
making the training difficult. Other types of cells have been proposed in the literature, Long Short
Term Memory (LSTM) and Gated Recurrent Units (GRU) cells.

An LSTM unit (Gers et al., 2000; Hochreiter and Schmidhuber, 1997) consists of four sub-unit,
usually called gates, that controls the information to update the hidden state and the output: an

8 Baptiste Lafabregue et al.

input gate, an output gate, a forget gate, and a candidate memory gate. Each gate is respectively
computed as:

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

ft = σ(Wfxt + Ufht−1 + bf)

c̃t = tanh(Wcxt + Ucht−1 + bc)

(13)

where σ is the sigmoid function.
From these gates is computed the memory cell:

ct = ft ◦ ct−1 + it ◦ c̃t (14)

where ◦ denotes the element-wise product. And the hidden state is updated as follow:

ht = ot ◦ tanh(ct) (15)

A GRU unit (Cho et al., 2014) is similar to LSTM but works with fewer parameters. The
performance of GRU cells has shown to be similar to LSTM, even though it seems more limited
than LSTM on some tasks (Weiss et al., 2018). It consists of three gates: an update gate, a reset
gate, and a candidate gate, respectively computed as:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tanh(Whxt + Uh(rt ◦ ht−1) + bh)

(16)

The hidden state is then updated as follow:

ht = (1− zt) ◦ ht−1 + zt ◦ ĥt (17)

For all these types of units, the hidden state, after all the sequence is fed, hT , usually constitutes
the learned representation of the sequence.

s xss t

x

x +

c

LSTM

t

+

c
c

x

s

x
s x

ct

ht

xt

ht-1

ct-1 ht-1

xt

ht

GRU

x
element-wise
multiplication

+
elment-wise
addition

c
vector

concatenation

t
tanh

activation
sigmoid
activation

s

1-ft otit c̅t
rt

zt
t

Fig. 2 LSTM and GRU cells with input xt and the computation of the new hidden state ht, and for LSTM
the additional computation of the new cell state ct

End-to-end deep representation learning for time series clustering 9

Some further options are often used within RNNs. The most common one is the use of bidi-
rectional layers. It consists in training in parallel two identical RNN layers, but one processes each
time step in the time order (1 to T), and the other one processes them backward (T to 1). Similarly
to CNN layers, the use of dilation has been proposed (Chang et al., 2017), even though it has seen
fewer applications. The declination for RNN layers is simpler than for CNN. It can be resumed, for
a dilation factor d, to the following equation:

ht = cell(xt, ht−d), (18)

where cell() is the computation of the RNN unit hidden state. It is a skip connection to compute the
hidden state at time t with respect to the dth previous hidden state instead of the direct previous
state. It is also used with exponentially increasing dilation. Finally, it can be pointed out that
RNNs were originally proposed as a unique layer. However, they can be stacked (Pascanu et al.,
2013). As RNN layers need to be fed a sequence, each additional RNN layer takes the sequence of
previous RNN layer hidden states as input.

2.3.4 Attention mechanism

An attention mechanism, more specifically self-attention in our case, allows to quantify the interde-
pendence within the input elements in order to focus the network’s attention only on the elements
that are important for the training task. Attention mechanisms often come as a component or
as the basic structure for new DNN models, with the Transformers (Vaswani et al., 2017). They
have attracted a lot of interest recently due to their very good performances, surpassing classical
convolutions in some cases, but also to their much lower computation times (Vaswani et al., 2017).
Attention mechanisms were first used in Natural Language Processing (NLP) (Bahdanau et al.,
2014; Vaswani et al., 2017) then in computer vision (Guan et al., 2018; Jaderberg et al., 2015;
Woo et al., 2018). Some methods have been proposed for unsupervised learning, but mainly on
specific cases, like graph clustering (Wang et al., 2019) or the use of spatial attention (Souza and
Zanchettin, 2019). However, a few works have also been conducted for time series clustering.

One of the main proposition is the DeTSEC method (Deep Time Series Embedding Clustering).
This method, proposed by Ienco and Pensa (2019), is based on the use of an autoencoder composed
of a bidirectional GRU layer for the encoder and the decoder. However, an attention mechanism
is placed at the output of the forward layer and the backward layer of the bidirectional layer. The
attention layer hatt is computed as follows:

va = tanh(H.Wa + ba)

λ = SoftMax(va ◦ ua)

hatt =
T∑
j=1

λj .htj

(19)

where circ denotes the element-wise product, H ∈ RT,l is a matrix constructed by vertically stacking
the set of hidden states htj learned at different T time steps by the GRU layer, with l the size of the
hidden state of the layer. The matrix Wa ∈ Rl,l and the vectors ba, ua ∈ Rl are parameters learned
by the network. The latent representation is then computed for an input x using the outputs of
theforward (hattforw) attention mechanism layer and the backward one (hattback), as:

f(x) = gate(hattback) ◦ hattback + gate(hattforw) ◦ hattforw
gate(o) = σ(Wg.o+ bg)

(20)

10 Baptiste Lafabregue et al.

where σ is the sigmoid function and Wg and bg are parameters learned during the model’s training.
The gate function adds an additional level of decision in order to better discriminate the information
returned by the forward and backward layers.

We can also mention the method proposed by Jiao et al. (2020). This is a general method that
can handle several tasks, such as anomaly detection and clustering. It is based on a general model
composed of several modules, which can be activated or not according to certain hyperparameters,
the hyperparameters being fixed by Bayesian optimization (Shahriari et al., 2015). However, they
do not provide precise information on the implementation used for the attention mechanism.

2.4 Training Encoder’s parameters for meaningful features

The objective is to train the DNNs to learn a representation that will favor the data clustering
into relevant groups. As labels are unknown in unsupervised learning, we need to optimize our
DNNs on a side objective. To do so, we use a self-supervised objective, where the data provides the
supervision, to obtain meaningful features. This objective is referred to as a ”pretext” or ”proxy”
task (Doersch et al., 2015; Larsson et al., 2017; Xu et al., 2019). As the term proxy loss is often
used to refer to a loss much easier to optimize computationally than the standard loss function, we
will use the term pretext loss to refer to them in the rest of this paper.

2.4.1 Autoencoders (AEs)

AEs were first proposed as a dimensionality reduction method (Kramer, 1991; Rumelhart et al.,
1986) or as a pre-training method (Ballard, 1987), but they also show to give useful representation
for clustering purpose (Becker, 1991). They are the first use of DNNs for clustering and remain the
base of most of them.

AEs consist of two parts, an encoder, f , and a decoder, g. The encoder is a non-linear mapping
f : X −→ Z that project the data into a latent space (as described in Sec. 2.1), and the decoder a non-
linear mapping g : Z −→ X that project latent space variables into the data space. In consequence,
an object xi can be passed to the encoder to obtain its representation zi, then zi can be passed
through the decoder to obtain a new object x̂i, called the xi reconstruction. An AE is evaluated by
its capacity to reconstruct faithfully xi into x̂i. Thus, we expect the encoder to be able to retain
the important features from the data space into the latent space to allow a good reconstruction.
To train the AE weights, we simply minimize the mean square error, also called the reconstruction
loss:

Lr =
1

n

n∑
i=1

‖xi − g(f(xi))‖2 (21)

The decoder is, in general, constructed as a mirror of the encoder (Kramer, 1991; Guo et al., 2017a;
Xie et al., 2016) at the exception of the embedding layer lz.

2.4.2 Regularized autoencoders

The first alternatives to AEs consist of regularized forms of the AE:

– Denoising Autoencoder (DAE) (Vincent et al., 2008): Instead of feeding the original input (xi)
to the AE, a partially corrupted version (x̃i) is used. The DAE is then trained to reconstruct
the original data xi :

Ldae =
1

n

n∑
i=1

‖xi − g(f(x̃i))‖2 (22)

End-to-end deep representation learning for time series clustering 11

Therefore the objective is to clean the corrupted input, resulting in an embedding robust to
small variations. The corruption, or noise, is generated randomly for each object and at each
iteration. Different methods exist to generate the corrupted input. Originally, masking noise
(a fraction of the input is set to 0) was used, but other types, like isotopic Gaussian noise or
salt-and-pepper noise (a fraction of the input is set to min or max value), can be used. Note
that the corruption is only applied during the training phase. No corruption is performed when
the representation is computed for the clustering task.
A derived form of DAE, Stacked Denoising Autoencoders (SDAE), was also proposed and showed
good results (Vincent et al., 2008; Xie et al., 2016). The concept is similar to DAEs but it differs
by including a pre-training phase done one layer at a time. For each step i from 1 to L, the AEs
is composed with only the i first encoder layers and the i last decoder layers. Then, only the
ith encoder layer and ith from the end decoder layer are trained for the denoising task. This
pre-training phase is followed by a fine-tuning phase similar to the basic DAE.

– Sparse Autoencoder (SAE) (Makhzani and Frey, 2013): SAEs differ from AEs by only allowing a
small number of neurons to be active at once in the embedding layer. For a k-sparsity, it simply
consists in selecting the k largest hidden units outputted by the encoder and set the others to zero
before passing them to the decoder. Other versions express the sparsity penalty term directly in
the loss function by, for example, take advantage of the Kullback-Leiber divergence (Zeng et al.,
2018).

– Contractive Autoencoder (CAE) (Rifai et al., 2011): Whereas DAEs are designed to increase the
robustness of reconstruction to small modifications in the input, CAEs are designed to increase
the robustness of the representation itself. The regularization term corresponds to the Frobenius
norm of the Jacobian matrix of the encoder activation, Jf , with respect to the input xi. We
obtain the following loss function:

Lcae = Lr + λ

n∑
i=1

‖Jf (xi)‖2F (23)

where λ is a hyper-parameter that controls the strength of the regularization. This regularization
allows CAEs to ignore variations present in the data (e.g. translation or rotation for images)
but also more small and rare variations (present in specific examples), while the reconstruction
loss only ensures that the reconstruction is faithful (Rifai et al., 2011).

2.4.3 Generative methods

Contrary to AEs that rely on the reconstruction task, other methods rely on generating realistic
data to train the encoder:

– Variational Autoencoder (VAE) (Kingma and Welling, 2013): Based on AEs architecture (an
encoder and a decoder), VAEs differ significantly on their training phase. VAEs want to exploit
the capacity of the decoder to generate data. In AE, the decoder is only used to reconstruct a
previously encoded input, but we could think about take a random point in the latent space and
decode it to obtain new content. However, this supposes that the latent space is regular enough.
VAEs aim to introduce such regularization by assuming that the data follows a distribution, in
practice an isotopic Gaussian distribution.
The VAEs’ concept is to pass an input set x to the encoder and map it to a Gaussian distribution
q(zg|x). We sample zg from q(zg|x) and pass zg through the decoder to obtain the distribution
p(x|zg). To train the network we use the following loss (Kingma and Welling, 2013), called

12 Baptiste Lafabregue et al.

evidence lower bound (ELBO):

Lvae =
n∑
i=1

− E
zg∼q(zg |xi)

[log p(xi|zg)] +KL(q(zg|xi)‖p(zg)) (24)

The first term is the reconstruction loss to ensure good reconstruction from the decoder. The
second, is a regularization term that aims to make converge the expected distribution p(zg) to the
observed one generated by the encoder. p(zg) is constructed as a standard Normal distribution
with mean zero and variance one.
Nonetheless, VAE’s learned representation is not the most fitted to clustering. Some works
proposed some slight modifications to that extends. Jiang et al. (2016) proposed a new version,
called Variational Deep Embedding (VADE), that, instead of trying to learn one distribution,
learn as many distributions as expected clusters. This result, for Eq. 24, in replacing the single
distribution q(zg|x) by a set of distribution q(zg, c|x) for c ∈ 1, ..,K for K clusters, and the
expected distribution p(zg) by p(zg, c). The set of distributions is initialized from a Gaussian
Mixture Models on the pre-trained latent space with another loss (e.g. AE, or VAE). Li et al.
(2018) proposed a method based on VAE to learn a multi-facet clustering structure of the latent
space instead of a single partition.

inputs

𝑥i 𝑥i
𝑧g ^

Encoder
𝑓() Decoder

𝘨()

latent features

reconstruction
loss

KL
divergence

K-GMM

Fig. 3 VADE method with K clusters: the encoded representations are used to generate K Gaussian
distributions. Samples are generated for each distribution. The DNN is trained to reconstruct them and fit
the generated distribution with the original one.

– Generative Adversarial Network (GAN) (Goodfellow et al., 2014): GAN is the other major
generative type of DNNs. GANs are composed of two elements, the generator GΘG and the
discriminator DΘD , that are both DNNs. The generator, G : X −→ Z, generates data from a
latent space, similarly to the AE’s decoder. The discriminator, D : X −→ R, generates a real
value from the data space that can be seen as the probability of the data to be real. The two
networks are trained in a two-player game. The two adversaries are trained through the following
min-max objective:

min
ΘG

max
ΘD

E
x∼Prx

q(D(x)) + E
z∼Pz

q(1−D(G(z))) (25)

End-to-end deep representation learning for time series clustering 13

where Prx is the distribution of real data samples, Pz is the prior noise distribution on the latent
space, and q(x) is the quality function. For vanilla GAN, q(x) = log x, and for Wasserstein GAN
q(x) = x. We expect, at the end of the training, the convergence of Pz towards Prx.
However, one can notice that GANs do not include any encoder part in their framework. There-
fore, they cannot be used as-is for clustering purposes as no representation can be extracted
from our data. Few works have been proposed in the literature to include an encoder. In Lip-
ton and Tripathi (2017), they tested to back-propagate the data through G, but the obtained
representation was not suitable for clustering purpose (Mukherjee et al., 2019). Ghasedi et al.
(2019) added a third network, a clusterer E : X −→ Z, and modified the discriminator to not
only discriminate if the data space example is real or not but if the joint distribution of samples
(E(x), x) and (z, G(z)) is coming from either the generator or the clusterer. This result in the
following objective function:

min
ΘG,ΘE

max
ΘD

E
x∼Prx

q(D(C(x), x)) + E
z∼Pz

q(1−D(z,G(z))) (26)

Mukherjee et al. (2019) also included an encoder, E. But in this case, they enforce the K last
features of the latent space to be a one-hot vector of the expected cluster. Therefore the latent
feature is composed of z = concat(zn, zc), where zn is sampled from a normal distribution and
zc is a one-hot vector of a cluster selected at random. Then, the networks are trained with the
following objective function:

min
ΘG,ΘE

max
ΘD

Ex∼Prxq(D(x)) + E
z∼Pz

q(1−D(G(z)))+

βn E
z∼Pz
‖zn − E(G(zn))‖22 + βc E

z∼Pz
H(zc, E(G(zc)) (27)

where H() is the cross-entropy loss. The first two equation elements are the vanilla GAN, the
third ensure the reconstruction quality of the re-encoded features, and the last ensures that the
generated one-hot encoded part is preserved by the encoding. βn and βc are weights to leverage
between continuous and discrete characteristics of the latent space.

𝑥g

inputs

𝑥i

latent features

Generator
G()

Encoder
E()

Discriminator
D()

𝑧n

𝑧c

𝑧c

𝑧n
^

^

Fig. 4 ClusterGAN method: the latent feature is separated into two components, one from a Gaussian
distribution, zn, and the other to one-hot encoded the clustering assignment, zc. An encoder is added and
trained to both preserve zn and zc encoding.

14 Baptiste Lafabregue et al.

2.4.4 Time series triplet loss

Another loss has been proposed to train an encoder specific to time series, called triplet loss (Franceschi
et al., 2019). This loss has the advantage to require an architecture that only includes an encoder.
Removing the decoder has the advantage of computational gain as we do not need to train its
parameters, but also to remove the problem of designing the decoder architecture. This loss is
based on a former work (Schroff et al., 2015) that proposed a loss to obtain similar representation
for similar objects while pushing apart representation of dissimilar objects. However, it supposes
a supervised knowledge on objects’ similarity. The authors in Franceschi et al. (2019) proposed to
solve this problem by using a time-based sampling strategy.

They do the assumption that if we pick a subseries at random, xref , from a time series xi, than
we can except, with a good probability, two things. In one hand, xref representation will be close
to any of its own subseries xpos (positive example), xref can be seen as the context of xpos. On the
other hand, xref representation will be distant from any subserie xneg randomly taken in another
time series xj , with j 6= i. They also introduced another parameter Ktriplet that sets the number
of negative samples to use for each training object to improve stability. The loss is computed with
the following equation:

Ltriplet = − log(σ(f(xref)T f(xpos))−
Ktriplet∑
l=1

log(σ(−f(xref)T f(xnegl)), (28)

where σ is the sigmoid function. The first term trains the DNN to minimize the dissimilarity
between xref and xpos representations, whereas the second term train the DNN to maximize the
dissimilarity between xref and the Ktriplet x

neg samples representations.

2.5 Training Encoder’s parameters for clustering task

In the previous section, we have described different objective functions to obtain meaningful fea-
tures from the latent space. However, most of these representations are not necessarily suitable for
clustering as they well describe the input time series but do not output a discrete latent space. In
this case, discriminate each cluster can be difficult.

To this end, multiple methods proposed to add, either in parallel or as post-processing, a
complementary loss to obtain a more separable latent space. We will refer to them as clustering
loss.

2.5.1 Deep Embedded Clustering (DEC)

Proposed in Xie et al. (2016), it is one of the most referred clustering loss, and it has been the
subject of many adaptations (Bo et al., 2020; Guo et al., 2017a; Ma et al., 2019; Yang et al., 2019).
The idea is to learn clusters as we train the encoder’s parameters. The method is divided into
two steps. First, the encoder’s parameters are initialized through an AE architecture. Then, the
decoder is detached and the encoder’s parameters are optimized by computing an auxiliary target
distribution and minimizing the Kullback–Leibler (KL) divergence to it.

After the first phase, we obtain an initial estimate of the final latent space. An initial K-Means
clustering is performed on the encoded features that outputs as set of k centroids {µj}kj=1. In the
second step, we compute a new distribution of the latent space Q, from Z that uses the Student’s

End-to-end deep representation learning for time series clustering 15

t-distribution as a kernel to measure the similarity between embedded point zi and centroid µj :

qij =
(1 + ||zi − µj ||2/α)−

α+1
2∑k

j=1(1 + ||zi − µj ||2/α)−
α+1
2

, (29)

where α is the degree of freedom of the Student’s t- distribution. The authors set this value to
α = 1 as it cannot be directly cross-validated (Xie et al., 2016). The obtained value qi,j can be seen
as the degree of belief that the object xi belongs to the cluster j. Therefore, for each value xi we
obtain a soft assignment vector qi. The function that computes qij from zi is called the clustering
layer. The objective is now to make this soft assignment qi harder and, as explained by the authors,
that have the following properties: (1) strengthen predictions (i.e., improve cluster purity), (2) put
more emphasis on data points assigned with high confidence, and (3) normalize loss contribution
of each centroid to prevent large clusters from distorting the latent feature space. To this extends
they used the distribution P defined as:

pij =
q2ij/

∑N
i=1 qij∑k

j=1(q
2
ij/
∑N

i=1 qij)
(30)

The encoder is then trained with the KL divergence:

Lc = KL(P |Q) =
N∑
i=1

k∑
j=1

pij log
pij
qij

(31)

As the authors wanted a generic method they used a simple architecture with only fully connected
layers.

As it was one of the first clustering method with deep learning proposed to give significantly
good results, many works have extended this clustering loss.

inputs

𝑥i 𝑥i𝑧i ^Encoder
𝑓()

latent features

reconstruction
loss

𝑐i

clustering layer

KL
divergence

Decoder
𝘨()

Fig. 5 IDEC method: The DNN is trained to both reconstruct the data and obtain a more densely dis-
tributed representation with KL divergence.

The first one, Improved Deep Embedded Clustering (IDEC) (Guo et al., 2017a), proposed a
simple modification that consists in keeping the decoder and the reconstruction loss in the second

16 Baptiste Lafabregue et al.

phase. The idea is to keep the feature’s informativeness acquired from the first phase. It results in
the new loss:

LIDEC = (1− γ)Lc + γLr (32)

One can notice that DEC is a particular application of IDEC with γ = 0. However, this modification
seems not relevant for all data sets (Guo et al., 2017a). It can also be made mention of the IDEC
version that uses convolutional AE (Guo et al., 2017b) instead of fully connected layers. This last
adaptation already shows the importance of AE architecture.

More sophisticated variations were also proposed. For example, the method Structural Deep
Clustering Network (SDCN) (Bo et al., 2020), that incorporate a Graph Convolutional Network
(GCN) (Kipf and Welling, 2016), trained in parallel of the IDEC encoder with the same number
of layers. A GCN layer allows keeping the graph relation of the data. The authors use it to keep
neighborhood relations from the data space in the latent space. A KNN-graph is created from the
train set, where an edge is added for each sample with its kknn nearest neighbors. Each encoder is
regularised by a GCN layer to keep this graph structure.

inputs

𝑥i 𝑧i

KL
divergence

latent features

𝑐i

Encoder
𝑓()

Decoder
𝘨()

𝑥î

clustering layer
GCN layers

graph

reconstruction
loss

Fig. 6 SDCN method: It adds GCN layers to IDEC framework to preserve local structure from the data
space to the latent space.

2.5.2 Other noticeable clustering loss

Many other methods have been proposed in the literature, even though all of them could not be
cited, here are some of the main ones:

– DeepCluster (Caron et al., 2018): The authors propose a simple training solution that consists in
alternating between two phases. First, it clusters the train set in the latent space with K-Means
to obtain an assignment for each object. Then, the encoder parameters are optimized to predict
these pseudo labels. However, the authors only used this method as a pre-training method to
initialize the DNNs weight for supervised classification.

End-to-end deep representation learning for time series clustering 17

– Deep Embedded Regularized Clustering (DEPICT) (Ghasedi Dizaji et al., 2017): The DEPICT
framework is similar to IDEC work but made further modifications to DEC method. First, it
uses a clustering loss similar to DEC and also incorporate a clustering layer composed of a
Dense layer of size k, followed, this time, by a softmax layer. In consequence, the distribution
Q is defined as:

qij = Q(yi = j|zi, Θsoft) =
exp(θTsoft,kzi)∑k
j=1 exp(θ

T
soft,kzi)

, (33)

where Θsoft = [θsoft,1, .., θsoft,k] are the weights of the clustering layer. P is computed similarly
to DEC by Eq. 30. Then, they use the KL divergence between P and Q to train the DNN, but
also add a regularisation term to avoid degenerated solution with only a few big clusters:

L = KL(Q|P) +KL(f |u)

= [
1

N

N∑
i=1

k∑
j=1

pij log
pij
qij

] + [
1

N

k∑
j=1

fj log
fj
uj

]

=
1

N

N∑
i=1

k∑
j=1

pij log
pij
qij

+ pij log
fj
uj
,

(34)

where fj = 1
N

∑N
i=1 qij is the empirical cluster distribution, i.e. the frequency of the clusters.

And uj is a uniform distribution. This implies the strong assumption that clusters are equally
represented in the training set. Then, they show that this regularization can be approximated
by computing the standard cross-entropy between Q and P

inputs

𝑥i 𝑧i Cross-Entropy

latent features

𝑐i

Encoder
𝑓()

Decoder
𝘨()

𝑥i^

Lr

clustering layer

Lr Lr Lr

Fig. 7 DEPICT method: The DNN is trained to both reconstruct the data at each layer depth and obtain
better confidence into predicting clustering pseudo labels with cross-Entropy.

18 Baptiste Lafabregue et al.

Second, they also changed the AE, to use a Denoising version with masking noise on each layer
(i.e. with dropout layers). After a pre-training phase, the noisy AE is jointly trained with the
clustering loss as in IDEC method. Moreover, they extend the classical reconstruction loss to
be computed as the sum of the reconstruction at each depth of the autoencoder:

Lmulti rec =
1

n

n∑
i=1

L−1∑
l=0

1

|zli|
(zli − ẑli)2 (35)

where zli is the output of the lth layer of the encoder (the input for l = 0), |zli| its output size, and
ẑli the output the lth layer of the decoder from the end. This loss insure that the reconstruction
is kept at all the stages of the autoencoder.

– Joint Unsupervised Learning (JULE) (Yang et al., 2019): This approach is highly different
from others as it does not use a separated clustering loss. This is still included in this section
because it is often referred to. This method is an agglomerative clustering approach, at each
step two clusters are merged until reached the desired number of clusters. This merging is done
with respect to an affinity matrix computed in the latent space. This choice is mitigated by
considering the local structure of the data, to favor the merging of clusters that are, at the same
time, close to each other and far from other neighbors.
The encoder f is updated every p steps by the following loss:

LJULE = − 1

Kc − 1

∑
i,j,k

(γA(f(xi), f(xj))−A(f(xi), f(xk))), (36)

where γ is a weight, A() is the affinity measure between two objects. xi and xj are from the
same cluster, while xk is from the Kc closest neighbouring clusters. A() is equal to the weight
of the affinity matrix W from vertex xi to xj defined by:

W (i, j) =

{
exp(−‖f(xi)−f(xj)‖

2
2

δ), if xi ∈ NKs
i

0, otherwise
(37)

where NKs
i is the set of Ks xi’s nearest neighbors and δ the mean squared error between xi and

its neighborhood NKs
i .

2.5.3 Deep clustering methods for time series

Some deep clustering methods have been also proposed in the specific context of time series:

– Deep Temporal Clustering (DTC) (Madiraju et al., 2018): This method is organized as IDEC
framework. However, they changed the architecture of the encoder by replacing the encoder
with a 1D-Convolution layer followed by a MaxPooling layer and two stacked bi-LSTM cells.
The decoder consists of a simple upsampling followed by a 1D-Convolution layer to reconstruct
the data. Moreover, it is not the state of the last bi-LSTM cell that is used for representation but
the reconstructed sequence. Therefore they keep the time dimension in the embedding. Based
on this, they modified the computation of DEC distribution Q from Eq. 29 by:

qij =
(1 + sim(zi, µj)/α)−

α+1
2∑k

j=1(1 + sim(zi, µj)/α)−
α+1
2

, (38)

where sim(xi, xj) is a measure of similarity between objects xi and xj . They then used differ-
ent similarity measures than the Euclidean, the Complexity Invariant Distance giving the best
results.

End-to-end deep representation learning for time series clustering 19

– Deep Temporal Clustering Representation (DTCR) Ma et al. (2019): Similarly to DTC, the
authors used three stacked bi-directional RNN network as the encoder. However, they also add
exponential dilatation. The decoder is a single RNN layer, its hidden state is initialized with
the concatenation of the final hidden state of encoder’s layers. For the training objective, the
authors proposed a new loss composed of three parts:

– A classical reconstruction loss Lr.
– A real/fake loss Lclassif : the encoder is trained to discriminate if the input is real or fake,

fake samples being generated by randomly shuffling 20 % of the time steps. To this extent,
a 2-dim soft-max layer is attached to the encoder and trained to predict a 2-dim one-hot
vector indicating real or fake with the categorical cross-entropy.

– A K-Means loss LK−Means: this loss is based on the spectral relaxation for k-means clustering
proposed in Zha et al. (2002). It consists in minimizing the following function:

min
F
Trace(HTH)− Trace(F THTHF), s.t.F TF = I, (39)

where H ∈ Rm×N is the data matrix, with m the latent space dimensions. And F ∈ RN×k is
the cluster indicator matrix. F is fixed when the DNNs are trained but it is updated every
10 iterations by computing the k-truncated singular value decomposition of H.

We obtain the combined loss:

LDTCR = Lr + Lclassif + λLK−Means, (40)

where λ is a regularization coefficient. One can notice that this loss is not specific to time series
and could be used for other data types.

3 Evaluated methods and implementations

All of the methods presented in Sec. 2.5 have their specific framework, with their own architecture
(i.e. types and number of layers, optimizer, etc.) their own clustering loss and often their own
pretext loss. Thus, the comparison is often difficult to do, as we cannot be sure which parts
or combinations of elements in the method are explaining the performance difference. Moreover,
comparing a generic method that can handle various types of data types to a tailored method to a
specific set of data may be seen as unfair, especially when the generic method can be easily adapted.

This study aims to cover the different elements available to cluster time series in deep learning
and highlight the influence of each element on the clustering performance. However, given the high
number of approaches proposed in the literature, we only studied a selection of methods. In this
section, we first explain how we decomposed the analysis of the clustering methods, then we give
more details on the selected elements.

All the methods were implemented in TensorFlow 2 based on the existing code when available.
A reference to the authors’ code is added in this case. The code used for the study is available
online1.

3.1 The deep clustering method’s decomposition

End-to-end deep clustering methods are usually decomposed into two phases. A pre-training phase,
where the network is trained to retain meaningful features with a pretext loss. And a clustering

1 https://github.com/blafabregue/TimeSeriesDeepClustering

20 Baptiste Lafabregue et al.

Table 1 Summarize of loss and architecture compatibility. For each pretext and clustering loss, we list the
compatible architecture types. *: indicates that it is with the exclusion of the Dilated-RNN architecture

Clustering loss
DEPICT SDCN DTCR DEC IDEC ClusterGAN VADE

P
re

te
x
t

lo
ss

Multi rec
FCNN FCNN FCNN FCNN FCNN
CNN CNN CNN CNN CNN All All
RNN RNN RNN RNN RNN

Reconstr.
FCNN

All CNN All All All All All
RNN

Triplet
FCNN

All CNN All All All All All
RNN

VAE
FCNN

All CNN All All All All All*
RNN

GAN All All All All All All* All

phase, where the network is trained to output features suitable for the clustering task. Therefore,
DNNs for clustering are often the combination of three elements: an architecture (i.e. the set of
layers in this paper), a clustering loss, and a pretext loss.

For example, the DEC method presented in Xie et al. (2016) can be decomposed as follow:

1. A FCNN auto-encoder as architecture of the DNN.
2. The reconstruction loss is used as pretext loss in the pre-training phase.
3. The clustering loss based on the KL divergence is used as clustering loss in the clustering phase.

The list of all combinations used is summarized in Table 1.

3.2 Architectures

As explained in Sec. 2.3, three DNNs architecture families can be used for time series, Fully Con-
nected Neural Networks (FCNN), Convolutional Neural Networks (CNN), Recurrent Neural Net-
works (RNN). However, various configurations can be made for each type depending on a lot of
hyperparameters, like the number of layers, the size of each layer (number of neurons in FCNN,
number of filters in CNN, and number of cells in RNN), the addition of specific layers (e.g. pooling
layers in CNN, use of bidirectional layers in RNN). Hence, we decided to follow the configurations
used in other articles for our experiments as detailed below. By default, we fixed the size of the
embedding layer to Dls = 320, the effect of this parameter will be investigated in Sec. 5.2.2.

FCNN:

for this type, we used the configuration proposed in DEC and IDEC papers (Xie et al., 2016;
Guo et al., 2017a). The encoder is composed of three FCNN layers of dimensions d-500-500-2000-
Dls, where d is the data-space dimension. The decoder is constructed as a mirror of the encoder
architecture excluding the embedding layer.

End-to-end deep representation learning for time series clustering 21

CNN:
for convolutional networks, we use three configurations:

– ResNet : This architecture was proposed in Wang et al. (2017). Residual DNNs use skip con-
nections to jump over some layers (i.e. residual blocks). The use of skip connections is mainly
motivated to avoid the problem of vanishing gradient when the number of layers increases (He
et al., 2016).
The encoder’s implementation used is composed of three residual blocks followed by a global
average pooling layer and the embedding layer as an FCNN layer. Each residual block is first
composed of three convolutional layers with a fixed filter size of 64. The filter’s length is set to
8, 5, and 3 respectively for the first, second, and third convolution. A ReLU activation function,
preceded by a batch normalization operation, is then added at the end of the block. Finally, the
FCNN embedding layer is added at the end of size Dls.

– Simple-CNN (SCNN): It is a simplified version of the ResNet architecture composed of only one
residual block, without the skip connection. This choice is motivated to evaluate if it is justified
to use the deep ResNet architecture.

– Dilated-CNN (DCNN): This architecture was proposed in Franceschi et al. (2019). It uses two
particular hyperparameters, causal padding, and exponential dilated convolutions.
The encoder is composed of a set of dilated causal convolutional layers followed by the embedding
layer as an FCNN layer. The number of filters is fixed to 40 for all layers with a filter length of
3. In the original version, the number of layers was arbitrarily fixed to 10 with an exponential
factor for the dilation rate of 2. However, we modified this parameter by computing the number
of layers and dilation rate with the function described in algorithm 1. It gives better results and
it is faster to compute. Finally, an FCNN embedding layer of size Dls is added at the end. This

Algorithm 1 Compute layers’ dilation size

1: procedure (Time series length ts length)
2: last dilation = 1
3: dilation list = []
4: if ts length > 50 then
5: rate = 2
6: else
7: rate = 4
8: while last dilation < ts length/2 do
9: last dilation∗ = rate

10: dilation list+ = last dilation

11: return dilation list

architecture is based on the authors’ code available online 2

For these three architectures, the decoder is constructed as the mirror of the encoder architecture
excluding the embedding layer.

RNN :
for recurrent networks, we use three configurations:

– Deep Temporal Clustering (DTC): This architecture was proposed in Madiraju et al. (2018).
The encoder is first composed of a convolutional layer followed by a max-pooling layer of size

2 https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries

22 Baptiste Lafabregue et al.

10 to reduce the number of time steps, especially for long series. Then, the output is fed to
two stacked bidirectional LSTM (Bi-LSTM) layers of size 50. For the latent space, the output
of the Bi-LSTM is retrieved as the hidden state sequence. This is motivated to keep the time
dimension in the latent space. Therefore the size of the latent space is not fixed as it depends
on the input’s dimensions.
The decoder is composed of a single deconvolutional layer (an upsampling layer followed by a
convolutional layer) with kernel size 10 and a number of filters equal to the number of features
in the inputted time series.

– Bidirectional LSTM (BLSTM): It is a simple architecture composed of two stacked Bi-LSTM
layers. The first layer has a fixed size of 50 and the second one of bDls/2c. For the latent space,
we use the final hidden state of the last Bi-LSTM layer. The decoder is constructed as the mirror
of the encoder architecture.

– Bidirectional GRU (BGRU): This architecture is identical to the BLSTM architecture but use
GRU cells instead of LSTM cells.

– Dilated-RNN (DRNN): This architecture was proposed in Ma et al. (2019). It is composed of
three stacked bidirectional dilated RNN encoder, with respectively a dilation rate of 1, 4, and
16. It uses the GRU cells in the model’s layers. In the article, the number of units of each layer
is either 100-50-50 or 50-30-30. However, as no indication is given on how to make this choice,
we fixed it to 100-50-50 for all datasets as it results in better result on average. The final hidden
state of the last layer (of size 50× 2 = 100) is used as the latent space.
The decoder is composed of a single RNN layer with GRU units of size (100+50+50)×2 = 400.
Its initial state is initialized with the concatenation of all encoder layers’ final hidden states.
Then, the decoder iteratively predicts the reconstructed sequence from the output at t−1, where
the output at time t = 0 is a zero vector. This architecture is based on the authors code available
online 3

– Bidirectional GRU with attention mechanism (Attention): This architecture is based on the one
presented in Ienco and Pensa (2019). It is composed of a Bi-GRU layer a size 64 if there are less
than 250 sample in the train set, and 512 otherwise. This layer followed by a temporal attention
mechanism on both the forward and backward layer of size of Dls. However, the decoder differs
from the one used in Ienco and Pensa (2019) as they use a double reconstruction loss (one for the
forward layer and one for the backward layer). To make the architecture closer to other methods
we used a simple Bi-GRU layer of size bDls/2c. This architecture is based on the authors code
available online 4.

3.3 Pretext losses

For the pretext loss, we use four losses:

– Reconstruction loss (rec): It is the classical autoencoder’s reconstruction loss that consists in
computing the mean squared error between the inputted sequence and its reconstruction (see
Eq. 21).

– DEPICT reconstruction loss (multi rec): This pretext loss is the one used in Ghasedi Dizaji
et al. (2017). It extended the reconstruction loss by computing the mean square error between
each encoder’s layer and its corresponding decoder’s layer (see Eq. 35). One can notice that this
loss requires that the decoder is constructed as the mirror to the encoder, it excludes all RNN
architecture in our case.

3 https://github.com/qianlima-lab/DTCR
4 https://gitlab.irstea.fr/dino.ienco/detsec

End-to-end deep representation learning for time series clustering 23

– VAE loss (vae): It is the classical VAE loss that balances between reconstruction and the nor-
malization of the latent space distribution (see Eq. 24):

– Triplet loss (triplet): This is the loss proposed in Franceschi et al. (2019) that aims to obtain
similar representation between a time subseries and its neighborhood (see Eq. 28). For this loss,
we used four values of Ktriplet, 1, 2, 5, and 10. We also computed the result with the combined
version (the concatenation of representation on the four different Ktriplet values). It is based on
the authors code available online 5

We also used the GAN pretext loss, but as GAN does not involve an encoder it can only be used
with DNNs designed for the clustering purpose. Therefore it is only used in combination with the
ClusterGAN clustering loss (see next section).

3.4 Clustering losses

Many losses have been proposed to simplify the clustering task in the latent space, especially for
images (Caron et al., 2018; Ghasedi Dizaji et al., 2017; Guo et al., 2017b; Xie et al., 2016; Yang
et al., 2019). We selected a subset of them by covering the different types of approaches. We favored
the one where the code was available to ensure that the validity of our implementation. The selected
losses are presented bellow, but were already further explained in Sec. 2.1:

– DEC (Xie et al., 2016) and IDEC (Guo et al., 2017a): The DEC loss use the KL divergence to
improve assignment confidence of an object to its cluster. The IDEC loss extended the latter
by keeping the pretext loss (the reconstruction loss in the article) in the clustering phase (see
Eq. 32). Following the default parameters, we use a γ value set to 0.1. It is based on the authors
code available online 6

– DEPICT (Ghasedi Dizaji et al., 2017): This loss is similar to IDEC loss. However, they use the
standard cross-entropy to train the DNN parameters. We also use a γ value of 0.1.

– SDCN (Bo et al., 2020): This loss is also based on IDEC loss. They use Graph Convolutional
Networks to regularize the training to keep the local structure of the data based on a KNN
graph. We used a number of neighbors equals to 3 given the small size of some datasets. We also
changed the KNN algorithm to use DTW instead of Euclidean distance, as DTW give better
results on this benchmark (Dau et al., 2019). It is based on the authors code available online 7

– VADE (Jiang et al., 2016): This loss is based on ELBO loss, and therefore is only compatible
with VAEs. They extend the ELBO loss by learning one distribution by expected clusters instead
of one. It is based on the authors code available online 8

– ClusterGAN (Ghasedi et al., 2019): This loss is based on GAN loss, and therefore is only
compatible with it. They add an encoder that is trained to reproduce the generated latent
feature. It is based on the authors code available online 9

– DTCR (Ma et al., 2019): This loss is the only proposed for time series, even though it is generic.
It combines three components, the pretext loss, a K-Means loss (see Eq. 39), and real/fake loss.
We use a λ value of 0.5. It is based on the authors code available online 10

– None: We also evaluate the result obtained without using any clustering loss.

5 https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
6 https://github.com/XifengGuo/IDEC
7 https://github.com/bdy9527/SDCN
8 https://github.com/slim1017/VaDE
9 https://github.com/sudiptodip15/ClusterGAN

10 https://github.com/qianlima-lab/DTCR

24 Baptiste Lafabregue et al.

For all configurations, we use the Adam optimizer with a learning rate of 0.001 (Bo et al., 2020;
Franceschi et al., 2019; Madiraju et al., 2018; Mukherjee et al., 2019) at the exception of the DRNN
architecture where we use the SGD optimizer with exponential decay, a learning rate of 0.1, and a
decay rate of 0.1. The batch size used is set to 10 at the exception of the SDCN and DTCR losses
that require a batch size equals to the train set size.

4 Evaluation setup

4.1 UCR and UEA archives

To validate our result we used two benchmarks, the UCR univariate archive (Dau et al., 2019) and
the UEA multivariate archive (Bagnall et al., 2018). Even though the archives were designed to
evaluate supervised classification methods, no benchmark is available yet to evaluate specifically
clustering methods. Moreover, these archives are already often used in the time series clustering
context (Ma et al., 2019; Madiraju et al., 2018; Paparrizos and Gravano, 2015)

We used the extended version of the UCR archive with 128 datasets and the UEA archive with
30 datasets, both available online11. They contain a large number of datasets from different domains.
The datasets are grouped into different categories with the main ones being Image outlines, Sensor
Readings, Motion Capture, Spectrographs, ECG, Electric Devices, Audio, and Simulated Data. All
datasets are split into train and test sets. The number of sequences in train sets goes from 3000 to
12 sequences and from 20000 to 15 in test sets. Some datasets have different time series lengths,
however, we use the equaled length versions provided in the archive. In this version, all series are
zero-padded at the end. The length varies from 3000 to 2 time steps but with a median length of
218. Also, for each dataset, a reference data is provided. The number of classes per dataset varies
from 2 to 60, with a median at 4 (49 of them have only 2 classes). For multivariate datasets, the
number of features varies between 2 and 1345. Previously, all UCR datasets were z-normalized
but some are now provided without any preprocessing. To simplify the evaluation we decided to
perform a z-normalization on all datasets.

Besides offering a variety of datasets, these two archives have been subject to numerous use
(Fawaz et al., 2019; Franceschi et al., 2019; Ma et al., 2019; Madiraju et al., 2018; Xiao et al., 2020;
Zhang et al., 2018). It allows a better comparison with other methods.

4.2 Evaluation protocol

All combinations are trained with 1000 batch iterations for the training phase and also 1000 for the
clustering phase. After the training phase, a first DNN is obtained (the clustering loss None). This
DNN is then used as initialization for all other clustering losses, with the exception of ClusterGAN
and VADE that are trained from scratch.

The DNNS are trained (training phase + clustering phase) on the train set, and the clustering
is performed on the test set, following the choice made in Ma et al. (2019) and Xiao et al. (2020) for
time series deep clustering. This protocol insure that the latent space learned can be generalized.

To cluster the test set, most of the clustering loss models directly provides a clustering assign-
ment. For the others, the clustering is performed with a K-Means on the test set projected in the
latent space (i.e. the encoded features).

11 https://timeseriesclassification.com/index.php

End-to-end deep representation learning for time series clustering 25

To evaluate the clustering performance, we use the Normalized Mutual Information (NMI), as
it is the most common metric used for deep clustering (Ghasedi Dizaji et al., 2017; Guo et al.,
2017b; Ma et al., 2019; Xie et al., 2016; Yang et al., 2019; Zhang et al., 2018) and as it also takes
in consideration the expected distribution contrary to measure such as the Rand Index or the
Clustering Accuracy.
The NMI is computed between a partition of M groups A = {A1, . . . , AM} and a partition of M ′

groups B = {B1, . . . , BM ′} by the following formula:

NMI =

∑M
i=1

∑M ′

j=1Nijlog
N.Nij
|Ai||Bj |√

(
∑M

i=1 |Ai|log
|Ai|
N)(

∑M ′

j=1 |Bj |log
|Bj |
N)

, (41)

where Nij = |Gi
⋂
Aj |. The value varies between 0 and 1, where the distributions are identical

when the value is equal to 1.
Each DNN combination is trained 5 times. We use the NMI score mean of these 5 runs for

the evaluation. These processes were run on a cluster of more than 60 GPU composed of GTX
1080Ti, Tesla P100, K20, K40, and K80. Furthermore, it should also be mentioned that some
combinations have some convergence problems that led to vanishing or exploding gradients. These
combinations are essentially leading to poor results. However, some combinations were excluded
from the evaluation when too many datasets without any results were obtained. A limit of 10
datasets without results for the univariate archive and 3 for the multivariate archive was set. It only
happened for combinations with FCNN architecture and triplet pretext losses on the multivariate
archive (a note is added in the reported result). All the detailed results with NMI but also Adjusted
Rand Index (ARI) and Clustering Accuracy measure are also reported on our git repository 12.

Finally, we want to evaluate the overall performance of each combination and evaluate if the
difference with other combinations is significant or not. For the comparison, we use the average
win/loss rank. Following the recommendation in Dau et al. (2019), we use the pairwise Wilcoxon
signed-rank tests (Wilcoxon, 1992) and form cliques using the Holm correction (Holm, 1979) to
determine the critical difference between each combination with a significant level α = 0.05. To
visualize these comparisons we use a critical difference diagram proposed by Demšar (2006), where
a thick horizontal line shows the clique computed previously. This method of comparison has some
limitations as the rank may not reflect the overall robustness of a method, especially when the
number of datasets and compared methods is high. However, in our experiments, the results gave
information that was correlated to the observed individual results. Note also that both the ranking
and the Wilcoxon test handle missing values without skewing the outcome.

5 Results

In this section, we present the results obtained by running all valid combinations. We first present
the evaluation between all combinations in Sec. 5.1, then we show the effect of other parameters
on performances in Sec. 5.2. Finally, we compare the best combinations to standard non-deep
approaches in Sec. 5.3.

5.1 Cross-comparison on deep combinations

In order to better compare the performance of each choice, we compare each element (architecture,
pretext loss, and clustering loss) separately. For each element, we pick the best combination that

12 https://github.com/blafabregue/TimeSeriesDeepClustering

26 Baptiste Lafabregue et al.

123456789

BGRU-tripletKcombined-None
BLSTM-tripletKcombined-None

DRNN-rec-None
Attention-rec-None

FCNN-rec-None
DTC-tripletKcombined-None
DCNN-tripletKcombined-None
SCNN-multi rec-None
ResNet-multi rec-None

(a) Best for each architecture

12345678

ResNet-tripletK1-None
SCNN-tripletK2-None
DCNN-tripletK5-None

SCNN-tripletK10-None DCNN-vae-SDCN
DCNN-rec-None
DCNN-tripletKcombined-None
ResNet-multi rec-None

(b) Best for each pretext loss

12345678

DTC-vae-VADE
DCNN-tripletK10-DEC

DCNN-rec-DEPICT
DCNN-vae-DTCR DCNN-rec-IDEC

DCNN-rec-GAN
SCNN-multi rec-SDCN
ResNet-multi rec-None

(c) Best for each clustering loss

Fig. 8 Results for univariate time series with NMI measure

includes it (e.g. the best combination that use FCNN architecture) according to the average win/loss
rank on the train set. Then, we compare the best candidates for the architecture, the pretext loss,
and the clustering loss separately on the test set.

The results for the univariate archive are reported in Figs. 8 and 9 for the multivariate. The best
average NMI score is obtained by the ResNet-mulit rec-None combination with an average NMI
score of 0.349 for the univariate archive and by the DCNN -mulit rec-SDCN for the multivariate
with 0.356 (this last value is approximated because two datasets could not be clustered with this
combination).

The first thing that comes out of these results is that no method outperforms others with a crit-
ical difference, especially if we take into account both archives. However, the following observations
can be made:

– On architectures: when looking at the univariate results, the CNN based architectures outper-
form all other types. On the multivariate datasets, the DRNN architecture gives also good
results, but the DCNN and SCNN are also performing well.

– On pretext losses: the reconstruction based loss (rec and multi rec) and the triplet loss combined
are the one that give the best results on univariate archive. However, the triplet loss seem to
be not consistent on multivariate archive. Moreover, if we report the average NMI over all
univariate datasets, we obtain for the DCNN architecture respectively 0.328, 0.329 and 0.339
for the triplet combined, multi rec and rec losses. But the difference greatly increase with 0.137,
0.343 and 0.339 for the multivariate ones.

End-to-end deep representation learning for time series clustering 27

123456789

DTC-tripletKcombined-None
FCNN-multi rec-None

BGRU-tripletKcombined-None
Attention-rec-None

ResNet-rec-SDCN
DCNN-multi rec-None
SCNN-rec-None
BLSTM-rec-None
DRNN-rec-None

(a) Best for each architecture

12345678

DRNN-tripletK5-None
SCNN-tripletK1-None

DTC-tripletK2-DEC
DTC-tripletK10-DEPICT BGRU-tripletKcombined-None

SCNN-vae-SDCN
DCNN-multi rec-SDCN
DRNN-rec-None

(b) Best for each pretext loss*

12345678

DTC-vae-VADE
DTC-vae-DTCR

DTC-tripletK10-DEPICT
ResNet-rec-GAN BGRU-rec-IDEC

DRNN-rec-DEC
DCNN-multi rec-SDCN
DRNN-rec-None

(c) Best for each clustering loss

Fig. 9 Results for multivariate time series with NMI measure (*: the FCNN combined with triplet based
losses were excluded because they result in too many error of computation).

– On clustering losses: surprisingly, no addition of a clustering loss results in a gain in performance
at the exception of the SDCN loss for the multivariate archive. Therefore, the obtained results
tend to not justify the additional computational time and complexity required by the use of a
clustering loss.

It can also be pointed out that every element, taken separately, achieves to obtain the best NMI
score on at least one dataset. For example, the BGRU architecture obtains the best score on
the univariate CBF dataset (with 0.71 average NMI) even so this architecture obtains the lower
win/loss rate. Hence, it can be interesting to look for relations between some element types and
their performance on datasets.

However, if each combination achieves some good results on some dataset, the global comparison
of individual combinations shows that the best combination clearly outperforms the others on
most of the datasets. For example, we have plot the pairwise NMI score comparison of different
combination in Fig. 10. These three plots show that, even if one combination performs significantly
better than the other, the performance differences for each dataset only spread on one side of the
identity line (the low performing combination performs poorly compared to the best preforming
one). Therefore, it seems that there are no “specialisations”, i.e. best performing combinations get
better results on all datasets, not only on a subset of them. Note that we have only plot pairwise
comparison for the univariate archive, as the limited number of datasets makes it less significant.

28 Baptiste Lafabregue et al.

0.0 0.2 0.4 0.6 0.8 1.0

DCNN-rec-None

0.0

0.2

0.4

0.6

0.8

1.0
B

G
R

U
-t

ri
pl

et
K

co
m

bi
ne

d-
N

on
e

DCNN-rec-None is better here

W: 104, T: 24, L: 29

BGRU-tripletKcombined-None is better here

0.0 0.2 0.4 0.6 0.8 1.0

SCNN-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0

B
L

S
T

M
-t

ri
pl

et
K

co
m

bi
ne

d-
N

on
e

SCNN-multi rec-None is better here

W: 106, T: 18, L: 33

BLSTM-tripletKcombined-None is better here

0.0 0.2 0.4 0.6 0.8 1.0

ResNet-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0

D
R

N
N

-r
ec

-N
on

e

ResNet-multi rec-None is better here

W: 98, T: 23, L: 36

DRNN-rec-None is better here

Fig. 10 Pairwise NMI score comparison of different deep clustering combination on both univariate and
multivariate archives with win, loss, and tie scores. From left to right : BGRU-tripletKcombined-None vs
DCNN-tripletKcombined-None, BLSTM-tripletKcombined-None vs SCNN-multi rec-None, DRNN-rec-None
vs ResNet-multi rec-None

Furthermore, we conducted a more in depth analysis that did not lead to any correlation, more
details are reported in Sec. 6.3.

It should also be mentioned, that clustering is often considered to be an ill-posed problem (Jain,
2010). Multiple partitioning for each dataset may be considered relevant. This issue is particularly
illustrated in the univariate archive, where some datasets have identical data but with different label-
ing. For example, the datasets GunPointAgeSpan, GunPointMaleVersusFemale, and GunPointOld-
VersusYoung, that record actors’ motions, refer to the same records but are respectively aiming to
discriminate between the gesture type, the gender of the actor, and the older versus recent record.
Identically, the DodgerLoopGame and DodgerLoopWeekend use the same data on traffic concentra-
tion but aim to discriminate between a day with a game at a stadium and no game for the former,
and between weekday and weekend for the latter. Hence, no unsupervised method can perform
well on a dataset without having poor results on the other(s). Moreover, the observed standard
deviation over all methods is non-negligible. The NMI standard deviation goes from 0.010 to 0.170
with a median at 0.060. This can be observed with all combinations. This may suggest that all
methods tend to fall in local minima. More insight will be given in Sec. 6.1 where we discuss the
NMI evolution through the training process.

Finally, another point of comparison is the number of failure encountered by the different
combinations. This led to exclude the FCNN -triplet combinations for the multivariate comparison
on clustering losses. Overall, any architecture and the pretext loss are robust and lead to almost
no failures (with 1% failure rate for the univariate archive, and 6% for the mutivariate one), at
the exception of the FCNN -triplet combinations on both archives (with 35% failure rate for the
univariate archive, and 82% for the mutivariate one). For the use of clustering loss, most of the
clustering losses give robust results, with almost no difference with the pre-trained model. However
SDCN (with 12% failure rate for the univariate archive, and 24% for the mutivariate one) and
DTCR (with 5% failure rate for the univariate archive, and 18% for the mutivariate one) methods
lead to more failures. This is explained by the batch size that is fixed to the size of the dataset,
which leads to memory errors. Detailed statistics are available on our github repository 13.

13 in https://github.com/blafabregue/TimeSeriesDeepClustering/blob/main/paper results/ folder

End-to-end deep representation learning for time series clustering 29

123456

DCNN-rec-SDCN
Denoising-DCNN-rec-SDCN

SCNN-rec-SDCN Denoising-SCNN-rec-SDCN
Denoising-DCNN-rec-None
DCNN-rec-None

(a) Best of denoising combinations on univariate archive

123456

Denoising-DRNN-rec-None
Denoising-ResNet-multi_rec-None
Denoising-SCNN-multi_rec-None ResNet-multi_rec-None

DRNN-rec-None
SCNN-multi_rec-None

(b) Best of denoising combinations on multivariate archive

Fig. 11 Comparison of performance for DNNs trained with denoising and without with NMI measure

5.2 Other parameters influence

Even though the previous results cover different variations of DNNs, other parameters are used in
the literature when training DNNS for clustering. It is standard in supervised classification to tune
the choices of these parameters, with grid search for example, especially for the hyperparameters
(e.g. the size and number of layers, the optimizer, the learning rate, etc). Unfortunately, it is
impossible to conduct such optimization for each dataset in an unsupervised context as no train
set can be used.

In this section, given the high number of compared methods, we have decided to report the effect
of a small selection of these parameters. We have selected parameters or additional processing that
are often used in clustering methods.

However, note that multiple other parameters have shown to greatly influence the performance
of deep clustering methods (e.g. type of optimizer, size of layers, etc.).

5.2.1 Denoising

Denoising autoencoders (DAE) are often used as pretext loss (Ghasedi Dizaji et al., 2017; Guo
et al., 2017b; Xie et al., 2016) (see Sec. 2.4.2 for more details). We used masking noise as it is the
most used in the selected methods (Ghasedi Dizaji et al., 2017; Guo et al., 2017a; Xie et al., 2016).
The masking noise is generated with dropout layers with a dropout rate of 20%. Note that this
method is designed for AE frameworks and therefore will only be applied with rec and multi rec
losses. We have reported the three top-ranked combinations with denoising and compared them to
their version without it in Fig. 11.

The reported results show that the denoising either degrades the results or has a really small
effect on the performance. When looking at individual results on each dataset it can also be noticed
that the improvements tend to be very small. But at the opposite it may also lead to important
performance degradation. This may be explained by the effect of the noise on time series, where
a high variation of the signal may more easily create confusion between classes. Moreover, for 1D-
convolution DNNs the information on the neighborhood may be more limited than 2D-convolutions

30 Baptiste Lafabregue et al.

123456789

DCNN-rec-None-10
DCNN-rec-None-perc

SCNN-multi_rec-None-perc
DCNN-rec-None-320

SCNN-multi_rec-None-320
SCNN-multi_rec-None-10
ResNet-multi_rec-None-10
ResNet-multi_rec-None-perc
ResNet-multi_rec-None-320

(a) Best of latent dimension size on univariate archive

123456789

DCNN-rec-SDCN-10
DCNN-rec-None-10

DCNN-rec-None-perc
DRNN-rec-None-10

DCNN-rec-None-320
DCNN-rec-SDCN-perc
DRNN-rec-None-perc
DRNN-rec-None-320
DCNN-rec-SDCN-320

(b) Best of latent dimension size on multivariate archive

Fig. 12 Comparison of DNNs’ performance trained with different size of latent dimension, 10, 320 or perc
(10% of time series length) with NMI measure

due to the filters’ size and their 1D nature. Indeed we only have 2 immediate neighbors in 1D for
8 in 2D. This may alter the DNNs’ capacity to discriminate between noise and real signal.

5.2.2 Size of the latent space

It is often recommended to have a latent space with a significantly smaller number of dimensions
than the one in the original data space. This aims to force the DNN to retains only meaningful
features for the reconstruction or the selected pretext task. Therefore, we want to test the effect on
time series data.

Given the computation time required to launch all combinations we only launched three different
options of clustering size. The latent space’s number of features is fixed to either 10, 320, or 10%
of the time series length (noted perc). Thus, we can compare the effect of a small latent space, a
large latent space, or one adapted to the dataset. The results are displayed in Fig. 12.

The choice of a large latent dimension seems more relevant, especially for the DCNN -rec-None
architecture for univariate and DCNN -rec-SDCN multivariate. For the latter, it manages to obtain
the best average ranking for the 320 features version and the worst with its 10 version with a
significant difference. The difference between the 10 and 10% features versions seems more relative
as the 10% version mostly tends to have a latent dimension size around 20. Hence, this version is
more related to a small latent dimension size.

However, these general observations hide a highly variable behavior among datasets. In the case
of the DCNN -rec-None architecture and the Chinatown dataset, the 10 features version obtains
the best score with 0.69 against 0.53 for size 320. This can also be observed for other datasets
like GesturePebbleZ2 or Trace, with respectively an NMI gain of 0.13 and 0.10. Hence, even if a
large latent dimension size seems a good choice by default, it may strongly minimize the DNN
performance in some cases.

This limited comparison already highlights that hyperparameters modification may result in
major modification of the DNNs’ capacity to extract features. In a non-supervised context, this
may strongly mitigate the application of such methods. It is even more problematic if we take

End-to-end deep representation learning for time series clustering 31

12345

DCNN-rec-None
ResNet-multi_rec-None

ResNet-multi_rec-None-GmmUMAP
DCNN-rec-None-KUMAP
ResNet-multi_rec-None-KUMAP

(a) Best of reduction dimension with comparison to only K-Means on univariate archive

123456

SCNN-multi_rec-None
DRNN-rec-None

DCNN-multi_rec-SDCN DCNN-multi_rec-SDCN-GmmUMAP
DCNN-multi_rec-SDCN-KUMAP
SCNN-multi_rec-None-KUMAP

(b) Best of reduction dimension with comparison to only K-Means on multivariate archive

Fig. 13 Comparison clustering performance performed either directly on the learnt representation or after
a dimension reduction (UMAP) with different clustering methods (GMM an K-Means) with NMI measure.

into consideration the number of possible hyperparameters combinations for DNNs (e.g. number of
layers, size and number of filters for CNN, learning rate options, ...).

5.2.3 Dimension reduction

This section is motivated by the work presented in McConville et al. (2019). The authors propose to
use a dimension reduction method on the latent space before applying the clustering method. The
reduction dimension methods proposed are Isomap (Tenenbaum et al., 2000), t-SNE (Maaten and
Hinton, 2008), Linear Embedding (LLE) (Roweis and Saul, 2000) and UMAP (McInnes et al., 2018).
They set the number of outputted dimensions to the number of searched clusters, K. They also
propose to replace the K-Means method with either Spectral clustering or Gaussian Mixture Model
(GMM) approaches. Note that in the reported results, the combination of K-Means method with
the UMAP is noted as KUMAP. We have tested the different combinations and reported the three
top-ranked combination with reduction dimension and compared them to their version without it
in Fig. 13. We have also added the best ranked combination without dimension reduction for the
multivariate archive (DRNN -rec-None) in the two diagrams for comparison. For the univariate
archive, the DRNN -rec-None is already in the top three. The results were obtained based on the
author’s code 14.

In McConville et al. (2019), the authors observed that the UMAP reduction dimension in
combination with the GMM clustering method reaches the best performance. In our case, UMAP
also improves the clustering performance. For all the other dimension reduction methods we observe
a degradation of the results. In our case, K-Means gave slightly better results than GMM but
without a critical difference. However, it still tends to confirm the observations in McConville et al.
(2019). It should also be mentioned that no critical difference is reported between results with and
without reduction dimension with the Holms correction. But the Wilcoxon test reports a difference
with p < 0.02 between clustering with and without UMAP when compared individually. On the
global NMI average the ResNet-multi rec-None-KUMAP combination obtain 0.399 against 0.356
without UMAP. For the multivariate, this goes from 0.417 for DRNN -rec-None-KUMAP to 0.348

14 https://github.com/rymc/n2d

32 Baptiste Lafabregue et al.

without UMAP. Overall, the use of UMAP seems to be a consistent tool to improve clustering
performance.

5.3 Comparison to non-deep methods

Even if this paper aims to evaluate different deep clustering against each other, we also want to
position these methods among other classical clustering methods for time series. To do so, we have
selected the following non-deep methods:

– KEucl : K-Means method with Euclidean distance and arithmetic mean to compute centroids.
We use the tslearn implementation 15 with a maximum iteration of 200.

– KDBA: K-Means method with DTW (Dynamic Time Warping) (Sakoe and Chiba, 1978) mea-
sure and DBA (DTW Barycenter Averaging) Petitjean et al. (2011) to compute centroids. We
used the tslearn implementation 16 with a maximum iteration of 200.

– KPCA: K-Means method with Euclidean distance and arithmetic mean to compute centroids.
However, in this case, we perform a Principal Component Analysis (PCA) with a reduction to
K dimensions before applying the K-Means algorithm. We used the tslearn implementation
for the K-Means, and sklearn for PCA 17.

– KUMAP : K-Means method with Euclidean distance and arithmetic mean to compute centroids.
However, in this case, we perform a UMAP with a reduction to K dimensions before applying
the K-Means algorithm. We used the tslearn implementation for the K-Means with a maximum
iteration of 200, and umap-learn for UMAP 18.

– Kshape (Paparrizos and Gravano, 2015): k-shape is a method that relies on a scalable iterative
refinement procedure to extract cluster base on the cross-correlation measure. We used the
author’s Python implementation.19

– USSL (Zhang et al., 2018): Unsupervised Salient Subsequence Learning is a method that extracts
shapes to obtain some characteristics. For this method, we use the results reported in the
supplementary materials of Ma et al. (2020) on the 85 datasets UCR version.

The comparison is showed in Fig. 14. For both archives, we have selected the best candidate based
on NMI results on the train set with and without UMAP, note that the displayed diagram are
still computed on the test set and result in similar ranking. We have also added the UMAP best
candidate of each archive in the other archive’s plot to evaluate the robustness of these methods on
the two archives. For the USSL and Kshape methods, we did not report the multivariate results as
it was not included in Ma et al. (2020) for USSL and as the Kshape authors’ code does not support
multivariate time series.

For both archives, the deep clustering best candidate with the use of UMAP is ranked first. It
should also be noted that the KUMAP is in the top three ranked methods on both archives. This
highlights the benefit of using UMAP before the clustering task independently of the use of a deep
transformation or not. However, the deep latent space seems to benefit more from UMAP than the
original space. Even though KUMAP is ranked before other non-deep methods, it remains lower
than the best deep clustering candidate with a confidence p < 0.02 at the Wilcoxon test for the
univariate archive . However, for the multivariate archive, the difference does not pass the Wilcoxon

15 https://tslearn.readthedocs.io/en/stable/gen modules/clustering/tslearn.clustering.TimeSeriesKMeans.html
16 https://tslearn.readthedocs.io/en/stable/gen modules/clustering/tslearn.clustering.TimeSeriesKMeans.html
17 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
18 https://pypi.org/project/umap-learn/#description
19 https://github.com/johnpaparrizos/kshape

End-to-end deep representation learning for time series clustering 33

123456789

KEucl
DCNN-multi rec-SDCN-KUMAP

KDBA
USSL

KPCA
Kshape
KUMAP
ResNet-multi rec-None
ResNet-multi rec-None-KUMAP

(a) Baseline comparison on univariate archive

12345678

KEucl
Kshape
KPCA

DRNN-rec-None KDBA
KUMAP
ResNet-multi rec-None-KUMAP
DCNN-multi rec-SDCN-KUMAP

(b) Baseline comparison on multivariate archive

Fig. 14 Results of deep clustering methods compared to non-deep methods with NMI measure

0.0 0.2 0.4 0.6 0.8 1.0

ResNet-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0

K
D

B
A

ResNet-multi rec-None is better here

W: 67, T: 26, L: 64

KDBA is better here

0.0 0.2 0.4 0.6 0.8 1.0

ResNet-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0

K
E

uc
l

ResNet-multi rec-None is better here

W: 93, T: 33, L: 31

KEucl is better here

0.0 0.2 0.4 0.6 0.8 1.0

ResNet-multi rec-None

0.0

0.2

0.4

0.6

0.8

1.0

R
es

N
et

-m
ul

ti
re

c-
N

on
e-

K
U

M
A

P

ResNet-multi rec-None is better here

W: 44, T: 20, L: 93

ResNet-multi rec-None-KUMAP is better here

Fig. 15 Pairwise NMI score comparison of deep and non-deep clustering combinations on both univariate
and multivariate archives with win, loss, and tie scores. From left to right : KDBA vs ResNet-multi rec-None,
KEucl vs ResNet-multi rec-None, ResNet-multi rec-None-KUMAP vs ResNet-multi rec-None

KEucl KDBA KPCA KUMAP Kshape USSL Deep Deep+KUMAP

KEucl 6.3e-3 0* 0* 1.5e-5 0* 0* 2.6e-5
KDBA 6.3e-3 0.600 0.184 0.750 0* 0.317 2.8e-3
KPCA 0* 0.600 0.090 0.794 0* 0.118 5.6e-3
KUMAP 0* 0.184 0.090 0.420 0* 0.478 0.018
Kshape 1.5e-5 0.750 0.794 0.420 0* 0.528 0.012
USSL 0* 0* 0* 0* 0* 0* 0*
Deep 0* 0.317 0.118 0.478 0.528 0* 7.4e-3
Deep+KUMAP 2.6e-5 2.8e-3 5.6e-3 0.018 0.012 0* 7.4e-3

Table 2 p-values obtained on the Wilcoxon test on univariate archive. The method “Deep” correspond to
the ResNet-multi rec-None combination. Red indicats that the methods did not pass the Wilcoxon test with
Holms correction. *: values bellow 1e-5 are rounded to 0.

test (with p = 0.10). Moreover, for the multivariate archive, the deep clustering combination alone
performs significantly worse than KUMAP method, confirming that it is the combination of UMAP
and the deep embedding that allows obtaining this score on the multivariate archive. Note that the

34 Baptiste Lafabregue et al.

average NMI score for KUMAP is 0.352 for the univariate archive and 0.390 for the multivariate
one.

Overall the ResNet-multi rec-None-KUMAP combination obtains the best ranking if we take
in consideration both archive. But the gain obtained from using DNNs remains small and difficult
to generalize as it does not pass most of the Wilcoxon test with the Holms correction (see Tab. 2).

Moreover, when analyzing pairwise comparison plotted in Fig. 15, we can observe a large spread
of performance indicating that each method is relevant to some datasets. For example, KDBA
obtains a number of wins when compared to the ResNet-multi rec-None combination, even the
KEucl performs better on a fifth of the datasets. Consequently, current deep clustering methods
should be seen as alternative methods and not as replacements to other non-deep methods.

5.4 Execution time

In this final evaluation’s section, we have reported the average, the median, the minimal and the
maximal execution times of deep clustering combinations’ training compared to other non-deep
methods in Fig. 3. We have only reported one combination per architecture, as it is the only one
that have a major impact on the execution time. The choice of pretext loss has a really minor impact
(less than a factor of 1.4 on all combinations). The execution time addition from the clustering loss
is on average very small (less than 20% of the pre-training execution time), at the exception of the
SDCN loss that results in a similar execution time (doubling the total execution time). The deep
clustering methods were trained on a GPU 1080Ti (with 11.1Go RAM) and non-deep methods on
an Intel Skylake (2x12 cores, with 96 Go RAM).

Method Median Average Minimal Maximal Standard deviation
Attention-rec-None 3160 6958 278 45391 8710
BGRU-rec-None 2156 3101 245 39391 4503
BLSTM-rec-None 2912 3956 251 45391 5125
DTC-rec-None 1987 2787 208 38666 4141
DRNN-rec-None 3442 9276 946 85043 85043
DCNN-rec-None 1647 4086 294 34196 5746
SCNN-rec-None 848 1927 171 15561 2552
RestNet-rec-None 1619 3430 279 26963 4303
FCNN 638 1708 139 9217 2092
KEucl < 1 <1 < 1 20 2
KPCA < 1 < 1 < 1 2 < 1
KUMAP 9 12 5 75 10
KDBA 39 658 1 9247* 1700
KShape 2 36 < 1 433* 75

Table 3 Execution time comparison between some selected combinations of deep clustering methods and
non-deep methods in seconds on univariate and multivariate archives. *: 3 datasets could not be clustered
with KDBA and KShape because of memory usage

The reported results in Fig. 3 show that deep clustering methods take a considerably larger
amount of time to execute compared to non-deep methods. The training process can go up to a
full day for some combinations with only considering the pre-training (so around two days with
SDCN clustering loss). However, the execution time can be reduced by decreasing the number of
batch iterations. In general, RNN models result in longer execution time compared to CNN models

End-to-end deep representation learning for time series clustering 35

0 100 200 300 400 500

number of epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Clustering loss

Pretext loss

NMI Introduction of
the clustering loss

(a) ResNet-rec-IDEC on ShapletSim

0 50 100 150 200 250 300 350

number of epochs

0.0

0.2

0.4

0.6

0.8

1.0
Clustering loss

Pretext loss

NMI

Introduction of
the clustering loss

NMI gap after the
pretraining phase

(b) DCNN -rec-DEC on BME

Fig. 16 Evolution of NMI and losses in the parameters training (the last epochs correspond to the addition
of the clustering loss)

and even more when compared with the FCNN model. The time series’ length is the main factor
that increases the execution time, as the number of batches is fixed. Finally, it can be noted that
KShape and KDBA can also lead to memory usage problems when dealing with large datasets. For
example, the KDBA method took around two days to execute on the EigenWorms multivariate
dataset on a Intel Xeon E7-8891 (38 cores with 250Go of RAM).

6 Analysis of DNNs

In this section, we aim to give more insight into the DNNs training and the latent space obtained
through different aspects.

6.1 DNNs training and clustering task

As we do not train the DNNs to directly predict labels, the correlation between the loss and the
clustering performance evolution may not be verified. In Fig. 16, we have plotted the evolution of
the NMI score on the test set compared to the evolution of the pretext and clustering losses.

For recall, the first 1000 batches are trained without the clustering loss, for the ShapeletSim
dataset this corresponds to 500 epochs and 334 for CBF. The combination of the clustering and
pretext losses are also launched with 1000 batches but, for both DEC and IDEC they include a
stopping criterion that fires when the clustering does not change from one iteration to the other,
explaining the early stop.

On both plots, it can be observed that the NMI is not stable and may finish below its maximum
value. Also, we can see that the addition of the clustering loss tends to highly disturb the latent
representation. This often results in lowering the performance of the learned representation, result-
ing in a 0.0 score of NMI in Fig. 16a. This observation can be generalized to almost all datasets
and DNN combinations. This can be confirmed by measuring the gap between maximal and final
NMI at each run. For both archives this gap is significant. For the univariate archive, the average
gap among all combinations ranges from 0.029 to 0.256 points of NMI score. For the two best
methods, it is of 0.078 for ResNet-mulit rec-None and 0.073 for DCNN -rec-None. For the former,

36 Baptiste Lafabregue et al.

(a) UMAP (b) t-SNE

Fig. 17 Projection to two dimensions of CBF dataset using different methods between Raw (left) and DNN’s
Latent space (right) with either UMAP or t-SNE. The latent space is obtained with DCNN -rec-None.

(a) UMAP (b) t-SNE

Fig. 18 Projection to two dimensions of TwoPatterns dataset between Raw (left) and DNN’s Latent space
(right) with either UMAP or t-SNE. The latent space is obtained with DCNN -rec-None.

this implies a drop of the NMI average score from 0.434 to 0.356. Even though it does not seem
realistic to find a way to reach this maximum score, it still shows the potential DNNs’ capacity to
create representation suitable for the clustering task. Moreover, we can see in Fig. 16a that if we
stop the process around epoch 250, we can have a highly different result from one epoch to the
other.

On some datasets, this capacity can be visually confirmed. To do so, we project the datasets
into 2 dimensions. To perform the projection we use two dimension reduction methods, UMAP,
and t-SNE. For each method, we have plotted the projection with the original data (without any
preprocessing) and the data in the latent space learned by the DNNs. The projections are reported
in Figs. 17, 18 and 19.

The representation learned on both CBF and ShapletSim datasets clearly illustrates the gain
to use the DNNs on them. This is even clearer for the latter where the clusters could not be
distinguished with the raw data. However, DNNs does not always lead to such good representations.
For the TwoPatterns dataset, even though the data form more distinguishable groups, each class
remains split into multiple groups, making the clustering task difficult. The K-Means clustering on
both the original space and the latent space resulted in a poor result (around 0.02 NMI score).
From the plots that we analyzed, the DNNs’ latent space tends to create more dense and separable
groups in the data, but these groups may not necessarily match the expected partition.

End-to-end deep representation learning for time series clustering 37

(a) UMAP (b) t-SNE

Fig. 19 Projection to two dimensions of ShapeletSim dataset between Raw (left) andDNN’s Latent space
(right) with either UMAP or t-SNE. The latent space is obtained with ResNet-multi rec-None.

6.2 DNNs types and datasets correlations

Find correlations between an element type (e.g. the use of RNN DNNs) and some datasets char-
acteristics would greatly help the user to select the best combination for its dataset.

To do so, we have plotted all archives’ datasets into a two-dimensional projection. Each dataset
is represented by a vector composed of the performance obtained by a set of DNN combinations on
this dataset (indicated by ”Data:“ in Fig. 20). We have tested different combinations (e.g. the top
combinations of each architecture/pretext loss/clustering loss, all combinations, all architectures
with a specific pretext loss and without clustering loss). This representation is then projected with
the UMAP method along two dimensions and is colorized with another dataset property (indicated
in by ”Coloring:“ in Fig. 20). With this process, we aim at identify some groups/clusters with
homogeneous coloring and therefore identical behavior. We have tested the following datasets’
properties: the time series length, the dataset category (e.g. ECG, Spectrography, Image, etc.),
the size of the train set, the size of the test set, and the number of classes. However, the results
were not conclusive. Some of the plots are reported in Fig. 20. For example, in Fig. 20b the
datasets are represented by the set of performance obtained on all architectures combined with the
reconstruction loss and without clustering loss, and colorized with the time series length (a lighter
color meaning a longer length, and a darker one a shorter length).

Overall, we can see that no trend can really be observed in the plots. For all plots, the main
factor of separation corresponds to the average performance across all combinations. In Fig. 20a,
we applied a clustering with K-means method on the set of datasets to try to see some similar
behavior among some dataset. Most of the clusters regroup homogeneous results, with good, bad,
or average performance on all selected combinations. Therefore it is difficult to find trends and
to decide which combination will be the most adapted for a new dataset. Some clusters, like the
number 8 and 6 group datasets where CNN architectures perform significantly better than others.
However, they are totaling only 5 datasets (over 128) with no particular similarity.

The actual conclusion from this data is the difficulty to find a consistent correlation between
models’ performance and datasets’ properties. However, it should be recalled that these two archives
regroup a large variety of datasets that may have highly unrelated features/patterns types.

6.3 What patterns are learned by the DNNs ?

Even though the users desire to find relevant clusters, they often want to know how the method
took its decision and also what are the discriminating patterns in the data. To achieve this, we

38 Baptiste Lafabregue et al.

(a) Coloring : clustering, Data: all architecture
with reconstruction loss and no clustering loss

(b) Coloring : time series length, Data: all archi-
tecture with reconstruction loss and no clustering
loss

(c) Coloring : dataset category, Data: top 3 com-
bination for each architecture with and without
UMAP

(d) Coloring : Size of training set, Data: DCNN
and ResNet with all pretext losses and no clus-
tering loss

Fig. 20 Each plot shows univariate datasets projected into two dimensions obtain with UMAP. The value
of each dataset is computed from the performance of a set of combination described in Data and colorized
using the criterion described in Coloring

used both the decoder to reconstruct the clusters’ centroids and the Class Activation Map (CAM),
introduced in Zhou et al. (2016). But first, we need to explain how we use CAM in an unsupervised
framework.

6.3.1 CAM for clustering

CAMs are used for supervised DNNs to highlight which part of the data is used to identify an
object’s (i.e. a time series in our case) class. This method relies on the presence of a Global Pooling

End-to-end deep representation learning for time series clustering 39

and the classification softmax layer, but softmax layers are not used in our case. However, another
version proposed in Selvaraju et al. (2017) used the gradient computation to compute the CAM.

For this method, the heatmap is computed with respect to a class, c. It uses the cth value of
the softmax layer, yc, to compute the gradient value at the last convolutional layer’s feature map
A. The heatmap is computed for each A’s weights ack:

ack =
1

D

w∑
i=0

h∑
j=0

∂yc

∂Aki,j
(42)

where D = h× w is the input dimension. Note that in our case the input has only one dimension
(i.e. the time dimension), but the equation is given for 2D-convolutions. Thus, we obtain the degree
of activation for each layer’s filter at each part of the input. The heatmap consists of the weighted
sum of all the filter’s output with their degree of activation:

LcGradCAM = ReLU(
∑
k

ackA
k) (43)

We have modified this version, to not use the softmax layer and replaced the CAM’s derivative
computation with the following equation:

ack =
1

Z

∑
i

∑
j

∂ 1
z∗‖weightz,c‖1
∂Aki,j

, (44)

where ‖.‖1 is the normalization between 0 and 1, .∗. is the element wise multiplication, and weightz,c
is computed as follow:

weightz,c =

∣∣∣∣ 1

‖z‖z − ‖µc‖z

∣∣∣∣ , (45)

where |.| is the absolute value, ‖.‖z is the z-normalization, z is the latent representation and µc is
the centroid of the time series’ cluster.

6.3.2 Does DNNs capture temporal patterns ?

As explained in Sec. 2.2, we also want to evaluate the DNNs’ capacity to take into consideration the
specificity of the time dimension when clustering the data. It means recognize temporal patterns,
even if they may be shifted or stretched. To illustrate that, we selected two datasets, CBF, which
contains both stretched and shifted patterns, and Trace, which contains shifted patterns. They
are illustrated in Figs 21 and 22. For recall, CBF is a synthetic dataset designed to discriminate
between three shapes, Cylinder (class 2), Bell (class 1), and Funnel (class 3). Trace is a synthetic
dataset designed to simulate instrumentation failures in a nuclear power plant, but we only have
the class number.

For comparison, we have plotted the centroids learned by K-Means with DTW metric and
DTW Barycenter Averaging (DBA) in Fig. 23 for CBF dataset and in Fig. 24 for Trace dataset.
DBA, and DTW are designed to be less sensitive to time distortions as they realign time series to
minimize the distance between them. These two methods proved to work well on catching temporal
patterns (Petitjean et al., 2011). For the CBF, we can observe that the DBA method clearly extract
the three patterns. For the Trace dataset, DBA centroids also clearly identify the main patterns.
However, confusion can be observed between the 3rd and 4th class. In the reference data, the two
classes are distinguished by the presence of a final perturbation or not. The clustering actually

40 Baptiste Lafabregue et al.

0 20 40 60 80 100 120

1

0

1

2

3

(a) sample class 1

0 20 40 60 80 100 120
2

1

0

1

2

(b) sample class 1

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(c) sample class 2

0 20 40 60 80 100 120

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(d) sample class 2

0 20 40 60 80 100 120

1

0

1

2

3

(e) sample class 3

0 20 40 60 80 100 120

2

1

0

1

2

3

(f) sample class 3

Fig. 21 Examples of CBF dataset classes

0 50 100 150 200 250

2

1

0

1

2

3

4

(a) sample class 1

0 50 100 150 200 250
2

1

0

1

2

3

(b) sample class 1

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

(c) sample class 2

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

(d) sample class 2

0 50 100 150 200 250
1.5

1.0

0.5

0.0

0.5

(e) sample class 3

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

(f) sample class 3

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

(g) sample class 4

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

(h) sample class 4

Fig. 22 Examples of Trace dataset classes

0 20 40 60 80 100 120
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) Centroid cluster 1

0 20 40 60 80 100 120
2.0

1.5

1.0

0.5

0.0

0.5

1.0

(b) Centroid cluster 2

0 20 40 60 80 100 120
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(c) Centroid cluster 3

Fig. 23 Centroids learned by K-Means with DTW and DBA on CBF dataset

End-to-end deep representation learning for time series clustering 41

0 50 100 150 200 250

2

1

0

1

2

3

4

(a) Centroid cluster 1

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

(b) Centroid cluster 2

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(c) Centroid cluster 3

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

(d) Centroid cluster 4

Fig. 24 Centroids learned by K-Means with DTW and DBA on Trace dataset

(a) sample cluster 1 (b) sample cluster 2 (c) sample cluster 3 (d) sample cluster 4

(e) Reconstruction
centroid 1

(f) Reconstruction
centroid 2

(g) Reconstruction
centroid 3

(h) Reconstruction
centroid 4

Fig. 25 Grad-CAM heatmap on Trace dataset with ResNet-multi rec-None combination, where 25a, 25b,
25c and 25d are samples of each cluster and 25e, 25f and 25g are centroids reconstruction of each cluster.
Red regions corresponds to high contribution and blue to almost no contribution to matching the centroid
(colors are smoothed for visual clarity and better reflect filters’ size)

discriminates the two clusters by the level of the first plateau, bellow 1.5 for the 3rd cluster and
over for the 4th cluster.

In Fig. 25 to 28 we have displayed the heatmap obtained for each cluster on respectively CBF
and Trace datasets. We have also added the reconstruction of the centroids.

For the Trace dataset, the main patterns are identified by the heatmap with the exception of
the final variation that discriminates between classes 3 and 4. Actually, the confusion is identical
to the DTW/DBA one as it also focuses on the level of the first plateau as shown by the heatmap.
Note that they obtain a similar NMI score (around 0.75). However, the reconstructed centroids for
the DNNs do not render the detected patterns. This is especially the case for the class 1, even if
the encoder perfectly distinguish the class 1 and 2 as the clustering obtain a perfect score on these
two classes. Therefore, it is likely that the decoder fails to obtain a good reconstruction. For the
decoder, it may be more optimal to not render the spike for the class 1. Indeed, when computing
the mean square error, omit the spike in the reconstruction may give a better result than render
it but at the wrong time step. In the first case, the spike will affect the error once. However, it is
likely to affect it twice in the second case. Similarly, between the class 3 and 4, it might be more

42 Baptiste Lafabregue et al.

(a) sample cluster 1 (b) sample cluster 2 (c) sample cluster 3 (d) sample cluster 4

(e) Reconstruction
centroid 1

(f) Reconstruction
centroid 2

(g) Reconstruction
centroid 3

(h) Reconstruction
centroid 4

Fig. 26 Grad-CAM heatmap on Trace dataset with DRNN -rec-None combination, where 26a, 26b,26c and
26d are samples of each cluster and 26e, 26f, 26g and 26h are centroids reconstruction of each cluster. Red
regions corresponds to high contribution and blue to almost no contribution to matching the centroid (colors
are smoothed for visual clarity and better reflect filters’ size)

effective to focus on rendering the two plateaus correctly than render the small variation at the
end.

In Fig. 26 we have also displayed the Trace Grad-CAM plots but with another combination,
DCNN -rec-None. This combination obtains a lower NMI score (0.55). The heatmap activation is
actually spread along the whole time series. When observing the clustering result carefully, it can
be noticed that all the clustering is based on when the variation occurs but not its shape. The
cluster 1 regroups the classes 1 and 2 when the variation happens late (around the 100th time step)
and the cluster 2 when it happens earlier (around them 60th time step). This is similar for classes
3 and 4 with clusters 3 and 4. On this dataset, this combination behaves as the Euclidean distance
(with a similar NMI score of 0.52) and completely misses the temporal patterns. One can notice
that, in this case, rendering the pick may seem more relevant for the reconstruction, which may
explain why it is visible here.

In Fig. 27, we now focus on the CBF dataset, which comprises time shifts but also time stretches
and noise. Contrary to the Trace dataset, the Grad-CAM’s heatmap activations are more spread
along the whole series for CBF. They do not necessarily focus on the main parts but also partially
on some noisy variations. On the other hand, the centroids’ reconstruction is clearer, but it also
shows that it can result in a partial confusion of classes 2 and 3. It results in an NMI score of only
0.35, mainly explained by the confusion of classes 2 and 3. This particular case shows that in order
to obtain a good reconstruction, the encoder may need to add unnecessary information that will
interfere with the clustering task.

To strengthen this first observation, we have plot again the grad-CAMs on CBF but we stopped
the DNN’s training after only a small number of iterations (10 epochs versus 334 before) in the
Fig. 28. It can be observed that the heatmap is concentrated on the discriminating part of the time
series on class 1 and 2. However, the centroids reconstruction is poor but it seems normal that the
decoder struggles to immediately obtain a good reconstruction. However, the encoder seems able,

End-to-end deep representation learning for time series clustering 43

(a) sample cluster 1 (b) sample cluster 2 (c) sample cluster 3

(d) Reconstruction centroid 1 (e) Reconstruction centroid 2 (f) Reconstruction centroid 3

Fig. 27 Grad-CAM heatmap on CBF dataset with DCNN -rec-None combination, where 27a, 27b and 27c
are samples of each cluster and 27d, 27e and 27f are centroids reconstruction of each cluster. Red regions
corresponds to high contribution and blue to almost no contribution to matching the centroid (colors are
smoothed for visual clarity and better reflect filters’ size)

in this case, to discriminate between the main signal and the noise in the times series. This DNN
obtains an NMI score of 0.68, far better than the previous one. In this case, the reconstruction task
seems again not entirely appropriate.

7 Summary and perspectives

The main observations of this study can be listed as follow:

1. The use of deep representation leads to improvements in the clustering performance.
2. There is a high variability of the results depending on the different architecture, pretext losses,

and clustering losses used.
3. The CNN based architectures seem the most appropriate for learning relevant features.
4. The use of existing clustering losses does not seem relevant for time series.
5. The classical reconstruction loss, and its variation multi rec, remain the most consistent way to

obtain a suitable representation for the clustering task.
6. Despite the previous observation, the reconstruction loss seems not completely fit to extract

temporal patterns.
7. Multiple parameters can influence the clustering performance of DNNs’ learned representation.

Among them, the use of UMAP reduction dimension method results in a significant and consis-
tent performance gain.

8. No significant correlation could be established between datasets characteristics DNNs’ parame-
ters or elements (architecture, loss type).

44 Baptiste Lafabregue et al.

(a) sample cluster 1 (b) sample cluster 2 (c) sample cluster 3

(d) Reconstruction centroid 1 (e) Reconstruction centroid 2 (f) Reconstruction centroid 3

Fig. 28 Grad-CAM heatmap on CBF dataset with DCNN -rec-None combination but with only 10 epochs,
where 28a, 28b and 28c are samples of each cluster and 28d, 28e and 28f are centroids reconstruction of each
cluster. Red regions corresponds to high contribution and blue to almost no contribution to matching the
centroid (colors are smoothed for visual clarity and better reflect filters’ size)

All the image-specific clustering frameworks proposed in the literature turned out to be less
effective than a classical autoencoder on time series. These methods seem to highly disturb the
DNNs which may lead to degenerated clustering, e.g. only one cluster. It clearly seems not possible
to apply them as-is on time series. It would require some further adaptations or new propositions
to take into account the particularities of the time dimension. Moreover, even the reconstruction
loss does not seem particularly adapted to time series.

However, this put aside, the best deep clustering candidate manages to obtain good results and
to rank first among all methods when combined with UMAP with a reduction to K (number of
clusters) dimensions. Nevertheless, it is important to note that UMAP, when applied to original
data with the K-Means method, ranks before the best deep clustering candidate (without UMAP).
As UMAP search for a low dimensional projection of the data that preserve both local and global
structure, it preserves indirectly the most discriminating features. Therefore it may suggest that
DNNs manage to capture important features or patterns but also noisy features which may lead
to poor clustering results. The UMAP helps to extract the relevant features, at least the most
discriminating ones. The grad-CAM heatmap plots lead to the same conclusion as they show that
DNNs have the capacity to extract temporal patterns but also that it can be partially disturbed
by the training loss.

Hence, this analysis leads to the conclusion that deep clustering for time series lacks suitable
pretext losses. The new losses should better take into account the specificities of the time dimension
(i.e. stretched or shifted patterns) and be less sensitive to small or rare variations.

End-to-end deep representation learning for time series clustering 45

8 Conclusion

In this paper, we have conducted a large study to compare different time series clustering methods
based on deep learning. We have shown that deep clustering methods can be separated into three
components: the architecture (i.e. the type, number, and configuration of layers), the pretext loss,
and the clustering loss. Based on this taxonomy, we have conducted a cross-comparison to evaluate
the influence of each component separately. It results that the best combinations are based on a
simple autoencoder architecture that uses reconstruction-based pretext losses. The more advanced
frameworks, mostly proposed for image clustering, do not seem to improve the performance while
processing time series.

However, even if the advances from the image domain does not translate directly to time series,
deep clustering methods still appears as promising. When compared to state-of-the-art methods,
the best candidates obtained competitive results. Moreover, grad-CAM and centroid reconstruction
can be used to extract and identify learned patterns. However, two main limitations remain. First,
the choice of the best combination and the best configuration for a new dataset is still a tedious
task. A few guidelines can be retrieved from our observations, but they remain limited. Second,
even though deep clustering methods have shown their ability to detect and discriminate temporal
patterns, some examples show that is it not consistent over all combinations and datasets. This
second limitation is at least partially explained by the use of the reconstruction loss that do not
seem adapted to the time domain, even if it performs better than other losses proposed specifically
for time series. Finally, it should also be mentioned that the UCR and UEA archives may not be
completely fit as-is to evaluate the clustering ability of a method as we defined it. Indeed we showed
that some methods that clearly fail to catch time patterns may still lead to average or good results.

To conclude, deep clustering methods gives promising results but research in time domain
tailored losses is still required to significantly increase the performance of deep time series clustering.

References

Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering–a decade review. Infor-
mation Systems 53:16–38

Bagnall A, Dau HA, Lines J, Flynn M, Large J, Bostrom A, Southam P, Keogh E (2018) The uea
multivariate time series classification archive, 2018. arXiv preprint arXiv:181100075

Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:14090473

Ballard DH (1987) Modular learning in neural networks. In: AAAI, pp 279–284
Becker S (1991) Unsupervised learning procedures for neural networks. International Journal of

Neural Systems 2(01n02):17–33
Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is

difficult. IEEE transactions on neural networks 5(2):157–166
Bo D, Wang X, Shi C, Zhu M, Lu E, Cui P (2020) Structural deep clustering network. In: Proceed-

ings of The Web Conference 2020, pp 1400–1410
Caron M, Bojanowski P, Joulin A, Douze M (2018) Deep clustering for unsupervised learning of

visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp
132–149

Chan KP, Fu AWC (1999) Efficient time series matching by wavelets. In: Proceedings 15th Inter-
national Conference on Data Engineering (Cat. No. 99CB36337), IEEE, pp 126–133

46 Baptiste Lafabregue et al.

Chang S, Zhang Y, Han W, Yu M, Guo X, Tan W, Cui X, Witbrock M, Hasegawa-Johnson MA,
Huang TS (2017) Dilated recurrent neural networks. In: Advances in Neural Information Pro-
cessing Systems, pp 77–87

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014)
Learning phrase representations using rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv:14061078

Dau HA, Bagnall A, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanamahatana CA, Keogh E
(2019) The ucr time series archive. IEEE/CAA Journal of Automatica Sinica 6(6):1293–1305

Dempster A, Petitjean F, Webb GI (2020) Rocket: Exceptionally fast and accurate time series
classification using random convolutional kernels. Data Mining and Knowledge Discovery pp
1–42

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research 7(Jan):1–30

Doersch C, Gupta A, Efros AA (2015) Unsupervised visual representation learning by context
prediction. In: Proceedings of the IEEE international conference on computer vision, pp 1422–
1430

Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller PA (2019) Deep learning for time series
classification: a review. Data Mining and Knowledge Discovery 33(4):917–963

Franceschi JY, Dieuleveut A, Jaggi M (2019) Unsupervised scalable representation learning for
multivariate time series. In: Advances in Neural Information Processing Systems, pp 4652–4663

Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual prediction with lstm.
Neural Computation 12(10):2451–2471

Ghasedi K, Wang X, Deng C, Huang H (2019) Balanced self-paced learning for generative adversar-
ial clustering network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp 4391–4400

Ghasedi Dizaji K, Herandi A, Deng C, Cai W, Huang H (2017) Deep clustering via joint convo-
lutional autoencoder embedding and relative entropy minimization. In: Proceedings of the IEEE
international conference on computer vision, pp 5736–5745

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y
(2014) Generative adversarial nets. In: Advances in neural information processing systems, pp
2672–2680

Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y (2018) Diagnose like a radiologist:
Attention guided convolutional neural network for thorax disease classification. arXiv preprint
arXiv:180109927

Guo X, Gao L, Liu X, Yin J (2017a) Improved deep embedded clustering with local structure
preservation. In: IJCAI, pp 1753–1759

Guo X, Liu X, Zhu E, Yin J (2017b) Deep clustering with convolutional autoencoders. In: Interna-
tional conference on neural information processing, Springer, pp 373–382

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp 770–778

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural computation 9(8):1735–1780
Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian journal of

statistics pp 65–70
Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the national academy of sciences 79(8):2554–2558
Ienco D, Pensa RG (2019) Deep triplet-driven semi-supervised embedding clustering. In: Interna-

tional Conference on Discovery Science, Springer, pp 220–234

End-to-end deep representation learning for time series clustering 47

Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K (2015) Spatial transformer networks.
arXiv preprint arXiv:150602025

Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern recognition letters 31(8):651–666
Jiang Z, Zheng Y, Tan H, Tang B, Zhou H (2016) Variational deep embedding: A generative

approach to clustering. CoRR
Jiao Y, Yang K, Dou S, Luo P, Liu S, Song D (2020) Timeautoml: Autonomous representation

learning for multivariate irregularly sampled time series. arXiv preprint arXiv:201001596
Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint arXiv:13126114
Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv

preprint arXiv:160902907
Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: A review of classification

techniques. Emerging artificial intelligence applications in computer engineering 160(1):3–24
Kramer MA (1991) Nonlinear principal component analysis using autoassociative neural networks.

AIChE journal 37(2):233–243
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural

networks. In: Advances in neural information processing systems, pp 1097–1105
Larsson G, Maire M, Shakhnarovich G (2017) Colorization as a proxy task for visual understanding.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 6874–
6883

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11):2278–2324

Li X, Chen Z, Poon LK, Zhang NL (2018) Learning latent superstructures in variational autoen-
coders for deep multidimensional clustering. In: International Conference on Learning Represen-
tations

Liao TW (2005) Clustering of time series data—a survey. Pattern recognition 38(11):1857–1874
Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing sax: a novel symbolic representation of time

series. Data Mining and knowledge discovery 15(2):107–144
Lipton ZC, Tripathi S (2017) Precise recovery of latent vectors from generative adversarial networks.

arXiv preprint arXiv:170204782
Ma Q, Zheng J, Li S, Cottrell GW (2019) Learning representations for time series clustering. In:

Advances in Neural Information Processing Systems, pp 3776–3786
Ma Q, Li S, Zhuang W, Wang J, Zeng D (2020) Self-supervised time series clustering with model-

based dynamics. IEEE Transactions on Neural Networks and Learning Systems
Maaten Lvd, Hinton G (2008) Visualizing data using t-sne. Journal of machine learning research

9(Nov):2579–2605
Madiraju NS, Sadat SM, Fisher D, Karimabadi H (2018) Deep temporal clustering: Fully unsuper-

vised learning of time-domain features. arXiv preprint arXiv:180201059
Makhzani A, Frey B (2013) K-sparse autoencoders. arXiv preprint arXiv:13125663
McConville R, Santos-Rodriguez R, Piechocki RJ, Craddock I (2019) N2d:(not too) deep clustering

via clustering the local manifold of an autoencoded embedding. arXiv preprint arXiv:190805968
McInnes L, Healy J, Melville J (2018) Umap: Uniform manifold approximation and projection for

dimension reduction. arXiv preprint arXiv:180203426
Mukherjee S, Asnani H, Lin E, Kannan S (2019) Clustergan: Latent space clustering in generative

adversarial networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33,
pp 4610–4617

Panuccio A, Bicego M, Murino V (2002) A hidden markov model-based approach to sequential
data clustering. In: Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Springer, pp 734–

48 Baptiste Lafabregue et al.

743
Paparrizos J, Gravano L (2015) k-shape: Efficient and accurate clustering of time series. In: Proceed-

ings of the 2015 ACM SIGMOD International Conference on Management of Data, pp 1855–1870
Pascanu R, Gulcehre C, Cho K, Bengio Y (2013) How to construct deep recurrent neural networks.

arXiv preprint arXiv:13126026
Petitjean F, Ketterlin A, Gançarski P (2011) A global averaging method for dynamic time warping,

with applications to clustering. Pattern Recognition 44(3):678–693
Rani S, Sikka G (2012) Recent techniques of clustering of time series data: a survey. International

Journal of Computer Applications 52(15)
Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: Explicit in-

variance during feature extraction. In: Icml
Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization

in the brain. Psychological review 65(6):386
Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. science

290(5500):2323–2326
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating

errors. nature 323(6088):533–536
Sak H, Senior A, Beaufays F (2014) Long short-term memory recurrent neural network architectures

for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech
Communication Association

Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recogni-
tion. IEEE transactions on acoustics, speech, and signal processing 26(1):43–49

Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A, Er MJ, Ding W, Lin CT (2017) A
review of clustering techniques and developments. Neurocomputing 267:664–681

Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and
clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 815–823

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual
explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE
international conference on computer vision, pp 618–626

Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N (2015) Taking the human out of the
loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175

Souza TV, Zanchettin C (2019) Improving deep image clustering with spatial transformer layers.
In: International Conference on Artificial Neural Networks, Springer, pp 641–654

Sun D, Wulff J, Sudderth EB, Pfister H, Black MJ (2013) A fully-connected layered model of
foreground and background flow. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp 2451–2458

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In:
Advances in neural information processing systems, pp 3104–3112

Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear di-
mensionality reduction. science 290(5500):2319–2323

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017)
Attention is all you need. arXiv preprint arXiv:170603762

Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features
with denoising autoencoders. In: Proceedings of the 25th international conference on Machine
learning, pp 1096–1103

Wang C, Pan S, Hu R, Long G, Jiang J, Zhang C (2019) Attributed graph clustering: A deep
attentional embedding approach. arXiv preprint arXiv:190606532

End-to-end deep representation learning for time series clustering 49

Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks:
A strong baseline. In: 2017 International joint conference on neural networks (IJCNN), IEEE, pp
1578–1585

Weiss G, Goldberg Y, Yahav E (2018) On the practical computational power of finite precision
rnns for language recognition. arXiv preprint arXiv:180504908

Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics,
Springer, pp 196–202

Woo S, Park J, Lee JY, Kweon IS (2018) Cbam: Convolutional block attention module. In: Pro-
ceedings of the European conference on computer vision (ECCV), pp 3–19

Xiao Y, Cho K (2016) Efficient character-level document classification by combining convolution
and recurrent layers. arXiv preprint arXiv:160200367

Xiao Z, Xu X, Xing H, Chen J (2020) Rtfn: Robust temporal feature network. arXiv preprint
arXiv:200807707

Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In:
International conference on machine learning, pp 478–487

Xu J, Xiao L, López AM (2019) Self-supervised domain adaptation for computer vision tasks. IEEE
Access 7:156694–156706

Yang X, Deng C, Zheng F, Yan J, Liu W (2019) Deep spectral clustering using dual autoencoder
network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp 4066–4075

Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions. arXiv preprint
arXiv:151107122

Zeng N, Zhang H, Song B, Liu W, Li Y, Dobaie AM (2018) Facial expression recognition via
learning deep sparse autoencoders. Neurocomputing 273:643–649

Zha H, He X, Ding C, Gu M, Simon HD (2002) Spectral relaxation for k-means clustering. In:
Advances in neural information processing systems, pp 1057–1064

Zhang Q, Wu J, Zhang P, Long G, Zhang C (2018) Salient subsequence learning for time series
clustering. IEEE transactions on pattern analysis and machine intelligence 41(9):2193–2207

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discrim-
inative localization. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 2921–2929

	Introduction
	Background
	Evaluated methods and implementations
	Evaluation setup
	Results
	Analysis of DNNs
	Summary and perspectives
	Conclusion

