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Abstract—Deep learning models have been shown to be a pow-
erful solution for Time Series Classification (TSC). State-of-the-
art architectures, while conducting promising results on the UCR
archive, present a high number of trainable parameters. This can
lead to long training with a high CO2, Power consumption and
possible increase in the number of FLoat-point Operation Per
Second (FLOPS). In this paper, we present a new architecture for
TSC, the Light Inception with boosTing tEchnique (LITE) with
only 2.34% of the state-of-the-art model InceptionTime’s number
of parameters, while preserving performance. This architecture,
with only 9,814 trainable parameters due to the usage of
DepthWise Separable Convolutions (DWSC), is boosted by three
techniques: multiplexing, custom filters, and dilated convolution.
The LITE architecture, trained on the UCR, is 2.78 times faster
than InceptionTime and consumes 2.79 times less CO2 and
Power.

Index Terms—Time Series Classification, Neural Networks,
Convolutional Neural Networks, DepthWise Separable Convo-
lutions

I. INTRODUCTION

Time Series Classification (TSC) has been widely inves-
tigated by researchers in recent years. Some TSC tasks in-
clude the classification of surgical evaluation [1]-[3], action
recognition of human motion [4], [5], cheat detection in video
games [6], interpretability [7], Entomology [8], efc.. Thanks to
the availability of the UCR archive [9], the largest archive for
TSC datasets, a significant amount of work has been done in
this domain. Deep learning models have been proposed in the
time series context for classification [10]-[14], clustering [15],
averaging [16], representation learning [17]-[19], adversarial
attacks [20], [21], etc.. Even though deep learning approaches
proven to be very powerful for TSC, they present a large
amount of trainable parameters, which often leads to a long
training time, inference time and storage usage.

For this reason, some work started to question the need
of such a large complexity in deep learning models for TSC
such as ROCKET and its variants [22]-[24]. Like for images,
deep learning also presents a large complexity, which limits
the usage of the models on small devices such as mobile
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Fig. 1. For each model, the accuracy on the FreezerSmallTrain dataset is

presented on the y-axis and the number of FLoat-point Operations Per Second
(FLOPS) is presented on the x-axis in log scale. The diameter of the circles
represents the number of trainable parameters of the model. The smallest
model is LITE (ours) with only 10k trainable parameters and the lowest
number of FLOPS ( 4 in log scale); it also presents the highest accuracy
score on the test set in this comparison.

phones and robots [25], [26]. Furthermore, Large Language
Models (LLM) also shown to be very effective [27], and
that their complexity can be decreased, while preserving
performance [28].

In this paper, we address the methodology of reducing the
complexity of deep learning models, while preserving the
performance of the TSC task. We argue that a large complex
model may not be necessary in order to perform well on
the UCR archive. However, simply removing layers and or
parameters to reduce complexity may not guarantee to preserve
the performance. For this reason, the neural network architec-
ture often requires additional techniques in order to balance
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between complexity and performance. In this work, we borrow
existing techniques that have been efficiently used in state-of-
the-art architectures on time series data. These techniques are
multiplexing convolutions [12], [29], dilated convolutions [19],
and custom filters [13]. By combining these three techniques
with a modified version of a small non complex model, the
Fully Convolution Network (FCN) [11], we propose a new
architecture named Light Inception with boosTing tEchniques
(LITE). The proposed model uses only 2.34% of Inception’s
number of parameters, while being competitive with state-
of-the-art architectures. For instance, Figure 1 shows that on
the FreezerSmallTrain dataset, the classification accuracy of
LITE is much higher than other approaches with way less
trainable parameters. The reduction in number of parameters
is made possible thanks to the usage of DepthWise Separable
Convolutions (DWSC) [25]. The additional techniques used in
this proposed architecture, multiplexing, dilated, and custom
convolutions, have the advantage of only slightly increasing
the number of parameters by about 1, 000.

To position the proposed architecture among the state-of-
the-art, we compare not only the accuracy but also the training
time and number of parameters. A comparison of CO2 and
Power consumption' is also presented. The main contributions
of this work are:

e A new architecture for TSC, the LITE model with only
2.34% of Inception’s number of parameters.

« Extensive experiments showing that LITE achieves state-
of-the-art results.

e A comparison based on the number of trainable param-
eters, number of FLOPS, training time, CO2 and Power
consumption.

o A deeper analysis presented as an ablation study to show
the impact of each technique added to boost the proposed
model.

In what follows, we present some related work in Section II,
discuss the details of our proposed architecture in Section III,
present some results compared to other approaches in Sec-
tion IV, and conclude by drawing future work in Section V.

II. BACKGROUND AND RELATED WORK

Time Series Classification (TSC) was widely investigated
in the literature. Some work addressed this problem using
machine learning algorithms by comparing similarity metrics
between the time series [30], decisions based on random forest
algorithm [31], efc.. The problem of most of those algorithms
is that they require huge amount of CPU time to perform their
calculations, and can not be parallelized on a cluster of GPUs.
For these reasons, deep learning for TSC is being used in the
recent years. Even though the performance of deep learning
is better than machine learning algorithms, the number of
parameters to be optimized may be very high. In what follows,
we first define the problem at hand, then we present some work
that tackled the TSC problem using machine and deep learning
techniques. Finally, we present some work that addressed the
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training time problem of deep learning models and the large
number of parameters.

A. Definitions

Let x be a univariate time series of length L, and let
D = {x;,y;}}\;! be a dataset of N univariate time series
x; with their corresponding labels y;. The goal of this work
is to construct an algorithm to learn how to correctly classify
each input time series to its corresponding label.

B. Machine Learning for TSC

The basic approach to solve TSC tasks is by using the
Nearest Neighbour (NN) algorithm. In order to use this algo-
rithm, a specific similarity metric for time series data should be
defined. In [30], the authors used the Dynamic Time Warping
algorithm (DTW) in order to define a similarity metric for the
NN algorithm. This algorithm has some limitations given that
DTW does not have the ability to extract features from the
input samples. The work in [32] also used the same algorithm
but with an upgraded version of DTW called shapeDTW that
aligns a local neighborhood around each point. The main
limitation of the DTW algorithm and its variants is the time
complexity of the algorithm, which is a function of the time
series length, i.e., O(L?).

C. Deep Learning for TSC

In this section, we present the work done on TSC using
deep learning approaches. The simplest architecture is the
Multi Layer Perceptron (MLP) proposed in [11] that uses fully
connected layers and dropout operations. This architecture is
limited given the fact that it ignores the temporal dependency
in a time series. The Fully Convolution Network (FCN) was
also proposed in [11] that uses 1D convolution operations.
In this model, the backpropagation algorithm finds the best
filters to extract features from the time series, and correctly
classifies the samples. In this model, convolutions account for
temporal dependencies in time series data, and they are also
independent of the input time series length. The authors in [11]
also proposed the ResNet model, which uses the residual
connections [33] to solve the vanishing gradient problem.
A comparative study in [10] shows that using convolutions,
especially ResNet, outperforms other models that use multi-
scale transformation or pooling layers with convolutions [29],
[34]. ResNet and FCN use Batch Normalization and ReLU
activation instead of pooling operations after each convolu-
tion layer to avoid overfitting. The state-of-the-art model in
deep learning for TSC on the UCR archive [9] is Inception-
Time [12], where the authors adapted the original Inception
model on images for time series data. InceptionTime has the
ability to detect multiple patterns of different length given
to the multiplexing technique. This technique comes down
to learning multiple convolution layers on the same input
but with different characteristics. It is important to note that
InceptionTime is an ensemble of five Inception models each
trained separately.



D. Reducing Model Complexity

Even though deep learning for TSC shown to be very
effective, it still has some issues. One of these issues we
address in this work is the large number of parameters to be
optimized, which increases the training time as well. Recently,
in [22] a new approach was proposed, called ROCKET, that
also includes convolution operations, but is way faster than
InceptionTime. They proposed not to learn few filters with
a backpropagation algorithm, but instead randomly generate
a large number of filters with different characteristics. These
characteristics include the length of the filter, the bias value,
the dilation rate, efc.. It has been shown that on the UCR
archive, no statistical significant difference can be found
between InceptionTime and ROCKET. The main advantage
of ROCKET compared to InceptionTime is the training and
inference time. Some adaptations of ROCKET were pro-
posed in order to boost its performance even more such as
MiniROCKET ([23] and MultiROCKET [24]. More recently,
knowledge distillation [35] was also approached for the TSC
model called FCN [36]. In this study, the authors proposed a
smaller variant of FCN with a lower number of convolution
layers and filters to learn.

Furthermore, the work in [13] proposed to hand-craft some
custom convolution filters instead of randomly generate them.
Those hand-crafted filters are constructed in a way to get
activated on increasing and decreasing intervals as well as
peaks in the time series. By using these filters, the authors were
able to construct a Hybrid FCN (H-FCN). Results on the UCR
archive shown that H-FCN is statistically significantly better
than FCN and is competitive with InceptionTime. The H-FCN
model uses the custom filters in parallel to the learned filters
in the first layer.

Some work to optimize the complexity of large models were
proposed in Computer Vision as well. For instance, the authors
in [25] proposed the usage of DWSC instead of standard ones.

The MobileNet architecture as proposed in [25] proven
to be very competitive with state-of-the-art models on Ima-
geNet [37] with way less complexity.

In Natural Language Processing, some work proposed the
usage of Small Language Models (SLM) as a one-shot learning
approach [28]. The authors showed that with way less param-
eters than GPT-3 [27], their model can have no significant
difference in performance.

III. PROPOSED APPROACH
A. Convolutions for TSC

Multiple Convolution Neural Networks (CNNs) were pro-
posed for the task of TSC and they all proved how they outper-
form other methods. The Fully Convolution Network (FCN) is
a simple three layered network, where each layer is composed
of 1D convolutions followed by a batch normalization and
a ReLU activation function. As FCN is only composed of
simple 1D convolution layers, its performance generally lags
behind more advanced architectures using residual connections
(ResNet) or Inception modules (InceptionTime). In this paper,
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Fig. 2. DWSC for time series represented in its two phases: (1) DepthWise
convolution (purple block), and (2) PointWise convolution (blue block).

we present an adaptation of the FCN architecture that only has
2.34% of Inception’s number of parameters. Given this signif-
icant drop in the number of parameters, boosting techniques
are used in order to preserve the performance of Inception.

First, we discuss about two ways of applying convolutions
with less number of parameters, while preserving the perfor-
mance. The first approach uses standard convolutions with
BottleNecks (BN), and the second uses DWSC.

1) Standard Convolutions with BottleNecks: Many ap-
proaches that use CNN based architectures suffer from the
problem of high number of parameters such as ResNet [11].
For this reason, the authors of InceptionTime [12] proposed
to use a BottleNeck operation in order to reduce the number
of parameters. This BottleNeck operation is made of 1D
convolutions with a unit kernel size.

The following example shows the impact of this operation
on reducing the number of parameters. Suppose at a depth
d in the network, the input number of channels is Cj,. The
following convolution layer of depth d + 1 projects the input
into a new space with a number of channels C,,; using a
kernel of size k. On the one hand, without a BottleNeck
operation, the number of learned parameters is Cj,, * Coyy * k.
On the other hand, with a BottleNeck operation that uses
Cyy, filters of size 1, the number of learned parameters is
Cin * Cpp * 1 + Cpyp, ¥ Cpyp * k. This operation reduces the
number of parameters if and only if the following inequality
1S true:

Cin*cbn+cbn*cout*k< Cin*cout*k7 (1)

which indicates that the condition on the BottleNeck operation
is:
Cin * Cout xk

Cop < ——i-—.
’ Oin+cout*k

2)



The goal of the BottleNeck operation is to learn the same
number of filters in the output channels (C,,,;), while reducing,
at the same time, the intermediate learned filters between the
input and output channels (C,, % Coyy).

2) DepthWise Separable Convolution DWSC: DWSC can
be divided into two phases: DepthWise convolution (Phase 1),
and PointWise convolution (Phase 2). A visual representation
of the DWSC operation is presented in Figure 2.

In standard convolutions, if the input sample of length L
has C},, channels and the desired output is a space with Cl,,;
channels using a kernel of size k, then the number of learned
parameters is Cj, * Coye * k. The number of multiplications
is L * Cout x C;, * k.

a) DepthWise convolution: In this phase, if the convo-
lution is done using a kernel of size k, then the number of
learned filters is Cj,, and the output number of channels will
be C, (such as the input). In other words, for each dimension
of the input time series, one filter is learned.

b) PointWise convolution: This phase projects the output
of the DepthWise convolution into a space with a desired
number of channels C,,;. This is done by applying a standard
convolution with C,,; filters of kernel size 1 (a BottleNeck).

Hence, by combining these two phases, the number of
learned parameters in a DWSC becomes Cj, * k + Cyp, % Coys.

The following calculation finds the condition that the DWSC
have less parameters to learn compared to the standard one:

Cin * Cout xk > Cin * k + Cvn * Cout

standard Conv

separable Conv

Cin * Cout * k > C’LTL * (k + C’out)

Cout xk>k+ Cout (3)
k * (Oout — 1) > Cout
k> Cout  Couwr—oo '

Cout -1

This means that if the number of desired output channels is
high enough (if C\,; >= 3 the previous equation holds), then
DWSC have less parameters to learn compared to the standard
convolutions.

The number of multiplications performed in the DWSC is
Cin* Lxk+CinxCyyyx L+ 1. The following calculation finds
the second condition for when DWSC have less multiplications
to perform compared to standard convolutions:

Cin*Cout * Lxk > Cipyx Lxk+Ci % Cour x L x 1

standard convs

separable convs

Cin *Cout*L*k' > OML*L* (k+cout)

Cout Xk >k 4+ Cout “4)
k(cout - 1) > Cout
s Cout  Cour—oo .

Cout -1

This concludes that DWSC have less parameters to learn
with less number of multiplications to perform compared to
standard convolutions. In this work, we present a comparison
between the usage of DWSC or standard ones + BottleNecks.

Our results demonstrate that with the techniques added to
boost DWSC, we can maintain performance, while signifi-
cantly reducing the number of parameters to optimize.

After defining two techniques to use convolutions in a more
optimized way concerning number of parameters and multi-
plications, some other techniques should be defined as well.
These techniques aim to minimize the impact of parameters
reduction in convolutions operations explained above.

B. Boosting Techniques

The following techniques are borrowed from previous work
from the literature.

1) Multiplexing: Multiplex convolution was proposed in the
architecture of Inception [12]. Its main idea is to learn in
parallel different convolution layers of different kernel size.
A multiplexing example is shown in Figure 3.

: Filter
: Time series

: Output Conv
: Multiplication
: Addition

Fig. 3. Multiplexing one dimensional convolution on the input time series (in
blue) using filters (in green) with three different kernel sizes, respectively, 3,
5, and 7. The output of the convolutions (in red) is different for each filter.

2) Dilation: Dilated convolutions were not very explored
for deep supervised learning on TSC but they were used
in self-supervised models showing to be very effective [19].
Dilation in convolutions filters defines the number of empty
cells in the kernel. Suppose a kernel of length 3 has the
following parameters k = [k, k1, ko], a dilation of rate 2 will
produce the following kernel k = [ko, skip, k1, skip, ko). The
skip parameter indicates that the convolution layer will not use
the values of the input aligned with this index of the kernel. A
visualization of the dilation effect on convolution can be seen
in Figure 4. Dilation will help increasing the receptive field
of a model without having to add deeper layers because the
dilated kernel will find the deeper combinations in the same
layer.
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Fig. 4. One dimensional convolution performed w/o dilation on the left
(rate=1), and with dilation on the right (rate=2).

3) Custom Filters: Custom filters were proposed in [13].
The authors hand-crafted some kernels in order to detect
specific patterns in the input time series. These filters were
then added to Inception and results on the UCR archive have
shown that such filters can help with the generalization and
boost the performance. This is due to the fact that these filters
are generic and fixed (not learned). This allows the model to
focus on learning new patterns harder to detect.

C. Proposed architecture

1) Light Inception with boosTing tEchniques (LITE): In our
proposed architecture, we reduce the number of parameters,
while preserving performance. This is obtained by using
DWSC and the previously explained boosting techniques.
First, custom filters are used in the first layer parallel to the
first layer. Second, in this first layer, multiplexing convolu-
tion is used in order to detect different patterns of different
characteristics (three parallel convolution layers). Third, the
second and third layer present the usage of dilation in their
kernels. It is important to notice that for the first layer, standard
convolutions are used instead of DWSC. This is due to the
fact that the input time series is univariate and DWSC will
learn only one filter. A summary of the architecture is given
in Figure 5.

2) Ensemble: Ensemble learning is a technique of combin-
ing the prediction of multiple models in order to reduce the
variance, and it has been shown to be very effective in the
literature [12], [38], [39]. Applying an ensemble of multiple
classification models is equivalent to find the average predicted
distribution of all the models. This average distribution is
finally used for choosing the predicted class. This motivated us
to build an ensemble of multiple LITE models to form LITE-
Time (by adding the suffix Time following [12]). Moreover, the
usage of an ensemble in the case of LITE is also motivated
by its small architecture and the fact that it can boost less
complex architectures even more.

IV. EXPERIMENTAL EVALUATION
A. Datasets

The UCR archive [9] is the largest directory for the TSC
problem. It is publicly available 2. The archive contains
128 datasets of univariate TSC tasks. Some tasks involves
Electrocardiography (ECG) time series data and some are
observations of Sensors, efc.. Each dataset is split into a
training and a testing set. The labels are available for all the
samples. In order to train the model on a normalized dataset,
we apply Z-normalization over all the samples independently.
This normalization technique reduces the time series samples
to a zero mean and unit variance sequence.

B. Implementation Details

Our results were obtained on the UCR archive using a
GTX 1080 GPU with 8GB of VRAM. In the experiments, we
accounted for the training time, inference time (testing time),
CO2 and Power consumption. The model used for testing is the
best model during training, chosen by monitoring the training
loss. The Adam optimizer was used with a Reduce on Plateau
learning rate decay method by monitoring the training loss.
The Adam optimizer’s parameters are the default set up of the
Tensorflow Python model *. The model is trained with a batch
size of 64 for 1500 epochs.

For the parameters of the LITE architecture presented in
Figure 5, the following setup is used: N; = 6, variations in
kernel sizes = [2,4, 8,16, 32, 64]; Nz = 6, variations in kernel
sizes = [2,4,8,16,32,64]; N, = 5, variations in kernel sizes
= [6,12,24,48,96]; N = 32; K = 40; D0 = 1 in order to
start with no dilation and increase with depth (D1 = 2 and
D2 = 4). The source code is publicly available *.

C. Results and Discussion

1) Number of Parameters, FLOPS Training Time, Testing
time, CO2 and Power Consumption: Table 1 summarizes
the number of parameters, the number of FLoating-point
Operations Per Second (FLOPS), training time, inference time,
CO2 and Power consumption over the 128 datasets of the
UCR archive. The number of parameters shown is the number
of trainable parameters of the architecture without the last
classification Fully Connected layer because it depends on
each dataset (number of classes). The rest of the information is
summed over the 128 datasets of the UCR archive and average
over five different runs.

First, the table shows that the smallest model in terms of
number of parameters is the LITE with 9,814 parameters.
This is mainly due to the usage of DWSC instead of standard
ones. Compared to FCN ResNet and Inception, LITE has
only 3.7% 1.95% and 2.34% of their number of parameters
respectively. Second, the fastest model in the training phase is
LITE, with a training time of 0.62 days. LITE is 2.79, 3.08 and
2.71 time faster than FCN, ResNet and Inception respectively.

2https://www.cs.ucr.edu/ eamonn/time_series_data_2018/

3https://keras.io/api/optimizers/adam/
4https://github.com/MSD-IRIMAS/LITE
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Third, LITE is the model that consumes the smallest amount
of CO2 and Power, 0.1048 g and 0.2468 W respectively.
Compared to the other approaches, LITE presents the fastest
and most ecologic model for TSC compared to FCN, ResNet
and Inception. We believe, given the factors explained above,
that LITE can be used for the deployment of deep learning
for TSC in small machine such as mobile phones. In what
follows we present the performance of the proposed LITE
model compared to the state-of-the-art in terms of accuracy
metric on test evaluation.

2) Accuracy Performance: In what follows, a one-vs-one
comparison is presented between the models in order to show
that LITE can preserve the performance of the more complex
architectures. This one-vs-one comparison comes down to a
Win/Tie/Loss count on the 128 datasets of the UCR archive
between two classifiers. This comparison is visualized in
Figures 6 and 7. Each point in these plots represents one
dataset of the UCR archive. The z-axis contains the accuracy
value on the test set using classifier-x and the y-axis the ones
using classifier-y.

In order to evaluate the significance of the Win/Tie/Loss
comparison, a statistical Wilcoxon Signed Rank Test [40] is
used. This test will return a statistical value, the P-Value,
representing how significant the difference is between the
two classifiers. If the P-Value is low, this would mean that
the difference in performance between the two classifiers
is statistically significant. If the last condition is not true,
it means that there are not enough examples (datasets) to
find a statistical significant difference between the classifiers.
This Wilcoxon test needs a P-Value threshold, usually in the
literature a 0.05 (or 5%) threshold is used.

On the one hand, the results presented in Figure 6 show
that LITE beats FCN significantly (low P-Value), and is
statistically not significant than ResNet (high P-Value). The

results compared to ResNet are impressive given the small
complexity of LITE (almost 1.95% of ResNet’s number of
parameters). On the other hand, the comparison shows that
LITE still is not significantly close to Inception. To study
more the reason why LITE performs not as good as Inception
with a large margin (more than 10%), we presented some
characteristics of those datasets in Table II. This table shows
that some of the datasets have either long time series or
small training set. Firstly, this indicates that Inception is better
than LITE on long time series given its large receptive field
(deeper architecture). Secondly, this points out that Inception
generalizes better better in the case where the dataset presents
a small training set so it can generalize better.

Given that Inception still beats LITE, an ensemble compar-
ison shows the real performance of the proposed architecture.
This is due to the fact that LITE has way less parameters
(2.34% of Inception’s number of parameters) which can make
it sensitive to a higher variance when training with different
initialization. Applying an ensemble removes this variance as
explained before.

The comparison between LITETime with InceptionTime
and ROCKET is presented in Figure 7. This comparison shows
that, given the 128 datasets of the UCR archive, there are
not enough datasets to find a statistical significance in the
difference of performance with InceptionTime and ROCKET.
We included ROCKET in the ensemble comparison with
LITETime because the motivation in ROCKET is to replace
the ensemble technique by using random filters instead of
learning them starting with different initialization.

Those last results suggest that in order to get a good
performance on the UCR archive, a large complex architecture
with a high number of parameters is not always needed.

For a multi-classifier comparison, the average rank of each
model is shown in a Critical Difference Diagram [41] (CD
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@ Win 48 o @® Win 59
@ Tie19 @® Tie8
0.8 Loss 61 Py 0.8 Loss 61
P-Value 0.1917 PValue 0.8009 @ o
g 051 [ LITETime is g 06 'k-)'TtETi”;]e 51 o
= better here | _ @, = etter here | @@,
= ° [
L [n} [ ]
B oa ° = oa
- - )
InceptionTime is .
ROCKET is
0.2 better here 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.C
InceptionTime ROCKET
Fig. 7. One-vs-One comparison between LITETime with two different

models: InceptionTime and ROCKET over the 128 datasets of the UCR
archive.

Diagram) based on the ranking classifiers given the average
rank over multiple datasets, the two tailed Wilcoxon Signed-
Rank Test with the Holm multiple test correction [42]. To gen-
erate the CD Diagram, we used the publicly available code °.
This diagram also presents connections between classifiers,
when the difference in performance is not statistically different
following the Wilcoxon Signed Rank Test. A CD Diagram is
presented in Figure 8 and shows that LITETime comes 3rd on
the average rank between ROCKET and InceptionTime. The
diagram also shows that FCN performs statistically signifi-
cantly worse than LITE on the average rank. Furthermore, on
the UCR archive, no statistical significance can be observed
between ResNet and LITE. This last comparison shows the
real impact of this work where LITE has almost 1.95%
(Table I) of ResNet’s number of parameters. These conducted
results show that on a large amount of cases, there is no
need for a complex model with high number of parameters
to achieve good performance.

Furthermore, a new Multi-Comparison Matrix (MCM) eval-
uation tool was proposed that is stable to the variation of
the addition and removal of classifiers [43]. The MCM is
presented in Figures 9 and 10 to compare LITE and LITETime,
respectively, to other approaches in the literature. The MCM
uses the average accuracy on the UCR as an ordering metric
instead of the average rank. As presented in the MCMs,
LITE and LITETime perform better than FCN and ResNet

Shttps://github.com/hfawaz/cd-diagram

on the average accuracy and is closer to the performance
of InceptionTime, which is not significantly different than
LITETime (high p-value). MCM has an advantage over the
usage of the CD Diagram of being stable with the addition
and removal of classifiers, given that the average performance
would not change in this scenario unlike the average rank.
Another advantage is not using a multiple test correction for
the p-value significance test.

Accuracy

8 7 6 5 4 3 2 1
| IR YR [ SR NN WU [N SR NN SO A TR S T |

ronaz T mimocer
LITE >328¢ 24727 |nceptionTime

ResNet>2224 27109 |TETime
Inception %2220 38 1SROCKET

Fig. 8. A Critical Difference Diagram (CD Diagram) showing the average
rank of each classifier over the 128 datasets of the UCR archive with the
significance in difference of performance.

D. Ablation Study - LITE

1) Impact of Additional Techniques: The proposed LITE
architecture, uses multiples techniques in order to improve the
performance. In order to show the impact of each technique on
the proposed architecture, an ablation study is presented in this
section. First, the LITE is stripped down from the three used
techniques: dilation, multiplexing and custom filters. Second,
given that for the multiplexing convolutions performed in the
first layer there are a total of three layers with n filters, the
Striped-LITE learns a total of 3n filters for the first layer.
The rest of the architecture is the same using DWSC without
dilation. We then add each boosting technique separately on
the stripped LITE model and evaluate its performance. The
results of this ablation study are visualized in Figure 11 in
the form of a Heat Map. Each cell of the Heat Map contains
the Win Tie Loss count when evaluating the test accuracy
on the UCR archive. The addition of the P-Value statistics
is presented in each cell in order to assess the significance
in difference of performance. The P-Value is emphasized in
bold when it is lower than the specified threshold (0.05). The
colors of the Heat Map represent the difference in the average
accuracy.

Results show that adding custom filters in the first layer
as well as using multiplexing convolution in the first layer



TABLE I

COMPARISON BETWEEN THE PROPOSED METHODS WITH FCN, RESNET AND INCEPTION WITHOUT ENSEMBLE.
Models Number of FLOPS Training Time Testing Time | CO2 Consumption | Power Consumption
parameters
. 145,267 seconds 81 seconds
Inception 420,192 424,414 1.68 days 0.0009 days 0.2928 g 0.6886 W
165,089 seconds 62 seconds
ResNet 504,000 507,818 1.91 days 0.0007 days 0.3101 g 0.7303 W
149,821 seconds 27 seconds
FCN 264,704 266,850 173 days 0.00031 days 0.2623 g 0.6176 W
53,567 seconds 44 seconds
LITE 9,814 10,632 0.62 days 0.0005 days 0.1048 g 0.2468 W
TABLE 11
DATASETS WHERE INCEPTION BEATS LITE BY MORE THAN 10% OF ACCURACY.
Dataset Name . .
where Inception Elﬁerence(;) Series Length Nsu mbelr of
is better than LITE ceuracy (7o amples
EthanolLevel 11.32 1751 504
OliveOil 15.34 570 30
PigAirwayPressure 16.64 2000 104
ShapeletSim 21.44 500 20
MultiROCKET InceptionTime ROCKET Inception LITE ResNet FCN
0.8606 0.8491 0.8480 0.8393 0.8304 0.8066 0.7883
Mean-Accuracy \ \ ; ; )
-0.0187 -0.0177 -0.0089 Mean-Difference 0.0238
LITE 32/4/92 39/4/85 48/7/73 r>c/r=c/r<c 71/5/52
0.8304 = le-04 =< le-04 0.0029 Wilcoxon p-value 0.1652

If in bold, then
p-value < 0.05

—-0.04 -0.02 0.00 0.02
Mean-Difference

0.04

Fig. 9. The Multi-Comparison Matrix applied to show the performance of LITE compared to other approaches.

MultiROCKET InceptionTime ROCKET LITETime Inception ResNet FCN
0.8606 0.8491 0.8480 0.8462 0.8393 0.8066 0.7883
Mean-Accuracy ) , , , )
. -0.0145 -0.0029 -0.0018 Mean-Difference 0.0069
LITETime _ 40 /21 /67 48/19/61 59/8/61 r>c/r=c/r<c 76/9/43
0.8462 0.0039 0.1917 0.8009 Wilcoxon p-value 0.0054

If in bold, then
p-value < 0.05

—0.050-0.025 0.000 0.025 0.050
Mean-Difference

Fig. 10. The Multi-Comparison Matrix applied to show the performance of LITETime compared to other approaches.

Add-Custom-Filters
amean-rank
1.9492
Adds 918 parameters

Add-Dilated-Convolution
amean-rank
2.7891
Adds 0 parameters

Add-Multiplexing-Convolution
amean-rank
2.375
Removes 1600 parameters

0.005
Striped-LITE 0.0034 -0.0047 c
amean-rank 45/4/79 59/8/61 0.000 ¢
2.8867 0.0056 0.5561 0.00 £
—0.005

In total, LITE
removes 682
parameters
compared to
the Stripped
LITE

Add-Custom-Filters has 91 wins, the Stripped-LITE loses 28 times.
There exists 9 ties between both models with a P-Value almost 0.0
The difference in the average accuracy is 0.0092 in favor of Add-Custom-Filters.

Fig. 11. The Heat Map shows the one-vs-one comparison between the Striped-LITE and the three variants: (1) Add-Custom-Filters, (2) Add-Multiplexing-
Convolution and (3) Add-Dilated-Convolution. The colors of the Heat Map follow the value of the first line in each cell. This value is the difference between
the value of the first line (average accuracy when winning/losing). The second line represents the Win/Tie/Loss count between the models in question (wins
for the column model). The last line is the statistical P-Value between the two classifier using the Wilcoxon Signed Rank Test.



significantly boosts the performance. The colors of the Heat
Map indicates that adding the custom filters has also a positive
impact on the average accuracy though it can add some param-
eters. This is not the case for the multiplexing convolutions.
We believe that this small average impact (0.34% overall) is
not as important as the positive one. This is due to the fact
that multiplexing reduces the number of parameters and wins
over the majority of the datasets significantly. The addition of
the dilated convolution is shown to not have a statistical sig-
nificance on the performance (P-Value > 0.05). However, the
average difference in accuracy shows that most of the times,
using the dilated convolutions can improve the results. Given
that dilation does not add more parameters and on average it
boosts the performance, we keep it in the LITE architecture.
This is due to the fact that dilation increases the receptive field,
so for large datasets this can be a boosting feature. The reason
why sometimes Dilation can have a negative effect is because
some of the datasets in the UCR archive do not require a large
receptive field. Altogether, the LITE model (with the boosting
techniques) will have less parameters compared to the striped
LITE while preserving performance compared to state-of-the-
art models. The decrease in number of parameters when using
all the boosting techniques together comes from the fact that
multiplexing removes more parameters than the custom filters
adds. Lastly, Figure 11 shows the average rank of the models,
such as in the CD Diagram explained in Section IV-C2. The
average rank of the Add-Custom-Filters is the lowest, while
the Striped-LITE has the highest rank. Therefore, the worst
model between the four presented in the Heat Map is the LITE
without any boosting techniques.

2) Impact of DWSC: To show the effect of DWSC as
well, we replace them by standard convolutions followed
by a BottleNeck. To get a non-noisy comparison, we used
ensembles. Note that the usage of the ensemble technique is
necessary in this case given that by removing the DWSC, the
difference in number of parameters becomes very high (LITE
has almost 11% of the compared model’s number of parame-
ters (the compared model has around 85,000 parameters). In
Figure 12, the one-vs-one comparison between LITETime and
LITETime with Standard Convolutions is presented. Results
show that the usage of DWSC does not have an effect on
the performance because the P-Value is high 0.4556. This
means that the difference in performance is not statistically
significantly different with less parameters mainly due to the
usage of the DWSC.

V. CONCLUSIONS

In this paper, we addressed the Time Series Classification
problem by reducing the number of parameters compared to
existing deep learning approaches for Time Series Classifica-
tion, while preserving performance of InceptionTime. We pre-
sented a new architecture for Time Series Classification, LITE,
and evaluated its performance on the UCR archive. LITE
has only 2.34% of InceptionTime’s number of parameters.
This model is faster than the state-of-the-art in training and
inference time. It consumes as well less CO2 and power, which

1.0

@ win 57 °
©® Tie 28
087 Loss 43
P-Value 0.4556 [
1 —
£ 061 | LITETime is
= better here
w
= oa
-
LITETime with
0.2 Standard Convolutions

is better here

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

LITETimeStandard Conv

Fig. 12. One-vs-one comparison between LITETime and LITETime with
Standard convolutions over the 128 datasets of the UCR archive.

is a topic we believe to be very important nowadays. Results
have illustrated that the usage of LITE allows us to achieve
state-of-the-art results on the UCR archive. Furthermore, the
presented ablation study demonstrated the importance of the
techniques used in LITE. We believe this work can be the start
of optimizing deep learning architectures in the time series
domain. We believe that this study can address clustering,
representation learning and generative models as well. In
future work, we aim to tackle these others domains given the
impressiveness in performance of LITE compared to ResNet
and InceptionTime.
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