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Abstract Clustering is an unsupervised process which aims to discover regularities
and underlying structures in data. Constrained clustering extends clustering in such
a way that expert knowledge can be integrated through the use of user constraints.
These guide the clustering process towards a more relevant result. Different means
of integrating constraints into the clustering process exist. They consist of extending
classical clustering algorithms, such as the well-known k-means algorithm; model-
ling the constrained clustering problem using a declarative framework; and finally,
by directly integrating constraints into a collaborative process that involves several
clustering algorithms. A common point of these approaches is that they require the
user constraints to be given before the process begins. New trends in constrained
clustering highlight the need for better interaction between the automatic process
and expert supervision.
This chapter is dedicated to constrained clustering. In particular, after a brief over-
view of constrained clustering and associated issues, it presents the three main ap-
proaches in the domain. It also discusses exploratory data mining by presenting
models that develop interaction with the user in an incremental and collaborative
way. Finally, moving beyond constraints, some aspects of user implicit preferences
and their capture are introduced.
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e-mail: thi-bich-hanh.dao@univ-orleans.f

B. Crémilleux
Normandy University, UNICAEN, ENSICAEN, CNRS - UMR GREYC, France,
e-mail: bruno.cremilleux@unicaen.fr

G. Forestier
IRIMAS, University of Haute-Alsace, France,
e-mail: germain.forestier@uha.fr

T. Lampert
ICube, University of Strasbourg, France,
e-mail: lampert@unistra.fr

1
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1 Introduction

Supervised learning methods are at the center of artificial intelligence solutions and
have, for a long time, proved their viability. The phenomenon of “Big Data”—the
tremendous increase in the amount of available data—combined with increased
computing capacities has led to the return of neuronal methods in the form of deep
learning (LeCun et al, 2015). Through their striking results, these approaches have
revolutionised supervised learning in, for example, the analysis and understanding
of images. These techniques are quickly becoming generalised to domains related to
decision aiding (banks, medicine, etc.) and decision making (automobile, avionics,
etc.). For such an algorithm to learn to recognise a concept (such as car, cat, etc.), it is
trained using several hundreds of thousands of occurrences of this target concept and
the labelling of this training data may require many hours of manual interpretation.
Once trained, however, the network can almost instantly recognise the concept in
new unseen data with success rates rarely achieved so far.

Nevertheless, these approaches suffer from several drawbacks. On the one hand,
the “black box” aspect of the learning process and the nature of the model (i.e.
a network with learned weights) make it difficult to understand and interpret by
an expert. Extracting reusable or transferable knowledge and applying it to other
domains or applications remains a challenging problem. On the other hand, these
methods, as with all supervised methods, rely upon the hypothesis that learning (and
validation) data provided by users and/or domain experts exist and fully represent the
underlying concept and data distribution (i.e. they do not fluctuate with time). The
creation of such learning sets proves to be very time-consuming, although crowd-
sourcing methods, for example, make it possible to alleviate this bottleneck. Finally,
creating learning sets implies that a problem can be formalised and objects of interest
defined, which is often not a realistic hypothesis and means that the algorithms are
subject to error.

These issues explain the development of unsupervised approaches, which allow
for the discovery of both regularities and structures in the data. Unsupervised dis-
covery of knowledge is at the core of data mining and more specifically clustering,
which is the central theme of this chapter. Experiments have shown the ability of clus-
tering methods to extract meaningful clusters from large amounts of heterogeneous
data without requiring any additional prior information. Nevertheless, regardless of
the efficiency of these algorithms, the lack of formalism of thematic classes and the
absence of real reference data makes it difficult to accurately evaluate the quality
of the results. Thus, an expert cannot directly validate their own results and cannot
directly modify the clusters according to thematic classes. As such, the process of
cluster extraction should be rethought and improved to make the results directly
useful for domain experts. To this end, it is obvious that the results proposed by
these algorithms should model the thematic “intuition” of the expert, that is to say
the potential thematic classes.

The clustering process is by definition unsupervised, which means that it only uses
the data and no additional knowledge in order to accentuate the principle of serendip-
ity (the probability of finding something useful without specifically searching for it).
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Without any supervision, clustering algorithms often produce irrelevant solutions.
Recent studies have focused on approaches to allow the guidance of the clustering
process using background knowledge or expert knowledge to avoid apophenia phe-
nomenium (the risk of seeing patterns or connections in random or meaningless data).
The objective is to allow a human expert to embed their domain knowledge into the
data mining process and thus to guide it towards better results.

In order to limit expert intervention, which can be highly time consuming, the
ideal solution is to make the expert knowledge actionable in order to automate its
use in data mining. Depending on the domain, however, the representation and the
type of knowledge to model can be very heterogeneous. Thus, three main knowledge
representations that are independent of the application domain have been proposed
for clustering, under the form of operable constraints (Basu et al, 2008; Dinler and
Tural, 2016).

• The first concerns the use of constraints between objects (comparison constraints),
mainly of resemblance and dissemblance as for example the relations must-link
and cannot-link : two objects should (not) be in the same cluster, having same
(different) nature according to expert knowledge

• The second consists of using labelled objects (labeling constraints), which cor-
responds directly to domain knowledge.

• The third is on the clusters themselves (number, size, density, etc.), which corres-
ponds to intrinsic qualities of the clusters (cluster constraints).

All these approaches only partially address the issue of transferring thematic
constraints to actionable constraints. Thus, it is not realistic to ask an expert to define
all the constraints when starting from nothing. Indeed, knowledge discovery, and in
the case of discovering more relevant clusters, is an iterative process. This is why,
in a second phase, the expert has to be able to successively refine and improve the
proposed clustering. In particular, to be able to add, refine, or remove constraints,
act directly on the clusters (split, merge, deletion) or freeze the clusters that are
most likely candidates for thematic classes. The latter should be labelled early in the
process and should not be considered by the clustering algorithm any further.

Interactive learning methods that put the expert at the center of the extraction
process are one solution to this problem. Surprisingly little attention has been fo-
cussed on their development even though since the emergence of data mining in
the 1990s (Fayyad et al, 1996) the importance of interactive and semi-automatic
processes of knowledge discovery has been well known. Multiple studies (Anand
et al, 1995; Kopanas and Avouris, 2002) have shown the importance played by back-
ground knowledge and expert knowledge in the process of data mining. Analysts
interact (visualise, select, explore) not only with the data but also with the patterns
or models supported by the data (Boulicaut et al, 2006). A very strong feature of big
data for a data science project is that the data spans multiple domains and therefore
understanding and analysing such data requires different but complementary expert-
ises. Expert and algorithm interaction must be flexible in order to better fit the data’s
perspective. Thus the process of knowledge extraction cannot be fully automatic.
This highlights the need to study mechanisms that allow a better interaction between
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automatic processes and expert supervision. Consequently, data analysts have rap-
idly focused on redefining the role of the expert or simply replacing them altogether.
Thus, the formalisation of knowledge and its use is a key issue not only in clustering
but also in the whole field of data mining. For this reason, this chapter is concluded
by discussing new trends in exploratory data analysis.

The remainder of this chapter is organised as follows. In Section 2 the principles
of constrained clustering and the main approaches used to implement them are
presented. Section 3 presents a review of classic clustering algorithms that have
been extended to include user constraints. In Section 4 are described declarative
approaches, while Section 5 presents a collaborative approach. Section 6 introduces
new trends in constrained clustering, i.e. interactive/incremental approaches, and
user preference based methods.

2 Constrained Clustering

Given a set of objects, cluster analysis aims at grouping the objects together into
homogeneous groups, such that the objects in the same group are similar and the
objects in different groups are different. The groups are called clusters and the set of
groups is a clustering. Clustering is an important task in data mining and numerous
methods have been developed for it. A complete overview of clustering algorithms
can be found in Chapter 12 of this volume. In practice, the expert usually has some
intuition or prior knowledge about the underlying clustering. In order to reach a
solution relevant to expert knowledge, recent studies have focused on integrating
knowledge to allow guidance on the clustering process. This section recalls some
main clustering formulations and introduces constrained clustering through several
types of user constraints.

2.1 Cluster Analysis

Let O be a set of instances (data) {o1, . . . ,on}, let us assume that there exists a dis-
similarity (or a similarity) measure d(oi,o j) between any two instances oi and o j.
Partitional clustering involves finding a partition of O into K non-empty and (gener-
ally) disjoint groups called clusters C1, . . . ,CK , such that instances in the same cluster
are very similar and instances in different clusters are dissimilar. The homogeneity
of the clusters is usually formalised by an optimisation criterion.

Finding the optimal clustering (i.e. the best number of clusters and the best asso-
ciated clustering) among all the possible clusterings is intractable in general. For N
objects and a given number of clusters K, the number of clustering candidates is

SN,K =
1

K!

K

∑
k=0

(−1)k(K − k)N
�

K
k

�
� KN

K!
, when N → ∞, (1)
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and for all clusterings where the number of clusters can vary

BN =
N

∑
k=1

SN,k. (2)

For instance, for N = 25, there are 4,638,590,332,229,999,353 possible cluster-
ings requiring 147,000 years to be generated on a computer producing one million
partitions per second.

In distance-based clustering the optimisation criterion that defines the homogen-
eity of the clusters is based on the distance measure. Different optimisation criteria
exist, the most popular are (Hansen and Jaumard, 1997):

• minimising the maximal diameter of the clusters, which is defined by the maximal
dissimilarity between two objects in the same cluster;

• maximising the minimal split between clusters, which is the smallest dissimilarity
between two objects in different clusters;

• minimising the sum of stars of the clusters, which is defined by the minimum sum
of dissimilarities between an object to all other objects in the cluster, for each
object in the cluster;

• minimising the within-cluster sum of dissimilarities (WCSD), which is the sum
of all the dissimilarities between two objects in the same cluster;

• minimising the within-cluster sum of squares (WCSS), in an Euclidean space
WCSS is the sum of squared Euclidean distances between each object oi and the
centroid mk of the cluster that contains oi.

Finding a partition maximising the minimal split between clusters is polynomial
since the partition can be computed from a minimum spanning tree (Delattre and
Hansen, 1980). As for the maximal diameter criterion, the problem is polynomial
with 2 clusters (K = 2), but as soon clusterings with at least 3 clusters (K ≥ 3) are
considered the problem becomes NP-Hard (Hansen and Delattre, 1978). All the other
criteria are NP-Hard. The NP-hardness of the WCSS criterion in general dimensions
even with K = 2 is shown in (Aloise et al, 2009).

Thus, most of the classic clustering algorithms search for a local optimum. For
instance, the k-means algorithm finds a local optimum for the WCSS criterion, the
k-median algorithm finds a local optimum for the sum of stars criterion and the FPF
(Furthest Point First) algorithm (Gonzalez, 1985) for the diameter criterion.

In similarity-based clustering, the optimisation criterion that defines the homo-
geneity of the clusters is based on a similarity measure. The similarity between the
instances is usually defined by an undirected graph where the vertices are the objects
and the edges have non-negative weights. Spectral clustering aims to find a partition
of the graph such that the edges between different groups have a very low weight
and the edges within a group have high weight. Given a cluster Ci, a cut measure
cut(Ci) is defined by the sum of the weights of the edges that link an instance in
Ci and an instance not in Ci. The two most common optimisation criteria are (von
Luxburg, 2007):

• minimising the ratio cut, which is defined by the sum of cut(Ci)/ |Ci|;
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• minimising the normalised cut, which is defined by the sum of cut(Ci)/vol(Ci),
where vol(Ci) measures the weight of the edges within Ci.

These criteria are also NP-Hard. Spectral clustering algorithms solve relaxed ver-
sions of those problems: relaxing the normalised cut leads to normalised spectral
clustering and relaxing the ratio cut leads to unnormalised spectral clustering.

2.2 User Constraints

In practice, a user may have some requirements for, or prior knowledge about, the
final solution. For instance, the user can have some information on the label of a
subset of objects (Wagstaff and Cardie, 2000). Several studies have demonstrated the
importance of domain knowledge in the data mining processes (Anand et al, 1995).
Because of the inherent complexity of the optimisation criteria, classic algorithms
always find a local optimum. Several optima may exist, some of which may be closer
to the user requirement. It is therefore important to integrate prior knowledge into the
clustering process. Prior knowledge is expressed by user constraints to be satisfied
by the clustering solution. The subject of these user constraints can be the instances
or the clusters (Basu et al, 2008). With the presence of user constraints, clustering
problems become harder, as for instance the polynomial criterion of maximising the
minimal split between clusters becomes NP-Hard under user constraints (Davidson
and Ravi, 2007).

Instance-level constraints are the most widely used type of constraint and were
first introduced by Wagstaff and Cardie (2000). Two kinds of instance-level con-
straints exist: must-link (ML) and cannot-link (CL).

Definition 1. Two instances oi and o j that satisfy an ML constraint must be in the
same cluster, i.e. ∀k ∈ {1, . . . ,K}, oi ∈Ck ⇔ o j ∈Ck.

Definition 2. Two instances oi and o j that satisfy an CL constraint must not be in
the same cluster, i.e. ∀k ∈ {1, . . . ,K}, ¬(oi ∈Ck ∧o j ∈Ck).

In semi-supervised clustering, this information is available to aid the clustering
process and can be inferred from class labels: if two objects have the same label
then they are linked by an ML constraint, otherwise by a CL constraint. Supervision
by instance-level constraints is however more general and more realistic than class
labels. Using knowledge, even when class labels may be unknown, a user can specify
whether pairs of points belong to the same cluster or not (Wagstaff et al, 2001). Semi-
supervised clustering is therefore a transductive operation because its objective is
to define the clusters to explain the processed data and possibly to label the objects
not initially labelled. During semi-supervised classification, labelled objects and
unlabelled objects are used to construct a classification function. Thus, the objective
is to use the unlabelled objects to better understand the configuration of the data
space. Semi-supervised classification is an inductive operation, the aim of which is
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Fig. 1 Examples of ML, CL, δ and ε constraints.

to create a classifier which generalises the model of available data and which can be
used subsequently to process other data.

Cluster-level constraints define requirements on the clusters (see Figure 1), for
example:

• the number of clusters K;
• their size, a capacity constraint expresses a maximal or a minimal limit on the

number of objects in each cluster—a minimal capacity constraint states that each
cluster must have at least α objects, i.e. ∀k ∈ {1, . . . ,K}, |Ck|≥ α , and a maximal
capacity constraints requires that each cluster must have at most β objects, i.e.
∀k ∈ {1, . . . ,K}, |Ck|≤ β ;

• the diameter of the clusters, a maximum diameter constraint gives an upper bound
γ on the diameter of each cluster, i.e. ∀k ∈ {1, . . . ,K}, ∀oi,o j ∈Ck, d(oi,o j)≤ γ ;

• the split between clusters, a minimum split constraint states that the clusters
must be separated by at least δ : ∀k,k� ∈ {1, . . . ,K}, k� �= k, ∀oi ∈ Ck, ∀o j ∈ Ck� ,
d(oi,o j)≥ δ ;

• finally, the ε-constraint, introduced in (Davidson and Ravi, 2005), demands that
each object oi have in its neighbourhood of radius ε at least one other object in
the same cluster: ∀k ∈ {1, . . . ,K}, ∀oi ∈Ck, ∃o j ∈Ck,o j �= oi, d(oi,o j)≤ ε , this
constraint tries to capture the density notion, used in density based clustering
DBSCAN (Ester et al, 1996) and can be generalised to the requirement that each
object oi has in its neighbourhood of radius ε at least m objects in the same cluster.

Note that although the diameter and split constraints state requirements on the
clusters, they can be expressed by a conjunction of cannot-link constraints and must-
link constraints, respectively (Davidson and Ravi, 2005).
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The instances can be described by a set of features that enables the computation
of a dissimilarity measure and also by a set of properties from which the definitions
of what is actionable/interesting is given. Constraints can therefore also be stated on
properties and can be divided into the following categories (Dao et al, 2016):

• cardinality constraints place a requirement on the count of the elements in a
cluster having a property, they may be as simple as each cluster should contain at
least one female to more complex variations such as the number of males must
be no greater than two times the number of females;

• density constraints relate to cardinality constraints in that they provide require-
ments on the count of a property except not for an entire cluster but rather a subset
of instances in the cluster, e.g. we may require that each person has at least 10
people in his/her cluster that share the same hobby;

• geometric constraints place an upper or lower bound on some geometric property
of a cluster or cluster combination, e.g. that the maximum diameter of a cluster
with respect to the age property is 10 years, this would prevent clusters containing
individuals with a wide range of ages;

• complex logic constraints express logical combinations of constraints, which can
be instance-level or cluster-level, e.g. we may require that any cluster having
more than 2 professors should have more than 10 PhD students.

When the instances are described by binary features as in the case of transactional
data, constraints can be stated such that each cluster is associated to a definition
expressed by a pattern. Four families of constraints can be identified and k-pattern
set mining problems can be specified as combinations of them (Guns et al, 2013):

• individual pattern constraints, which include among others local pattern mining
constraints;

• redundancy constraints, which are used to constrain or to minimise the redund-
ancy between different patterns;

• coverage constraints, which deal with defining and measuring how well a pattern
set covers the data;

• discriminative constraints, which are used on labelled data to measure and optim-
ise how well a pattern or pattern set discriminates between positive and negative
examples.

3 Extensions of Classic Clustering Algorithms to User
Constraints

This section presents a brief review of partitional constrained clustering methods
and in particular k-Means, metric learning, and spectral graph theory based methods.
These all have the following properties in common: (1) they extend a clustering
algorithm to integrate user constraints and are therefore specific to the objective
function that is optimised by the clustering algorithm, e.g. minimising the sum of
squared errors for the k-Means algorithm; (2) they integrate instance-level constraints
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or some form of cluster level constraint (e.g. cluster size); (3) they are usually fast
and find an approximate solution, and therefore do not guarantee the satisfaction of
all the constraints.

3.1 k-Means

In this type of approach, the clustering algorithm or the objective function is modified
so that user constraints are used to guide the algorithm towards a more appropriate
data partitioning. Most of these works consider instance-level must-link and cannot-
link constraints. The extension is done either by enforcing pairwise constraints or by
using pairwise constraints to define penalties in the objective function. A survey on
partitional and hierarchical clustering with instance level constraints can be found in
(Davidson and Basu, 2007).

In the category of enforcing pairwise constraints, the first work proposed a mod-
ified version of COBWEB (Fisher, 1987) that tends to satisfy all the pairwise con-
straints, named COP-COBWEB (Wagstaff and Cardie, 2000). Subsequent work ex-
tended the k-Means algorithm to instance-level constraints. The k-Means algorithm
starts with initial assignment seeds and assigns objects to clusters in several itera-
tions. At each iteration, the centroids of the clusters are computed and the objects
are reassigned to the closest centroid. The algorithm converges and finds a solution
which is a local optimum of the within-cluster sum of squares (WCSS or distortion).
To integrate must-link and cannot-link constraints, the COP-KMeans algorithm by
Wagstaff et al (2001) extends the k-Means algorithm by choosing a reassignment
that does not violate any constraints at each iteration. This greedy behavior without
backtracking means that COP-KMeans may fail to find a solution that satisfies all
the constraints even when such a solution exists. Basu et al (2002) propose two
variants of k-Means, the Seed-KMeans and Constrained-KMeans algorithms, which
allow the use of objects labeled as seeds: the difference between the two being the
possibility of changing the class centers or not. In both approaches, it is assumed that
there is at least one seed for each cluster and that the number of clusters is known.
The seeds are used to overcome the sensitivity of the k-Means approaches to the
initial parameterisation.

Incorporating must-link and cannot-link constraints makes clustering algorithms
sensitive to the assignment order of instances and therefore results in consequent
constraint-violation. To address the issue of constraint violation in COP-KMeans,
Tan et al (2010) (ICOP-KMeans) and Rutayisire et al (2011) propose a modified
version with an assignment order, which is either based on a measure of certainty
computed for each instance or a sequenced assignment of cannot-linked instances.
MLC-KMeans (Huang et al, 2008) takes an alternative approach by introducing
assistant centroids, which are calculated using the points implicated by must-link
constraints for each cluster, and which are used to calculate the similarity of instances
and clusters.
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For high-dimensional sparse data, the SCREEN method (Tang et al, 2007) for
constraint-guided feature projection was developed, which can be used with a semi-
supervised clustering algorithm. This method considers an objective function to learn
the projection matrix, which can project the original high-dimensional dataset into a
low-dimensional space such that the distance between any pair of instances involved
in the cannot-link constraints are maximised while the distance between any pair of
instances involved in the must-link constrains are minimised. A spherical k-Means
algorithm is then used to try to avoid violating cannot-link constraints.

Other methods uses penalties as a trade-off between finding the best clustering and
satisfying as many constraints as possible. Considering a subset of instances whose
label is known, Demiriz et al (1999) modifies the clustering objective function to
incorporate a dispersion measure and an impurity measure. The impurity measure is
based on Gini Index to measure misplaced known labels. The CVQE (constrained
vector quantisation error) method (Davidson and Ravi, 2005) penalises constraint
violations using distance. If a must-link constraint is violated then the penalty is
the distance between the two centroids of the clusters containing the two instances
that should be together. If a cannot-link constraint is violated then the penalty is
the distance between the cluster centroid the two instances are assigned to and
the distance to the nearest cluster centroid. These two penalty types together with
the distortion measure define a new differentiable objective function. An improved
version, linear-time CVQE (LCVQE) (Pelleg and Baras, 2007), avoids checking all
possible assignments for cannot-link constraints and its penalty calculations takes
into account coordinates of the involved instances in the violated constraint. The
method PCK-Means (Basu et al, 2004a) formulated the goal of pairwise constrained
clustering as minimising a combined objective function, defined as the sum of the
total squared distances between the points and their cluster centroids WCSS, and the
cost incurred by violating any pairwise constraints. The cost can be uniform but can
also take into account the metric of the clusters, as in the MPCK-Means version that
integrates both constraints and metric learning. Lagrangian constrained clustering
(Ganji et al, 2016) also formulates the objective function as a sum of distortion and
the penalty of violating cannot-link constraints (must-link constraints are used to
aggregate instances into super-instances so they are all satisfied). This method uses a
Lagrangian relaxation strategy of increasing penalties for constraints which remain
unsatisfied in subsequent clustering iterations. A local search approach using Tabu
search was developed to optimise the objective function, which is the sum of the
distortion and the weighted cost incurred by violating pairwise constraints (Hiep et al,
2016). Grira et al (2006) introduced the cost of violating pairwise constraints into
the objective function of Fuzzy CMeans algorithm. Li et al (2007) use non-negative
matrix factorisation to perform centroid-less constrained k-Means clustering (Zha
et al, 2001).

Hybrid approaches integrate both constraint enforcing and metric learning (see
Subsection 3.2) into a single framework: MPCK-Means (Bilenko et al, 2004),
HMRF-KMeans (Basu et al, 2004b), semi-supervised kernel k-Means (Kulis et al,
2005), and CLWC (Cheng et al, 2008). Bilenko et al (2004) define an uniform
framework that integrates both constraint-based and metric-based methods. This
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framework represents PCK-Means when considering a constraint-based factor and
MPCK-Means when considering both constraint-based and metric-based factors.
Semi-supervised HMRF k-Means (Basu et al, 2004b) is a probabilistic framework
based on Hidden Markov Random Fields, where the semi-supervised clustering ob-
jective minimises both the overall distortion measure of the clusters and the number
of violated must-link and cannot-link constraints. A k-Means like iterative algorithm
is used for optimising the objective, where at each step the distortion measure is re-
estimated to respect user-constraints. Semi-supervised kernel k-Means (Kulis et al,
2005, 2009) is a weighted kernel-based approach, that generalises HMRF k-Means.
The method can perform semi-supervised clustering on data given either as vec-
tors or as a graph. It can be used on a wide class of graph clustering objectives
such as minimising the normalised cut or ratio cut. The framework can be therefore
applied on semi-supervised spectral clustering. Constrained locally weighted clus-
tering (CLWC) (Cheng et al, 2008) integrates the local distance metric learning with
constrained learning. Each cluster is assigned to its own local weighting vector in
a different subspace. The data points in the constraint set are arranged into disjoint
groups (chunklets), and the chunklets are assigned entirely in each assignment and
weight update step.

Beyond pairwise constraints, Ng (2000) adds suitable constraints into the math-
ematical program formulation of the k-Means algorithm to extend the algorithm to
the problem of partitioning objects into clusters where the number of elements in
each cluster is fixed. Bradley et al (2000) avoid local solution with empty clusters or
clusters having very few points by explicitly adding k minimal capacity constraints
to the formulation of the clustering optimisation problem. This work considers that
the k-Means algorithm and the constraints are enforced during the assignment step
at each iteration. Banerjee and Ghosh (2006) proposed a framework to generate
balanced clusters, i.e. clusters of comparable sizes. Demiriz et al (2008) integrated a
minimal size constraint to k-Means algorithm. Considering two types of constraints,
the minimum number of objects in a cluster and minimum variance of a cluster, Ge
et al (2007) proposed an algorithm that generates clusters satisfying them both. This
algorithm is based on a CD-Tree data structure, which organises data points in leaf
nodes such that each leaf node approximately satisfies the significance and variance
constraint and minimises the sum of squared distances.

3.2 Metric Learning

Metric learning aims to automatically learn a metric measure from training data that
best discriminates the comprising samples according to a given criterion. In general,
this metric is either a similarity or a distance (Klein et al, 2002). Many machine
learning approaches rely on the learned metric; thus metric learning is usually a
preprocessing step for such approaches.

In the context of clustering, the metric can be defined as the Mahalanobis dis-
tance parameterised by a matrix M, i.e. dM(oi,o j) = ||oi −o j||M (Bellet et al, 2015).
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Unlike the Euclidean distance, which assumes that attributes are independent of one
another, the Mahalanobis distance enables the similarity measure to take into account
correlations between attributes. Learning the distance dM is equivalent to learning
the matrix M. For dM to satisfy distance proprieties (non-negativity, identity, sym-
metry, and the triangle inequality) M should be a positive semi-definite real-valued
matrix.

To guide the learning process, two sets are constructed from the ML and CL
constraints: the set of supposedly similar—must-link—pairs Sim, and the supposedly
dissimilar—cannot-link—pairs Dis, such that

• Sim = {(oi,o j) | oi and o j should be as similar as possible},
• Dis = {(oi,o j) | oi and o j should be as dissimilar as possible}.

It is also possible to introduce unlabeled data along with the constraints to prevent
over-fitting.

Several proposals have been made to modify (learn) a distance (or metric) taking
into account this principle. We can cite works on the Euclidean distance and shortest
path (Klein et al, 2002), Mahanalobis distance (Bar-Hillel et al, 2005, 2003; Xing
et al, 2002), Kullback-Leibler divergence (Cohn et al, 2003), string-edit distance
(Bilenko and Mooney, 2003), and the Laplacian regulariser metric learning (LRML)
method for clustering and imagery (Hoi et al, 2008, 2010).

Yi et al (Yi et al, 2012) describe a metric learning algorithm that avoids the
high computational cost implied by the positive semi-definite constraint. Matrix
completion is performed on the partially observed constraints and it is observed that
the completed similarity matrix has a high probability of being positive semi-definite,
thus avoiding the explicit constraint.

3.3 Spectral Graph Theory

Spectral clustering is a non-supervised method that takes as input a pre-calculated
similarity matrix (graph) and aims to minimise the ratio cut criterion (von Luxburg,
2007) or the normalised cut criterion (Shi and Malik, 2000). Spectral clustering
is often considered superior to classical clustering algorithms, such as k-Means,
because it is capable of extracting clusters of arbitrary form (von Luxburg, 2007). It
has also been shown that algorithms that build partitions incrementally (like k-Means
and EM) are prone to be overly constrained (Davidson and Ravi, 2006). Moreover,
spectral clustering has polynomial time complexity. The constraints can be expressed
as ML/CL constraints or in the form of labels, these can be taken into account either
as “hard” (binary) constraints or “soft” (probabilistic) constraints. The method allows
the user to specify a lower bound on constraint satisfaction and all points are assigned
to clusters simultaneously, even if the constraints are inconsistent.

Kamvar et al (2003) first integrated ML and CL constraints into spectral clustering.
This is achieved by modifying the affinity matrix by setting ML constrained pairs to
maximum similarity, 1, and CL constrained pairs to minimum similarity, 0. This has
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been extended to out-of-sample points and soft-constraints through regularisation
(Alzate and Suykens, 2009). Li et al (2009) point out, however, that a similarity of 0
in the affinity matrix does not mean that the two objects tend to belong to different
clusters.

Wang and Davidson (2010a) and Wang et al (2014) introduce a framework for
integrating constraints into a spectral clustering. Constraints between N objects are
modelled by a matrix Q of size N ×N, such that

Qi j = Q ji =





+1, if ML(i, j),
−1, if CL(i, j),
0, otherwise,

(3)

upon which a constraint satisfaction measure can be defined. Soft constraints can
be taken into account by allowing real values to be assigned to Q or by allowing
fuzzy cluster membership values. Subsequently, the authors introduce a method to
integrate a user-defined lower-bound on the level of constraint satisfaction (Wang
and Davidson, 2010b). Work has also been described that allows for inconsistent
constraints (Rangapuram and Hein, 2012).

Based on the Karush-Kuhn-Tucker (Kuhn and Tucker, 1951) conditions, an op-
timal solution can then be found by first finding the set of solutions satisfying all
constraints and then using a brute-force approach to find the optimal solution from
this set.

These approaches have been extended to integrate logical combinations of con-
straints (Zhi et al, 2013), which are translated into linear equations or linear inequa-
tions. Furthermore, instead of modifying the affinity matrix using binary values,
Anand and Reddy (2011) propose to modify the distances using an all-pairs-shortest-
path algorithm such that the new distance metric is similar to the original space.

Lu and Carreira-Perpinán (2008) state that an affinity matrix constructed using
constraints is highly informative but only for a small subset of points. To overcome
this limitation they propose a method to propagate constraints (in a method that is
consistent with the measured similarities) to points that are not directly affected by
the original constraint set. These advances are proposed for the two-class problem
(multi-class extension is discussed but is computationally inefficient), multi-class
alternatives have been proposed (Lu and Ip, 2010; Chen and Feng, 2012; Ding et al,
2013).

Several works (Zhang and Ando, 2006; Hoi et al, 2007; Li et al, 2008, 2009)
use the constraints and point similarities to learn a kernel matrix such that points
belonging to the same cluster are mapped to be close and points from different
clusters are mapped to be well-separated.

Most recently, progress has been made in introducing faster and simpler formula-
tions, while providing a theoretical guarantee of the partitioning quality (Cucuringu
et al, 2016).
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4 Declarative Approaches for Constrained Clustering

These approaches offer the user a general framework to formalise the problem by
choosing an objective function and explicitly stating the constraints. The frame-
works are usually developed using a general optimisation tool, such as integer linear
programming (ILP), SAT, constraint programming (CP), or mathematical program-
ming. Detailed descriptions of SAT and CP can be found in Chapters 5 and 6 of
this volume, respectively. Commonalities between theses approaches are that they
enable the modelling of different types of user constraints and they search for an
exact solution—a global optimum that satisfies all the constraints. Some declarative
approaches are reviewed in Subsection 4.1 of this chapter, more detailed descriptions
of approaches using ILP are presented in Subsection 4.2 and approaches using CP
in Subsection 4.3.

4.1 Overview

For dissimilarity-based constrained clustering settings, several approaches using
SAT, ILP, and CP have been developed. A SAT based framework has been proposed
by Davidson et al (2010) for constrained clustering problems with K = 2. The assign-
ment of objects to clusters is represented by a binary variable Xi, where Xi = 1 (or
Xi = 0) means the i-th object is assigned to cluster number 1 (or number 0, respect-
ively). Constraints such as must-link, cannot-link, maximum diameter, and minimum
split can be expressed by 2-SAT problems. Using binary search, the framework of-
fers both single objective optimisation and bi-objective optimisation. Several single
optimisation criteria are integrated: minimising the maximal diameter, maximising
the minimal split, minimising the difference between diameters, and minimising the
sum of diameters. When optimising multiple objectives, the framework considers
minimising the diameter and maximising the split either in a way such that one ob-
jective is used as a constraint and the other is optimised under that constraint, or by
combining them in a single objective which is the ratio of diameter to split. In order
to make the framework more efficient, approximation schemes are also developed to
reduce the number of calls in the binary search. CP and ILP based approaches offer
flexible frameworks with several choices of optimisation criteria and user constraints
(Subsection 4.2 and 4.3).

Generic declarative frameworks have also been investigated in several works
for other clustering settings. Conceptual clustering considers objects described by
categorical attributes and aims to associate to each cluster a definition expressed
by a pattern. CP frameworks have been developed for the K-pattern set mining
problem that can be used for conceptual clustering and other pattern mining tasks
(e.g. unexpected rules, k-tilling, redescription mining) (Khiari et al, 2010; Guns et al,
2013; Chabert and Solnon, 2017). These frameworks integrate constraints on patterns
or groups of patterns as well as different optimisation criteria (Guns et al, 2013). A
SAT based framework has also been proposed, which provides a query language
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to formalise conceptual clustering tasks (Métivier et al, 2012). The elements of the
language are translated into SAT clauses and solved by a SAT solver. An ILP-based
framework has been proposed in (Ouali et al, 2016), which also integrates constraints
on clustering that enable the modelling of conceptual clustering, soft-clustering,
co-clustering, and soft co-clustering. Based on a similarity graph between objects,
correlation clustering aims to find a partition that agrees as closely as possible to
the similarities. The cost function to be optimised is such that the number of similar
points co-clustered is maximised and the number of dissimilar points co-clustered is
minimised. The MaxSAT framework has been developed for constrained correlation
clustering (Berg and Järvisalo, 2017). In this model, hard-clauses guarantee a well
defined partition, must-link and cannot-link constraints, and soft-clauses are used to
encode the cost function.

Different from partition clustering, hierarchical clustering constructs a hierarchy
of partitions, represented by a dendrogram. A framework developed in (Gilpin and
Davidson, 2017) allows to model hierarchical clustering using ILP. Another SAT
framework allows to integrate different types of user constraints (Gilpin and David-
son, 2011).

4.2 Integer Linear Programming

Different frameworks using Integer Linear Programming (ILP) have been developed
for constrained clustering. Using ILP, constrained clustering problems must be form-
alised by a linear objective function subject to linear constraints. In the formulation
of clustering such as the one used in CP-based approaches, a clustering is defined
by an assignment of instances to clusters. For several optimisation criteria, e.g. the
within-cluster sum of squares WCSS, this formulation leads to a non-linear objective
function. ILP-based approaches therefore use an orthogonal formulation, where a
clustering is considered as a subset of the set of all possible clusters.

A cluster is a subset of instances. For a dataset of n instances, the number of
possible clusters is 2n. Let T = {1, . . . ,2n} be the set of all possibles non-empty
clusters. Consider any cluster Ct and let ct be the cost of the cluster, which is defined
on Ct depending on the optimisation criterion. In the case of minimising the WCSS,
the cost ct is defined by the sum of squared distances of the instances in Ct to its
mean, such that

ct =
1

2|Ct | ∑
oi,o j∈Ct

||oi −o j||2.

For each i ∈ {1, . . . ,n}, let ait be a constant which is 1 if oi is in cluster Ct and
0 otherwise. The unconstrained clustering problem is therefore formalised by an
integer linear program, such that (du Merle et al, 1999):
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minimise ∑
t∈T

ctxt ,

subject to ∑
t∈T

aitxt = 1, ∀i ∈ {1, . . . ,n},

∑
t∈T

xt = K,

xt ∈ {0,1}.

In this formulation, the first constraint states that each instance oi must be covered
by exactly one cluster (the clustering is therefore a partition of the instances) and the
second states that the clustering is formed by K clusters. The variable xt expresses
whether the cluster Ct is chosen in the clustering solution. The number of variables
xt is however exponential w.r.t. the number of instances. Two kinds of ILP-based
approaches are therefore developed for constrained clustering: (1) use a column
generation approach, where the master problem is restricted to a smaller set T � ⊆ T
and columns (clusters) are incrementally added until the optimal solution is proved
(Babaki et al, 2014); and (2) restrict the cluster candidates on a subset T � ⊆ T and
define the clustering problem on T � (Mueller and Kramer, 2010; Ouali et al, 2016).

An ILP-based approach with column generation for unconstrained minimum sum
of squares clustering was introduced by du Merle et al (1999) and improved by
Aloise et al (2012). Column generation iterates between solving the restricted master
problem and adding one or multiple columns. A column is added to the master
problem if it can improve the objective function. If no such column can be found,
one is certain that the optimal solution of the restricted master problem is also an
optimal solution of the full master problem. Whether a column can improve the
objective function can be derived from the dual of the master problem. A column
that improves the objective function of the master problem corresponds to a column
with a negative reduced cost in the dual. Among all the columns with negative
reduced cost, the smallest one is usually searched for, which yields a minimisation
subproblem. The column generation approach has been extended to integrate anti-
monotone user-constraints (Babaki et al, 2014). A constraint is anti-monotone if it
is satisfied on a set of instances S and satisfied on all subsets S� ⊆ S. For instance,
maximal capacity constraints are anti-monotone but minimal capacity constraints are
not. With the observation that many user-constraints can be evaluated on each cluster
individually, the user-constraints are not part of the master problem, but only have
to be considered when solving the subproblems. These are enforced when solving
the subproblem by removing columns corresponding to clusters that do not satisfy
the constraints. Subproblems are solved by a branch-and-bound algorithm where an
anti-monotone property is used to ensure the correctness of the computed bounds.

The number of cluster candidates in principle is exponential w.r.t. the number of
instances. Nevertheless, in some clustering settings such as conceptual clustering,
candidates can usually be drawn from a smaller subset T �. Considering a constrained
clustering problem on a restricted subset T �, Mueller and Kramer (2010) and Ou-
ali et al (2016) develop ILP-based frameworks that can integrate different kinds of
user-constraints. The same principle is used, i.e. instance-level and cluster-level con-
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straints are enforced to remove cluster candidates that do not satisfy the constraints.
Moreover, the frameworks can integrate constraints on clustering and different op-
timisation criteria. In (Mueller and Kramer, 2010) constraints on clustering can be
stated that give, for instance, bounds on the degree of overlap between clusters of
the clustering, and bounds on the number of clusters an instance can be grouped into.
The best clustering can be found by optimising the mean/minimum/median quality
of the clusters. This framework has been used in conceptual clustering for transac-
tional datasets. In a transactional dataset, each instance (transaction) is described by
a set of items. Conceptual clustering aims to assign the transactions to homogeneous
clusters and to provide each cluster with a distinct description (concept) that charac-
terises all the transactions contained within it. The clusters that comprise the subset
T � can be required to correspond to frequent patterns or to closed frequent patterns.
The subset T � is therefore precomputed by an algorithm that extracts frequent pat-
terns a priori (Mueller and Kramer, 2010) or closed patterns (e.g. LCM) (Ouali et al,
2016). In the framework developed by Ouali et al (2016), constraints on clustering
are also available, for example: at least some instances must be covered, and small
overlaps of the clusters are allowed. Besides modelling conceptual clustering, these
constrains also enable the modelling of soft clustering (at most some transactions can
be uncovered or small overlaps are allowed), co-clustering (clustering that covers
both the set of transactions and the set of items, without any overlap on transactions
or on items) and soft co-clustering.

4.3 Constraint Programming

A general and declarative framework has been developed for distance-based con-
strained clustering, based on Constraint Programming (CP) (Dao et al, 2013, 2017).
CP is a powerful paradigm for solving combinatory satisfaction or optimisation prob-
lems. Modelling the problem in CP consists of its formalisation into a Constraint
Satisfaction Problem (CSP) or a Constraint Optimisation Problem (COP). A CSP
is a triplet �X ,Dom,C� where X is a set of variables, Dom(x) for each x ∈ X is its
domain and C is a set of constraints, each of which expresses a condition on a subset
of X . A solution to a CSP is a complete assignment of values from Dom(x) to each
variable x ∈ X that satisfies all the constraints of C. A COP is a CSP with an objective
function to be optimised. An optimal solution of a COP is a solution of the CSP that
optimises the objective function.

In general, solving a CSP or a COP is NP-Hard. Nevertheless, the constraint
propagation and search strategies (Rossi et al, 2006) used by CP solvers allow a
large number of real-world applications to be efficiently solved.

As discussed in Chapter 6 of this volume, the propagation of a constraint c re-
duces the domain of the variables of c by removing some or all inconsistent values,
i.e. values that cannot be part of a solution of c. A propagation scheme is defined for
each type of constraint. Different kinds of constraints are available for modelling,
they can be elementary constraints expressing arithmetic or logic relations, or global
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constraints expressing meaningful n-ary relations. Although equivalent to conjunc-
tions of elementary constraints, global constraints benefit from efficient propagation,
performed by a filtering algorithm exploiting results from other domains, e.g. graph
theory. Reified constraints are available, which allow a boolean variable to be linked
to the truth value of a constraint. A catalogue of global constraints that contains more
than 400 inventoried global constraints is maintained by Beldiceanu et al (2005). In
a CP solver, two steps—constraint propagation until a stable state is found and
branching—are repeated until a solution is found. Different strategies can be used to
create and to order branches at each branching point. They can be standard search
strategies defined by CP solvers or can be specifically developed.

A CP-based framework developed for distance-based constrained clustering has
been developed by Dao et al (2013). This framework enables the modelling of differ-
ent constrained clustering problems, by specifying an optimisation criterion and by
setting the user constraints. The framework is improved by modifying the model and
by developing dedicated propagation algorithms for each optimisation criterion (Dao
et al, 2017). In this model, the number of clusters K does not need to be fixed before-
hand, only bounds are required, i.e. Kmin ≤ K ≤ Kmax. The clusters in a partition of
K clusters are numbered from 1 to K. In order to express the cluster assignment, a
variable Gi is used for each instance oi ∈ O , with Dom(Gi) = {1, . . . ,Kmax}. A real
valued variable is used to represent the value of the objective function. The model
has the following three components.

• Constraints to express a partition. The use of the variables Gi naturally ex-
press a partition. Nevertheless, several assignments of the variables G1, . . . ,Gn
can correspond to the same partition, for instance by interchanging the num-
bers of two clusters. In order to break these symmetries, the constraint
precede([G1, . . . ,Gn], [1, . . . ,Kmax]) is used. This constraint ensures that G1 = 1
and moreover, if Gi = c with 1 < c ≤ Kmax, there must exist at least an index j < i
such that G j = c−1. The requirement to have at least Kmin clusters means that all
the numbers among 1 and Kmin must be used in the assignment of the variables
Gi. When using the constraint precede, one only needs to require that at least one
variable Gi is equal to Kmin. This is expressed by the relation #{i | Gi = Kmin}≥ 1.

• Constraints to express clustering user constraints. All popular user-defined con-
straints may be straightforwardly integrated. For instance, a must-link (or cannot-
link) constraint on oi and o j is expressed by Gi = Gi (or Gi �= G j, respectively).
For the minimal size α of clusters, this means that each point must be in a cluster
with at least α points (including itself). This is expressed by n constraints: for
each i ∈ [1,n], the assigned value of the variable Gi must then appear at least α
times in the array G1, . . . ,Gn, i.e. #{ j | G j = Gi}≥ α .

• Constraint to express the objective function. Different optimisation criteria are
available: minimising the maximal diameter D of the clusters, maximising the
minimal split S between clusters, minimising the within-cluster sum of dissimil-
arities WCSD or minimising the within-cluster sum of squares WCSS. A global
optimisation constraint is developed for each criterion along with a filtering al-
gorithm. For instance, if the user chooses to optimise the sum of squares, the
variable V will be linked by the constraint WCSS([G1, . . . ,Gn],V,d).
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In order to improve the performance of CP solvers, different search strategies are
elaborated for each criterion. For example, a CP-based framework using repetitive
branch-and-bound search has been developed (Guns et al, 2016) for the WCSS
criterion.

Another interest of the declarative framework is the bi-objective constrained clus-
tering problem. This problem aims to find clusters that are both compact (minimising
the maximal diameter) and well separated (maximising the split), under user con-
straints. In (Dao et al, 2017) it is shown that to solve this problem, the framework
can be used by iteratively changing the objective function and adding constraints on
the other objective value.

This framework has been extended to integrate the four categories of user con-
straints on properties (cardinality, density, geometric, and complex logic), in order to
make clustering actionable (Dao et al, 2016). Schemes are developed to expresses the
categories using CP constraints. For instance, a density constraint provides bounds
on the occurrence of some properties on a subset of instances in each cluster. To
express this constraint, for each instance oi ∈ O which is eligible (e.g. more than 20
years old), the set of neighbourhood instances N(i) (e.g. persons having the same
hobby) is determined. The number of instances of N(i) in the same cluster as oi can
be captured using a variable Zi, which is linked by the constraint

#{ j ∈ N(i) | G j = Gi}= Zi.

Arithmetic constraints are then stated on Zi to express density constraints. As an
example, for the constraint that each person more than 20 years old must be in the
same group as at least 5 people sharing the same hobby, the constraint Zi ≥ 6 (5
other instances and the instance oi itself) is included.

Several CP frameworks have been developed tor conceptual clustering (Khiari
et al, 2010; Guns et al, 2013; Chabert and Solnon, 2017). These frameworks integrate
constraints on patterns or groups of patterns as well as different optimisation criteria,
for instance, maximising the minimal size of the clusters, or maximising the minimal
size of the patterns defining the clusters. The models are developed using binary
variables (Guns et al, 2013) or set variables (Khiari et al, 2010; Chabert and Solnon,
2017).

5 Collaborative Constrained Clustering

Over the last fifty years, a huge number of new clustering algorithms have been
developed, and existing methods have been modified and improved (Jain et al, 1999;
Rauber et al, 2000; Xu and Wunsch, 2005). This abundance of methods can be ex-
plained by the ill-posed nature of the problem—each clustering algorithm is biased
by its objective function used to build the clusters. Consequently, different methods
can produce very different clustering results from the same data. Furthermore, the
same algorithm can produce different results depending upon its parameters and
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initialisation. A relatively recent approach to circumvent this problem considers that
the information offered by different sources and different clusterings are comple-
mentary (Kittler, 1998). A single clustering is produced from the results of methods
that have different points of view and each individual clustering opinion is used to
find a consensual decision. Thus, the combination of different clusterings may in-
crease their efficiency and accuracy. Each decision can be processed from a different
source or media. The final result can be produced directly from the independently
obtained results (ensemble clustering) or from the result of a collaborative process
(collaborative clustering).

5.1 Ensemble Clustering

Ensemble clustering methods aim to improve the overall quality of the clustering
by reducing the bias of each single algorithm (Hadjitodorov and Kuncheva, 2007).
An ensemble clustering is composed of two steps. First, multiple clusterings are
produced from a set of methods having different points of view. These methods can
be different clustering algorithms (Strehl and Ghosh, 2002) or the same algorithm
with different parameter values or initialisations (Fred and Jain, 2002). The final
result is derived from the independently obtained results by applying a consensus
function.

Constraints can be integrated in two manners: each learning agent integrates them
in its own fashion; or applying them in the consensus function. The former approach
faces an important dilemma: either favor diversity or quality. High quality is desired,
but the gain of ensemble clustering is derived from diversity (thus avoiding biased
solutions). Clustering from constrained algorithms tends to have a low variance,
which implies low diversity (Yang et al, 2017), especially when using the same set
of constraints. Therefore the advantage of ensemble clustering is limited.

Implementations of the first approach exist (Yu et al, 2011; Yang et al, 2012).
For example Iqbal et al (2012) develop the semi-supervised clustering ensembles by
voting (SCEV) algorithm, in which diversity is balanced by using different types of
semi-supervised algorithms (i.e. constrained k-Means, COP-KMeans, SP-Kmeans,
etc.). In the first step each semi-supervised agent computes a clustering given the data
and the set of constraints. It then combines all the results using a voting algorithm
after having relabeled and align the different clustering results. The authors propose
to integrate a weight for each agents’ contributions into the voting algorithm. This
weight is a combination of two sub-weights, the first one is defined a priori, based
upon the expert’s trust of each agent according to the data (i.e. seeded k-Means is
more efficient for noise, COP-Means and constraints are more efficient if the data
is noise free), the second is also user defined but based upon the user’s feedback on
the clustering result. As such, the algorithm allows more flexibility and user control
over the clustering.

The second approach focuses on applying constraints in the consensus function
(Al-Razgan and Domeniconi, 2009; Xiao et al, 2016; Dimitriadou et al, 2002). These
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algorithms start by generating the set of clusterings from the clustering agents. The
constraints are then integrated in the consensus function, which can be divide in 4
steps:

1. generate a similarity matrix from the set of clusterings;
2. construct a sparse graph from this similarity matrix using the

CHAMELEON algorithm—an edge is constructed between two vertices if the
value in the similarity matrix is greater than zero for the corresponding elements;

3. partition the graph into a large number of sub-clusters using the METIS method;
4. merge the sub-clusters using an agglomerative hierarchical clustering approach

by finding the most similar pair of sub-clusters.

Constraints are integrated during partitioning. Cannot-link constraints are used as
priorities for the split operation—sub-clusters that contains a CL constraints are
partitioned until the two elements in the constraint are allocated to two different
clusters.

5.2 Collaborative Clustering

Collaborative clustering consists in making multiple clustering methods collabor-
ate to reach an agreement on a data partitioning. While ensemble clustering (and
consensus clustering (Monti et al, 2003; Li and Ding, 2008)) focuses on merging
clustering results, collaborative clustering focuses on iteratively modifying the clus-
tering results by sharing information between them (Wemmert et al, 2000; Gançarski
and Wemmert, 2007; Pedrycz, 2002). In consequence it extends ensemble clustering
by adding a refinement step before the unification of the results. For instance, in
SAMARAH (Wemmert et al, 2000; Gançarski and Wemmert, 2007) each clustering
algorithm modifies its results according to all the other clusterings until all the clus-
terings proposed by the different methods are strongly similar. Thus, they can be
more easily unified through a voting algorithm (for example).

Three stages for integrating user constraints in the collaborative process can be
identified (Forestier et al, 2010a):

(1) generation of the final result (by labeling the clusters of the final result using label
constraints);

(2) directly in the collaborative clustering (in order to guide the collaborative pro-
cess);

(3) using constrained agents.

Integrating user constraints into the learning agents (3) is complex because it requires
extensive modification of each of the clustering methods involved. The complexity
of integrating constraints in the collaboration (2) depends on how information is ex-
changed between the learning agents. Integrating the constraints after collaboration
(1), however, does not interfere in the collaborative process, which makes it easier
to implement.
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To illustrate the second level, the SAMARAH method is first introduced. Then
Section 5.2.2 presents the method for integrating constraints into the collaborative
process.

5.2.1 SAMARAH: a Framework for Collaborative Multistrategy Clustering

SAMARAH (Forestier et al, 2010a) is based on the principle of mutual and iterative
refinement of multiple clustering algorithms. The process can be decomposed into
three main steps:

1. The generation of the initial results;
2. The refinement of the different results;
3. The combination of the refined results.

The first step consists of generating the initial results that will be used during the
process. In this step, different algorithms or the same algorithm with different para-
meters can be used. During the refinement stage, each result is compared to the set
of results proposed by the other methods, the goal being to evaluate the similar-
ity between the different results in order to observe differences in the clusterings.
Once these differences (named conflicts) are identified, the objective is to modify
the clusterings to reduce them, in addition to the number of constraints violations,
i.e. resolving the conflicts (Forestier et al, 2010b). These are resolved by either mer-
ging clusters, splitting clusters, or re-clustering clusters iteratively. This step can be
seen as a questioning each result according to the information provided by the other
actors in the collaboration and the background knowledge. After multiple iterations
of refinement (in which a local similarity criterion is used to evaluate whether the
modifications of a pair of results is relevant (Forestier et al, 2010a)), the results are
expected to be more similar than before the collaboration began. During the third
and final step, the refined results are combined to propose a final and unique result
(which is simplified due to the similarity of the results).

5.2.2 Knowledge Integration in the SAMARAH Collaborative Method

During the refinement step of the SAMARAH method, a local similarity criterion γ i, j

is used to evaluate whether the proposed modification of a pair of results is relevant
(Forestier et al, 2010a). This criterion includes a quality criterion δ i which repres-
ents the quality of the result R i. It therefore balances the refinement between the
similarity and the quality of the expected results. It is computed for two aspects of
the results: the internal and external qualities. The internal evaluation consists of
evaluating the quality of the result through an unsupervised measure. The external
evaluation consists of evaluating the quality of the result according to external know-
ledge, such as an estimation of the number of clusters, some labeled samples, or
some constraints.



Constrained Clustering: Current and New Trends 23

The original version of SAMARAH included internal knowledge but the only
external knowledge was an estimate of the number of clusters. To take into account
additional external knowledge, the quality criterion has been extended to measure
the level of agreement of the results with different kinds of constraints (Forestier
et al, 2010b), such that

δ i =
Nc

∑
c=1

qc(R
i)× pc, (4)

where Nc is the number of constraints to respect, qc is the criterion used to evaluate
the result according to the c-th constraint (qc(·) ∈ [0,1]) and pc is the relative import-
ance given by the user to the c-th constraint (p1 + p2 + · · ·+ pNc = 1). By default,
each constraint is given a weight of 1

Nc
.

Thus, any constraint that can be defined as a function taking its values on [0,1] can
be integrated into the process. The method to integrate some frequently encountered
constraints are as follows.

Cluster quality constraints are based on the intrinsic quality of clusters, such as
inertia or predictivity and include the number of clusters. Criterion such as inertia
or compacity need to be balanced with an evaluation of the number of clusters. An
example of a criterion that includes the quality of the clusters and the number of
clusters is as follows:

qqb(R
i) =

pi

ni

ni

∑
k=1

τ i
k, (5)

where ni is the number of clusters of R i, τ i
k defines the internal quality of the k-th

cluster, and pi is the external quality of the result. The internal quality of the k-th
cluster is given by

τ i
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(6)

where ni
k is the cardinality of C i

k , gi
k is the gravity center of C i

k , gi is the gravity
center of the closest cluster to xi

k,l and d is the distance function. The measure is
computed on each cluster to evaluate the overall quality of the clustering result. To
take into account the number of clusters ni, the criterion pi is defined as, such that

pi =
nsup −ninf

|ni −ninf|+ |nsup −ni|
, (7)

where [ninf,nsup] is the range of the expected number of clusters which is given by
the user.

Class labeld constraints correspond to the case where a set of labeled samples
is available. To evaluate the agreement between results and such constraints, we can
use any index which enables us to evaluate the similarity between a clustering and a
labeled classification (where all the classes are known, and each object belongs to one
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of these classes). To achieve this, it is only necessary to compare results with a given
partial partition R which represents the known labeled objects. In the SAMARAH
method, the Rand index (Rand, 1971) or the WG agreement index (Wemmert et al,
2000) is used.

The Rand index is a measure of similarity between two data partitions, such that

Rand(R i,R) =
a+b�n

2

� , (8)

where n is the number of objects to classify, a is the number of pairs of objects which
are in the same cluster in R i and in the known result, and b is the number of pairs
of objects which are not in the same cluster in the proposed result R i nor in the
known result R j. The sum of these two measurements (a and b) can been seen as the
number of times that the two partitions are in agreement. This index takes values in
[0,1], where 1 indicates that the two partitions are identical. A constraint qrand(R

i)
can therefore be defined, such that

qrand(R
i) = Rand(R i,R). (9)

The WG agreement index is defined by

WG(R i,R) =
1
n

ni

∑
k=1

S
�
Ci

k,R
j���Ci

k

�� , (10)

where n is the number of objects to classify and R j is the reference partition (e.g.
labeled classification, another clustering, etc.). This index takes values in [0,1],
where 1 indicates that all the objects in the clustering R i are well classified ac-
cording to the object labels in R j. A constraint qwg(R i) can therefore be defined,
such that

qwg(R
i) =WG(R i,R). (11)

Link constraints correspond to the case where knowledge is expressed as must-
link and cannot-link constraints between objects (see Section 2.2). In this case, the
ratio of respected to violated constraints can easily be computed such that

qlink(R
i) =

1
nr

nr

∑
j=1

v(R i, l j), (12)

where nr is the number of constraints between the objects, l j is a must-link or cannot-
link constraint and v(R i, l j) = 1 if R i respects the constraint l j and 0 otherwise.

Note that such constraints can be extracted from class-label constraints. For ex-
ample, a must-link constraint can be created for all pairs of objects belonging to
the same cluster, and a cannot-link constraint can be created for all pairs of objects
belonging to different clusters.
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6 New Trends

Obtaining useful results with pattern mining methods remains a difficult task. Careful
tuning of the algorithm parameters and filtering of the results are needed. This
requires considerable effort and expertise from the data analyst. As a consequence,
the idea of interactive or exploratory data mining has been proposed (van Leeuwen,
2014). Exploratory data mining looks for models and patterns that explain the data
as much as possible by developing user interaction to influence the search and the
results.

This section deals with these trends concerning clustering. Scientific challenges
(Section 6.1.1), a example of user interaction (Section 6.1.2), and an example of
incremental and collaborative clustering (Section 6.1.3) are given. Limitations of the
constraint paradigm are sketched and, moving beyond constraints, exploratory data
mining is discussed. It is shown that preferences are a way to address pattern mining
tasks (Section 6.2.1) and exploratory data mining enables the capturing of implicit
preferences (Section 6.2.2). Chapter 3 of Volume 3 describes preferences queries in
the field of database.

6.1 Interactive and Incremental Constrained Clustering

6.1.1 Challenges

Preliminary studies have revealed numerous scientific challenges about the object-
ives mentioned in the previous sections. For example, it is necessary to study and
detail the thematic constraints (i.e. of the domain of application) that the expert may
formulate to guide the process.

These constraints can be extremely broad and have to be translated into actionable
constraints. In the current state of the knowledge, they are generally limited to
constraints that can be directly translated into comparison constraints such as ML/CL,
labeling constraints, or constraints in terms of cluster number or cluster size. Thus,
for example, the following can be accepted: “these two objects seem to be of the
same nature”, or “these two ensembles of objects are of the same nature” (ML
constraints between all the pairs of objects of the two sets); “these three sets are
totally different” (CL constraint on all the pairs of objects from the three sets); “this
object is of type C” (labeling constraint); and “a cluster cannot represent more than
20% of the image” (constraints of cluster size).

Generating actionable constraints from a set, however, can rapidly lead to a signi-
ficant increase of combinatorial complexity. For example, a constraint “of the same
nature” on two sets of size N1 and N2 respectively will, using the naive approach,
generate N1(N1 − 1)+N2(N2 − 1)+N1 ×N2 ML constraints. These are transitive
(Wagstaff et al, 2001) however, and therefore the number of constraints needed to
satisfy the user requirement can be reduced to (N1 +N2)−1 under the assumption
of guaranteed constraint satisfaction. Expressing all the constraints can be very time
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consuming, particularly in the case of data mining in big-data problems where the
size of sets N1 and N2 can be considerable. The following problems therefore need
to be tackled.

• How to design algorithms that are able to deal with large constraint sets?

– Reduce the size of the model by limiting the number of considered elements,
for example by sampling or by identifying irrelevant objects.

– Reduce the number of constraints without loss of quality:
· sample the constraints or sample the objects under constraint;
· identify the categories of constraints and study search strategies.

– Relax the optimality of the solution using a threshold on the execution time
(which is easy to choose but cannot guarantee the result’s quality).

– Use a local instead of a global search.

• How to limit the number of constraints—ideally, to define a minimal set of
constraints—and how to use incremental approaches to allow a user to give such
a set?

6.1.2 Interactive Clustering

In an interactive clustering model, the algorithm proposes a clustering of the data to
the user and receives some feedback on the current solution. Taking the feedback into
account, the algorithm makes changes to the clustering and proposes the new result
to the user. This step is iterated until the user is satisfied with the clustering. The
improvements to the clustering given by the user are usually in the form of splitting
or merging clusters (Balcan and Blum, 2008; Cutting et al, 1992; Awasthi and Zadeh,
2010; Awasthi et al, 2017). The aim of efficient algorithms is to require as little user
interaction as possible. User feedback can also be the rejection of some clusters and
to request new ones. The system returns another clustering, which is chosen to fit
the data as well as possible, while avoiding the creation of a cluster that is similar to
any of those previously rejected. Formalising this in a Bayesian framework, after the
user rejects a set of clusters, the prior distribution over model parameters is modified
to severely downweight regions of the parameter space that would lead to clusters
that are similar to those previously rejected (Srivastava et al, 2016). Another kind
of feedback is that associated with each cluster: the user can lock the cluster (it is
therefore no longer modified), refine the cluster by adding or removing elements,
or change the pairwise distance of elements within a cluster. The distance between
elements is recomputed accordingly, the unlocked clusters are reclustered and the
process is repeated until no unlocked clusters remain (Coden et al, 2017). Interaction
with the user can also be in made at different stages of the clustering process, as in
an interactive approach for app search clustering in the Google Play Store, which
incorporates human input in a knowledge-graph-based clustering process (Chang
et al, 2016). Instead of directly clustering apps, the algorithm extracts topic labels
from search results, runs clustering on a semantic graph of the topic labels and
assigns search results to topic clusters. The interactive interface lets domain experts
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steer the clustering process in different stages: refining the input to the clustering
algorithm, steering the algorithm to generate more or less fine-grained clusters, and
finally editing topic label clusters and topic labels.

User feedback through constraints on the clustering makes the clustering action-
able to some purposes. Let us consider the case where the user already has a clus-
tering, which was obtained by their favourite clustering algorithm. The clustering in
general is good but there are a few undesirable properties. One ad hoc way to fix this
is to re-run the constrained clustering algorithm but there is no guarantee that the
obtained clustering will be as good as the first one. Instead, Kuo et al (2017) propose
to minimally modify the existing clustering while reaching the desired properties
given by user feedback. User feedback can be, for example, splitting or merging
some clusters, stating a bound on the diameter of the clusters, or stating a bound on
the size of the clusters to be more balanced.

6.1.3 Incremental Constrained Clustering

Many constrained clustering methods require that the complete set of constraints
be given before running the algorithm. This is very often unrealistic. For example,
when a geographer tries to extract relevant clusters from a remote sensing image, it is
almost impossible, given the number of clusters and the large space of possible con-
straints, to give such constraints a priori. Indeed, experiments show that the user will
tend to give “obvious” and not informative constraints (e.g., pixels in the same homo-
geneous region must be clustered together or pixels of roads and pixels of vegetation
cannot be in the same cluster, even if the “colors” of these pixels are sufficient to
decide)—these constraints will not impact the algorithm in any way. In other words,
the algorithm will find the same result regardless of the constraints. A way to tackle
this problem would be to follow the example of interactive supervised learning meth-
ods and allow the user to inject constraints based on the results obtained (Davidson
et al, 2007). In this manner the algorithm could reduce its uncertainty by obtaining
new constraints that are related to uncertain zones (e.g., cluster edges, areas of high
object density, etc.). These, highly informative, constraints could be proposed to the
user who may validate them, or not, according to their knowledge. The hope is that
this approach (selectively choosing constraints) produces significantly better results
when compared to randomly choosing constraints. Cohn et al (2003) describes an
experiment (introduced by Davidson et al (2007)) concerning document clustering,
in which ten constraints incrementally chosen by a user (not by the machine) pro-
duced as good results as using between 3000 and 6000 randomly chosen constraints.
In the same way our geographer could add label constraints (“The region belongs
to the thematic water class?”), ML/CL constraints (“These regions should be to-
gether/apart?”) or cluster constraint (“Should this cluster be removed?”) according
to the results obtained and the proposals of the algorithm.

Even with research that is concerned with defining the conditions for the applic-
ation of such methods (Raj et al, 2013; Vu and Labroche, 2017), a large number of
scientific obstacles still remain to be overcome:
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• How to evaluate the informativeness of a constraint (some progress in this area
has been made by Davidson et al (2006) and Wagstaff et al (2006))?

• How to integrate new constraints while limiting the effects on the results (a strong
modification of the result can confuse the user)?

• How to concretely design incremental algorithms, not in terms of new data or
interactive cluster modifications but in terms of new constraints?

• How to remove a constraint already taken into account without starting afresh?
• How to deal with inconsistent constraints: should a new constraint be rejected

if it is inconsistent with a previously added constraint or should the previously
added constraint be removed?

As such, the development of incremental interactive constrained clustering method
remains a very challenging research problem.

6.2 Beyond Constraints: Exploratory Data Analysis

6.2.1 From Constraints to Explicit Preferences

The notion of constraints is at the core of numerous works in pattern mining as
presented in this chapter. Nevertheless, constraint-based pattern mining assumes that
the user is able to express what they are looking for, requires finely tuning thresholds,
and a collection of patterns that are often too large to be truly exploited. This picture
may explain why preferences in pattern mining become more and more important.
Preferences in pattern mining do not arise from nothing. In constraint-based pattern
mining, the utility functions measure the interest of a pattern and can be seen as
a quantitative preference model (Yao and Hamilton, 2006; Fürnkranz et al, 2012;
Geng and Hamilton, 2006). Many other mechanisms have been developed such as
mining the most interesting patterns with one measure, top-k patterns (Wang et al,
2005), or more, skyline patterns (Cho et al, 2005; Soulet et al, 2011; van Leeuwen
and Ukkonen, 2013); reducing redundancy by integrating subjective interestingness
(Gallo et al, 2007; Bie, 2011; De Bie, 2013; van Leeuwen et al, 2016); and putting
the pattern mining task to an optimisation problem.

Even though it has been realised for a long time that it is difficult for a data
analyst to model their interest in terms of constraints and overcome the well-known
thresholding issue, researchers have only recently intensified their study of meth-
ods for finding high-quality patterns according to a user’s preferences. We shortly
introduce the example of the skylines patterns (Cho et al, 2005; Soulet et al, 2011;
van Leeuwen and Ukkonen, 2013) which can be seen as a generalisation of the well
known top-k patterns (Wang et al, 2005; Ke et al, 2009).

Top-k patterns integrate user preferences in the form of a score in order to limit
the number of extracted patterns. By associating each pattern with a rank score, this
approach returns an ordered list of the k patterns with the highest score to the user.
Nevertheless, top-k patterns suffer from the diversity issue (top-k patterns tend to be
similar) and the performance of top-k approaches is often sensitive to the size of the
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datasets and to the threshold value, k. Even worst, combining several measures into
a single scoring function is difficult.

Skyline patterns introduce the idea of skyline queries (Börzsönyi et al, 2001) into
the pattern discovery framework . Such queries have attracted considerable attention
due to their importance in multi-criteria decision making, where they are usually
called “Pareto efficiency” or “optimality queries”. Briefly, in a multidimensional
space where a preference is defined for each dimension, a point a dominates another
point b if a is better (i.e. more preferred) than b in at least one dimension, and a is not
worse than b in every other dimension. For example, a user selecting a set of patterns
may prefer a pattern with a high frequency, a large length, and a high confidence.
In this case, we say that pattern a dominates another pattern b if frequency(a) ≥
frequency(b), length(a) ≥ length(b) and confidence(a) ≥ confidence(b), where at
least one strict inequality holds. Given a set of patterns, the skyline set contains
the patterns that are not dominated by any other pattern. Skyline pattern mining
is interesting for several reasons. First, skyline processing does not require any
threshold tuning. Second, for many pattern mining applications it is often difficult
(or impossible) to find a reasonable global ranking function. Thus the idea of finding
all optimal solutions in the pattern space with respect to multiple preferences is
appealing. Third, the formal property of dominance satisfied by the skyline pattern
defines a global interestingness measure with semantics easily understood by the
user. While the notion of skylines has been extensively developed in engineering
and database applications, it has remained unused for data mining purposes until
recently (Cho et al, 2005; Soulet et al, 2011). In this kind of approach, preferences
(or measures) are explicitly given by the user.

6.2.2 From Explicit Preferences to Implicit Preferences

All of the approaches introduced in the previous section assume that preferences
are explicit and given in the process. In practice, the user only has a vague idea of
which patterns could be useful and there is therefore a need to elicit preferences. The
recent research field of interactive pattern mining relies on the automatic acquisition
of these preferences (van Leeuwen, 2014). Basically, its principle is to repeat a short
mining loop centred on the user: (1) the user poses an initial query to the system,
which returns an initial result, (2) the user designates components or aspects of this
result as (un)desirable/(un)interesting, (3) the system translates the user feedback
into a model of the user’s preferences and uses this model to adapt its search strategy,
(4) a new result is produced and the process returns to step (2). At each iteration,
only some patterns are mined and the user has to indicate those which are relevant
(Dzyuba et al, 2014) by, for example, liking/disliking, rating, or ranking. The user
feedback improves an automatically learned model of preferences that will refine
the pattern mining step in the next iteration. A great advantage is that the user does
not have to explicitly state their preference model.

Interactive pattern mining raises several challenges. The first being the design
of user feedback options. The easiest forms of feedback to take into consideration
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are explicit and more or less binary in nature: the requirement that certain instances
be grouped together or kept apart, or that particular descriptors are included in a
cluster’s description. Unfortunately, experts are unlikely to be able to give this kind of
feedback, especially early on in the discovery process. A second, less explicit but still
easy to use, form of feedback allows the user to designate components of the result,
e.g. descriptions, as interesting or uninteresting or to express preferences, denoting
a (component of a) result as more interesting than another (Dzyuba et al, 2014). The
first form of feedback translates into constraints that can be included by prototypes,
meaning that they can be included into the system. The second form requires a
notion of equivalence/alternative to returned descriptions to replace uninteresting
ones or to allow the user to express a preference over pairs. This requires multiple
characterisations and to integrate pairwise comparisons to take preferences over
pairs into account. A long-term goal is how to elicit and learn a preference model.

Of equal importance is the design of methods following the principle of instant
data mining (Boley et al, 2011) to avoid the expert user “checking-out” of the process.
Each iteration must be fast and the result must be provided in a concise form so that
the user is not overwhelmed with a huge collection of patterns that are impossible
to analyse. Instant data mining is based on sampling techniques and provides a
representative set of patterns without explicitly searching in the pattern space. These
techniques, however, handle a limited set of measures or constraints (Giacometti and
Soulet, 2016).

Subjective interestingness is a way of exploiting user feedback to directly in-
fluence search. Interactive diverse subgroup discovery (IDSD) (Dzyuba and van
Leeuwen, 2013) is an interactive algorithm that allows a user to provide feedback
with respect to provisional results to avoid subgroups corresponding to common
knowledge, which is usually uninteresting to a domain expert. The beam selection
strategy is made interactive on each level of the search, thus the interestingness meas-
ure becoming subjective. The one click mining system (Boley et al, 2013) extracts
local patterns through a mechanism based on two types of preferences. One is used
to allocate the computation time to different mining algorithms, the other is used to
learn a utility function to compute a ranking over all mined patterns. Both learning
algorithms rely on inputs corresponding to implicit user feedback.

A formal framework for exploratory data mining is proposed by De Bie (2011),
who argues that traditional objective quality measures are of limited practical use
and proposes a general framework that models background knowledge. Subjective
interestingness is formalised by information theory. The principle is to consider prior
beliefs, e.g. background information, as constraints on a probabilistic model repres-
enting the uncertainty of the data. Given the prior beliefs, the maximum entropy
distribution is used to model the data. Then one can compute how informative a
pattern is given the current model. This framework follows the iterative data mining
process: starting from a MaxEnt model based on prior beliefs, the subjectively most
interesting pattern is searched for and added to the model, after which one can start
looking for the next pattern. The exact implementation depends on the specific data
and pattern types.



Constrained Clustering: Current and New Trends 31

Finally, approaches based on the declarative modelling paradigm (see Section
4 in this chapter) help exploratory data analysis. Indeed, the data analyst focuses
on the specification of the desired results through constraints (and optionally an
optimisation criterion) rather than describing how the solution should be computed.
The assumption of the declarative modelling paradigm is that a data analyst is able
to express constraints that can be iteratively added to the declarative model.

7 Conclusions and Perspectives

While the development and generalisation of deep learning approaches is revolution-
ising supervised learning, particularly in the area of decision support, attention is
becoming increasingly focused on unsupervised learning. This is due, in part, to the
pressing need for methods that allow one to explore large data sets without well-
defined preconceptions, and without predefined categories that can be used as labels
for training instances. Nevertheless, without any supervision, these approaches can
lead to irrelevant results. A way to circumvent this problem is to (re)introduce experts
into the analysis process and thus, to define methods capable of taking into account
domain knowledge without the fastidious preliminary step of sample annotation.

In this chapter, we have presented the alternative approach to clustering in which
the process is guided by user constraints in order to produce more relevant results.
Here ‘relevant’ means more directly matched to the expert’s thematic intuition, that
is to say to potential thematic classes. Methods derived from this approach have
been developed and have demonstrated their effectiveness and applicability in many
areas.

Despite the increasing number of methods and tools dedicated to constrained
clustering and the surge of interest in constrained clustering, this paradigm is still
surprisingly infrequently used. An explanation for this is the issues that remain to be
explored and addressed. Without claiming to be exhaustive, this chapter has listed
some of the scientific obstacles to be overcome: how to define more expressive
operable constraints, for instance constraints involving more objects (“A is closer to
B than to C”) or conditional constraints (“If A is with B then C cannot be with B”)?
How to deal with increasing volumes of data, which can lead to an explosion of the
number of constraints? How to design incremental interactive methods that are able
to deal with incoherent constraints?

Nevertheless, while these issues are important and must be addressed by com-
puter scientists, it is convincingly apparent that the main obstacle preventing the
adoption of these approaches is the lack of theoretical and practical understanding of
the “translation” of the an expert’s knowledge into actionable constraints. As such,
research effort should be focused, on the one hand, on the ways of translating do-
main knowledge into thematic constraints and, on the other hand, on the automatic
translation of such constraints into actionable constraints.

This survey chapter has presented the principles of constrained clustering. This
exciting field has arrived at a time when solutions to knowledge discovery problems
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in big data are needed, and it promises to offer these. The time is therefore ripe for
increasing the exposure and use of these methods. All the while, it is also a domain
full of questions, some of which go beyond the current theory of statistical learn-
ing, and answering these questions promises to stimulate interesting and innovative
research directions.
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40 P. Gançarski, T.-B.-H. Dao, B. Crémilleux, G. Forestier, and T. Lampert

Wang J, Han J, Lu Y, Tzvetkov P (2005) TFP: an efficient algorithm for mining top-k
frequent closed itemsets. IEEE Transactions on Knowledge and Data Engineering
17(5):652–663

Wang X, Davidson I (2010a) Active spectral clustering. In: Proceedings of the IEEE
International Conference on Data Mining, pp 561–568

Wang X, Davidson I (2010b) Flexible constrained spectral clustering. In: Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp 563–572

Wang X, Qian B, Davidson I (2014) On constrained spectral clustering and its
applications. Data Mining and Knowledge Discovery 28(1):1–30
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