OntoVIP: an ontology for the annotation of object models used for medical image simulation

Bernard Gibaud1, Germain Forestier2, Hugues Benoit-Cattin3, Frédéric Cervenansky3, Patrick Clarysse3, Denis Friboulet3, Alban Gaignard4, Patrick Hugonnard5, Carole Lartizien3, Hervé Liebgott3, Johan Montagnat4, Joachim Tabary5, Tristan Glatard3

1 INRIA, then Université de Rennes 1, LTSI; Inserm U1099, Rennes, France (bernard.gibaud@univ-rennes1.fr)
2 Université de Haute Alsace, MIPS EA2332, Mulhouse, France
3 Université de Lyon, CREATIS; CNRS UMR 5220; Inserm U1044; INSA-Lyon; Univ. Lyon 1, France
4 CNRS / UNS, I3S laboratory, MODALIS team, Sophia Antipolis, France
5 CEA-LETI-MINATEC, Recherche technologique, Grenoble, France

Context:
• Medical image simulation produces virtual images from software representations of imaging devices and virtual object models representing the human body. Object models consist of the geometry of the objects (e.g. organs, tissues, pathological structures, etc.) and of their physical parameters used for the simulation.
• The VIP platforms aims at supporting the sharing of image simulation resources [1,2]

Goal: create an application ontology that can be used to annotate the object models in the VIP platform’s model repository, to facilitate their sharing and reuse.

Methods:
• Use of a common integration framework provided by a foundational ontology called DOLCE, successfully used in a previous project [3]
• Development of an ontology module to depict the content of object models and their physical characteristics
• Extraction of relevant subsets of existing ontologies, using vSPARQL [4]
 - FMA v3.1: anatomy (865)
 - PATO V1.2: patho. anat. object quality (84)
 - MPATH V1.2: pathological objects (494)
 - RadLex V3.2: contrast agents (81), radiopharmaceuticals (49), foreign bodies (189)

Results:
Representation of a set of layers:
- Anatomy
- Pathology
- External agents
- Foreign bodies
- Geometrical objects

Taxonomy of object models represented in OWL (using Protégé)

Implementation:
(in progress)
- Semantic annotation of object models at importation time
- Description Logics and rule-based inferencing of object models’ classes
- Semantic querying of object models

Acknowledgment
This work was funded by the French National Research Agency (ANR) under grant ANR-09-COSI-03. The authors warmly thank the authors of the vSPARQL software for their support, especially Landon T. Detwiler.

References