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Abstract—In this paper we present a new algorithm for semi-
supervised clustering. We assume to have a small set of labeled
samples and we use it in a clustering algorithm to discover
relevant patterns. We study how our algorithm works against two
other semi-supervised algorithms when the data are multimodal.
Then, we study the case where the user is able to produce
few samples for some classes but not for each class of the
dataset. Indeed, in complex problems, the user is not always
able to produce samples for each class present in the dataset.
The challenging task is consequently to use the set of labeled
samples to discover other members of these classes, but also to
keep a degree of freedom to discover unknown clusters, for which
samples are not available. We address this problem through a
series of experimentations on synthetic datasets, to show the
relevance of the proposed method.
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I. INTRODUCTION

During the last years, an intensive work has been done in
the field of data mining, especially on data classification [1].
Two main kinds of classification algorithms have emerged: the
supervised classification algorithms [2] and the unsupervised
classification algorithms [3]. In supervised classification, a
fixed set of classes is available and examples for each class
are used to build a classification function. This classifica-
tion function is a preditive model used to find the class
of new available patterns. In unsupervised classification (or
clustering), an unlabeled dataset is partitioned into groups of
similar items (i.e. clusters), generally by optimization of an
objective function, which minimizes intra-class similarity and
maximizes inter-class dissimilarity.

These two strategies for data classification have qualities
and drawbacks. For supervised approaches, a large set of
labeled samples is often needed to build an efficient clas-
sification function, but problems like overfitting can occur.
Concerning unsupervised approaches, the determination of
the number of clusters [4], the method used to build the
clusters [5] and the capacity to find complex shaped clusters
[6] are still intensive fields of research. Consequently, many
clustering algorithms have been proposed in the literature and
new clustering algorithms continue to appear every year.

To address the problems related to these two approaches, a
new kind of algorithms has been investigated during the last
ten years under the names of semi-supervised classification
[7] (or semi-supervised learning [8]) and semi-supervised
clustering [9]. In semi-supervised classification, the training
step uses unlabeled samples in addition to the available labeled

samples, which generally leads to a better definition of the
classification function. The function is consequently more
generalizable. In semi-supervised clustering, the partitioning
task is helped by constraints provided by the user or by a
small set of labeled data. The constraints can be provided
under the form of must-link and cannot-link constraints [10]
giving respectively the information that two instances must be
grouped together or be placed in different clusters. The use
of a small set of labeled data has also been investigated [9],
mainly to help the initialization of clustering algorithms.

In this paper, we are focused on this last kind of algorithms.
We propose a new semi-supervised clustering algorithm using
a collaborative clustering approach [11], which takes ad-
vantage of labeled samples. To the best of our knowledge,
barely all the semi-supervised clustering algorithms assume a
coherence between the available samples and the data space
(i.e. the objects of a same class must all be placed in one
area in the dataspace). Unfortunately, in complex data, this
assumption is not always true. Indeed, when the user provides
samples, he is not always aware of the complexity of the
data space, and he does not know if the samples he provides
are coherent. Two objects labeled of the same class can be
localized in two different area in the data space, reflecting a
multimodality, inherent to complex data. An advantage of the
proposed method is its capacity to deal with such examples.

Moreover, in complex problems, the user is not always
able to produce samples for each class of the dataset. All
of the existing semi-supervised algorithms assume to have at
least few samples for each expected class. We claim that this
assumption is too strong and not realistic in many problems.
Indeed, the user could be able to produce samples for certain
classes, but can also expect to discover new classes into his
data. By using a supervised or semi-supervised classification
algorithm, the user looses the ability to understand his data
and to discover new interesting patterns.

The outline of this paper is the following. In the Section
2, we review the main works of the literature about semi-
supervised clustering. Then, in Section 3 we detail the pro-
posed approach and in Section 4, we present some experiments
to evaluate this method. Finally, conclusions and future works
are drawn in Section 5.

II. CLUSTERING WITH BACKGROUND KNOWLEDGE

Many approaches have been investigated to use background
knowledge to guide the clustering process. In constraint clus-
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tering, knowledge is expressed as must-link and cannot-link
constraints. A must-link constraint gives the information that
two data objects should be in the same cluster, and cannot-
link means the contrary. This kind of knowledge is sometime
easier to obtain than a classical subset of labeled samples.

In [10], Wagstaff et al. present a constrained version of the
k-means algorithm which uses such constraints to bias the
affectation of the objects to the clusters. At each step, the
algorithm tries to agree with the constraints given by the user.

The constraints can be used to tune the algorithm, but also
to learn a distance function which is biased by the knowledge
about the constraints between the data objects, as presented
in [12]. The distance between two data objects is reduced for
a must-link and increased for a cannot-link. Recent works on
constraint clustering are focused on evaluating the utility (i.e
the potential interest) of a set of constraints [13], [14].

In [9], a subset of data objects is used to seed (i.e to ini-
tialize) the clusters of the k-means algorithm. Two algorithms,
seeded kmeans and constrained kmeans, are presented. In the
first algorithm, the samples are only used to initialize the
clusters and can eventually be affected to another class during
the clustering process. In the second algorithm, the clusters
are initialized with the samples, which stay affected to their
initial cluster. The choice between these two approaches must
be done according to the knowledge about noise in the dataset.

To tackle the problem of incorporating partial background
knowledge into clustering, where the labeled examples have
moderate overlapping features with the unlabeled data, Gao et
al. [15] formulate a new approach as a constrained optimiza-
tion problem. They propose two learning algorithms to solve
the problem, based on hard and fuzzy clustering methods. An
empirical study shows that the proposed algorithms improve
the quality of clustering results, with limited labeled examples.

In [16], a pairwise constrained clustering framework is
presented, as well as a new method for actively selecting
informative pairwise constraints, to get improved clustering
performance. Experimental and theoretical results confirm
that this active querying of pairwise constraints significantly
improves the accuracy of clustering, when given a relatively
small amount of supervision.

Basu et al. [17] also propose a probabilistic model for
semisupervised clustering, based on Hidden Markov Random
Fields (HMRF), that provides a principled framework for
incorporating supervision into prototype-based clustering. Ex-
perimental results on several text data sets demonstrate the
advantages of the proposed framework.

A new method, to allow instance-level constraints to have
space level inductive implications to improve the use of
the constraints, is given in [18]. The method improves the
previously studied constrained k-means algorithm, generally
requiring less than half as many constraints to achieve a given
accuracy on a range of real-world data, while also being more
robust when over-constrained.

In [19], the authors propose a method which uses different
clustering methods using different objectives. The final result
is produced by selecting clusters among the results proposed

by the different methods. A resampling method is used to
estimate the quality of the clusters.

Another approach called supervised clustering [20], uses the
feature of the data objects as well as the class information to
build clusters with a high class purity. The goal of supervised
clustering is to identify class-uniform clusters that have high
probability densities.

Different kinds of background knowledge are introduced
in [21], namely partial supervision, proximity-based guidance
and uncertainty driven knowledge hints. The authors discuss
the ways to exploit and effectively incorporate these back-
ground knowledge (called knowledge hints) in the fuzzy c-
means algorithm.

III. SEMI-SUPERVISED COLLABORATIVE CLUSTERING

The proposed approach is divided in two main steps: a
collaborative clustering of the data based on an existing
collaborative clustering method [11], and a cluster labeling
process which affects a class to each cluster, thanks to a subset
of available samples.

In the first step, different clustering algorithms are applied
on the data, with different initializations and different pa-
rameters. These clustering results are then refined through a
collaborative process to find an agreement about the classi-
fication of the data. This collaborative approach is used to
discover the structure of the dataset. Indeed, by using different
methods with different number of clusters, the methods will
automatically find a good estimation of the number of clusters
and the final classification will reflect the structure of the data.
In the second step, a cluster labeling process is used to affect
a class to each cluster.

In the next section, we describe the collaborative clustering
process and then, the clusters labeling step.

A. Collaborative clustering

It is difficult to compute a consensual result from clustering
results with different numbers of clusters or different structures
(flat partitioning or hierarchical result), because of the lack
of a trivial correspondence between the clusters of these
different results. To address the problem, we present in this
section a framework where different clustering methods work
together in a collaborative way, to find an agreement about
their proposals.

This collaborative process consists in an automatic and
mutual refinement of the clustering results, until all the results
have almost the same number of clusters, and all the clusters
are statistically similar with a good internal quality. At the end
of this process, as the results have comparable structures, it
is possible to define a correspondence function between the
clusters, and to apply a unifying technique, such as a voting
method [22].

Before the description of the collaborative method, we
introduce the correspondence function which is used in the
system.



1) Intercluster correspondence function: There is no prob-
lem to associate classes of different supervised classifications,
as a common set of class labels is given for all the classifi-
cations. Unfortunately, in the case of unsupervised classifica-
tions, the results may not have a same number of clusters, and
no information is available about the correspondence between
the different clusters of the different results.

To address the problem, we have defined a new intercluster
correspondence function, which associates to each cluster from
a result, a cluster from each of the other results.

Let {Ri }1≤i≤m be the set of results given by the different
algorithms.

Let {Ci
k
}1≤k≤ni be the clusters of the result Ri .

The corresponding cluster CC(Ci
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,R j ) of a cluster Ci
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where S is the intercluster similarity which evaluates the si-
milarity between two clusters of two different results.

It is calculated from the recovery of the clusters in two
steps. First, the intersection between each couple of clusters(
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Then, the similarity S(Ci
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) between two clusters Ci
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C
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is evaluated by observing the relationship between the size
of their intersection and the size of the cluster itself, and by
taking into account the distribution of the data in the other
clusters as follows:
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2) Collaborative process overview: The entire clustering
process is broken down in three main phases:

1) Initial clusterings - Each clustering method computes a
clustering of the data using its parameters.

2) Results refinement - A phase of convergence of the
results, which consists of conflicts evaluation and res-
olution, is iterated as long as the quality of the results
and their similarity increase.

3) Unification - If needed, the refined results are unified
using a voting algorithm.

a) Initial clusterings.: During this first step, each clus-
tering method is initialized with its own parameters and a
clustering is performed: all data objects are grouped into
different clusters.

b) Results refinement.: The mechanism we propose for
refining the results is based on the concept of distributed local
resolution of conflicts, by the iteration of four phases:
• Detection of the conflicts by evaluating the dissimilarities

between couples of results;
• Choice of the conflicts to solve;
• Local resolution of these conflicts;
• Management of the local modifications in the global result

(if they are relevant).

Conflicts detection - The detection of the conflicts con-
sists in seeking all the couples

(
Ci
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)
, i , j, such as
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)
. One conflict K i, j

k
is identified by one

cluster Ci
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and one result R j .
We associate to each conflict a measurement of its impor-

tance, the conflict importance coefficient, calculated according
to the intercluster similarity:
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Choice of the conflicts to solve - During an iteration
of refinement of the results, several local resolutions are
performed in parallel. A conflict is selected in the set of
existing conflicts and its resolution is started. This conflict, like
all those concerning the two results involved in the conflict, are
removed from the list of the conflicts. This process is iterated,
until the list of the conflicts is empty.

Different heuristics can be used to choose the conflict to
solve, according to the conflict importance coefficient (Eq. 4).
We choose to try to solve the most important conflict first.

Local resolution of a conflict - The local resolution of a
conflict K i, j

k
consists of applying an operator on each result

involved in the conflict, Ri and R j , to try to make them more
similar.

The operators that can be applied to a result are the
following:
• merging of clusters: some clusters are merged together

(all the objects are merged in a new cluster that replaces
the clusters merged),

• splitting of a cluster in subclusters: a clustering is applied
to the objects of a cluster to produce subclusters,

• reclustering of a group of objects: one cluster is removed
and its objects are reclassified in all the other existing
clusters.

The operator to apply is chosen according to the corre-
sponding clusters of the cluster involved in the conflict. The
corresponding clusters (CCS) of a cluster is an extension of
the definition of the corresponding cluster (Eq. 1).
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where pcr , 0 ≤ pcr ≤ 1, is given by the user.
Having found the corresponding clusters of the cluster

involved in the conflict, an operator is chosen and applied
as follows:



Algorithm 1 Operator application

1: let n = |CCS
(
Ci
k
,R j

)
|

2: let Ri′ (resp. R j′) be the result of the application of an
operator on Ri (resp. R j)

3: if n > 1 then
4: Ri′ = Ri \ {Ci

k
} ∪ {split(Ci

k
, n)}

5: R j′ = R j \ CCS(Ci
k
,R j ) ∪ {merge(CCS(Ci

k
,R j ))}

6: else
7: Ri′ = reclustering(Ri, Ci

k
)

8: end if

But the application of the two operators is not always
relevant. Indeed, it does not always increase the similarity of
the results implied in the conflict treated, and especially, the
iteration of conflict resolutions may lead to a trivial solution
where all the methods are in agreement. For example, they can
converge towards a result with only one cluster including all
the objects to classify, or towards a result having one cluster
for each object. These two solutions are not relevant and must
be avoided.

So we defined a criterion γ, called local similarity criterion,
to evaluate the similarity between two results, based on the
intercluster similarity S (Eq. 3) and a quality criterion δ:
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and, pq and ps are given by the user (pq + ps = 1).
At the end of each conflict resolution, the local similarity

criterion enables to choose which couple of results are to be
kept: the two new results, the two old results, or one new result
with one old result.

Global management of the local modifications - After the
resolutions of all these local conflicts, a global application of
the modifications proposed by the refinement step, is decided
if it improves the quality of the global result. The global
agreement coefficient of the results is evaluated according to all
the local similarity between each couple of results. It evaluates
the global similarity of the results and their quality.

Γ =
1
m

m∑
i=1
Γ
i (8)

where

Γ
i =

1
m − 1
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j,i

γi, j (9)

Even if the local modifications decrease this global agree-
ment coefficient, the solution is accepted to avoid to fall in a

local maximum. If the coefficient is decreasing too much, all
the results are reinitialized to the best temporary solution (the
one with the best global agreement coefficient). In this case,
the conflicts that have not been solved are removed to avoid
oscillations of the agreement coefficient. The global process
is iterated until some conflicts can be solved.

c) Unification.: In the final step, all the results tend
to have the same number of clusters, which are increasingly
similar. Thus, we use a voting algorithm [22] to compute a
unified result combining the different results. This multi-view
voting algorithm enables to combine in one unique result,
many different clustering results that have not necessarily the
same number of clusters.

The basic idea is that for each object to cluster, each result
Ri votes for the cluster it has found for this object, Ci

k
for

example, and for the corresponding cluster of Ci
k

in all the
other results. The maximum of these values indicates the best
cluster for the object, for example C j

l
. That means that this

object should be in the cluster C j
l

according to the opinion of
all the methods. After having done the vote for all objects, a
new cluster is created for each best cluster found if a majority
of the methods have voted for this cluster.

B. Clusters labeling

After the collaborative clustering and the unification of the
different results, we obtain a clustering result Ru composed
of nu clusters {Cu

k
}1≤k≤nu .

Let S = {sl }1≤l≤ns be the set of samples available for the
dataset. For each sample sl of S, the known class (label) is
given by cl (sl).

To label the clusters of Ru , we apply a voting method as
follow:

cl (Cuk ) = arg max
k

{
|Cuk ∩ S

k |
}

(10)

where
Sk = {sl ∈ S : cl (sl) = k} (11)

If no sample is available in a cluster, that is

∀k, Cui ∩ S
k = ∅

a new label is given to this cluster. This enables to discover
new patterns in the data.

IV. EXPERIMENTAL RESULTS

In this section, we present different experiments carried out
to illustrate how the method works. In the first experiment,
we used three synthetic datasets (see Fig. 1), each containing
two classes. In Dataset 1, the classes are well separable in the
data space, while in Dataset 2 one of the classes is bimodal
and is composed of two clusters. Finally, in Dataset 3, the two
classes are multimodal and are composed of separated groups
of objects in the data space.

For this experiment we used the KMeans algorithm as
the base method for the collaborative system. We set up
the method with four different initializations of the KMeans



 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2
 0.4

 0.6
 0.8

 1
 0

 0.2
 0.4
 0.6
 0.8

 1

class 0
class 1

(a) Dataset 1 (400 objects)

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2
 0.4

 0.6
 0.8

 1

 0.2

 0.4

 0.6

 0.8

 1

class 0
class 1

(b) Dataset 2 (400 objects)

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2
 0.4

 0.6
 0.8

 1
 0

 0.2
 0.4
 0.6
 0.8

 1

class 0
class 1

(c) Dataset 3 (300 objects)

Fig. 1. The three dataset used for the experiments.

TABLE I
RESULTS ON THE FOUR DATASETS.

dataset Proposed SKMeans CKMeans
Dataset 1 96.75(± 1.43) 97.75(±0.00) 97.96(±0.22)
Dataset 2 98.36(± 0.48) 61.81(±7.21) 62.75(±7.50)
Dataset 3 91.18(±10.81) 55.56(±0.69) 55.57(±0.75)
Dataset 4 97.98(±3.87) 70.3(±5.09) 67.12(±3.64)

algorithm with different numbers of clusters, randomly picked
in [2, 10]. Then, the collaborative process presented in Section
3 is run to find an agreement among these different methods,
which will reflect the structure of the dataset. Finally, the
cluster labeling process (Section III-B) is used to affect a class
to each cluster (if it is possible).

The Tab. I presents the accuracy obtained after the appli-
cation of our clustering method. The values are the average
and standard deviation of 100 runs. For comparison purpose,
we also applied two different semi-supervised clustering al-
gorithms, namely seeded kmeans (SKMeans) and constrained
kmeans (CKMeans) [9]. These two algorithms were set up to
find two clusters as they are set up according to the available
samples. For this experiment, 5% of the dataset was given as
background knowledge, randomly chosen at each run.

One can see on Tab. I that when the dataset is simple
(Dataset 1), the methods are almost equivalent. However,
when the data are more complex and multimodal, classical
semi-supervised algorithm logically failed to discover the
underlying structure of the classes. In these cases (Dataset
2 and 3), the proposed method clearly outperformed the two
others.

The Fig. 2 shows the accuracy according to the percentage
of available samples. As one can see, the proposed method
shows a great stability, the accuracy being stable from 5% to
50% of available samples.

Another experiment has been made, when samples are
available for some classes but not for all. The Fig. 3 presents
the Dataset 4, which is similar to the Dataset 2 with the
addition of one unknown cluster. The challenge here, is to
use the available samples to identify the two classes, but
also to discover the third cluster, corresponding to a hidden
pattern, where no background knowledge is available. The
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Fig. 3. The Dataset 4 (500 objects) which contains one unknown cluster.

results for the Dataset 4 are presented in Tab. I. Here again, the
proposed method outperforms the others to discover interesting
patterns for the user, but also to identify unknown underlying
knowledge.

V. CONCLUSIONS

In this paper, we have presented a new semi-supervised
clustering algorithm. This algorithm is decomposed in two



steps. Firstly a collaborative clustering of the data reveals
the underlying structure of the dataset. Secondly, a clusters
labeling, using a small subset of available samples, affects a
class to each cluster.

The method is able to use samples provided by the user,
which are not necessarily grouped together in the data space.
This kind of knowledge can occurs in mining complex mul-
timodal data. The user is not always aware of the shape of
the data space and can consequently provide sample placed in
various places of the dataset for the same class. Furthermore,
the method is able to use background knowledge provided by
the user, but can keep a degree of freedom to discover hidden
patterns. This feature allows the users to use the knowledge
they have on their data but also to discover relevant unknown
patterns.

In future works, we plan to improve the method through
different modifications. For example, a problem occurs when
no available sample is present in a cluster, consequently this
cluster can not be labeled. This problem can be solved by
setting to these clusters the labels of the nearest labeled cluster
(if all the clusters need to be labeled). Another modification
will consist to label the clusters of each result before the
unification at the end of the collaboration process. A classical
supervised voting method could then be used to affect a class
to each object. This approach should be compare to the one
presented in this paper.

Finally, more experiments will be conducted, especially on
real life problems, as for example object-based remote sensing
image interpretation.
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