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Abstract—In recent years, satellite sensor data have become
easier to acquire. Several different satellite systems are now
available and produce a large amount of data used for Earth
observation. To better grasp the complexity of the Earth surface,
it became usual to use different images from different satellites.
However, it is generally difficult to predict the potential gain of
using multisource satellite sensor data before actually acquiring
the data. In this paper, we present a simulation approach to
create different views of remote sensing sensor data according to
different satellite characteristics. These different views are then
used in a collaborative clustering approach to assess the interest
of using these multisource data together. Experiments provide
some insights on couple of satellite systems able to leverage the
complementary of the sources.

Index Terms—clustering, multisource data, remote sensing
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I. INTRODUCTION

Nowadays, a large amount of different satellites are avail-
able to capture remote sensing images of the Earth surface.
These remotely sensed data are intensively used for Earth
observation and satellite systems are employed for gathering
data in the fields of agriculture and food production, geology,
oil and mineral exploration, geography and urban to non-urban
localities. Each satellite has its own characteristics, the most
important being its spectral resolution. The spectral resolution
of a sensor can be characterized by the number of spectral
bands, their bandwidths and their localizations along the spec-
trum [1]. Several previous studies [1], [2], [3] showed that the
spectral resolution is a critical issue, especially to discriminate
different land covers in complex environment like urban areas.
In spite of the increasing availability of hyperspectral data,
multispectral optical sensors on board of several satellites are
acquiring everyday a massive amount of data with a relatively
poor spectral resolution. Most of multispectral systems have 4
to 7 spectral bands within the visible to middle infrared region
of the electromagnetic spectrum [4]. There exist however some
systems that use one or more thermal infrared bands. One
of the main advantage compared to hyperspectral acquisition,
is the larger spatial coverage, which allows a faster and
wider mapping of large areas. Indeed, satellite remote sensing
systems provide both, a synoptic view space and economies
of scale [4].

As the number of different available satellite systems in-
creases along with the complexity of the data to classify, one of
the big challenge is to assess the complementarity of the sen-
sors for a given application. Indeed, the information provided

by different satellite sensors might be complementary, and a
key issue is to design systems able to use these heterogeneous
information sources in a single process. However, acquiring
these images is still very costly, that is why it could be
interesting to a priori assess the complementary of the sensors.
To address this issue, we used in this paper a sensor simulation
approach. Sensor simulation, also called band simulation or
band synthesis, consists in generating simulated multispectral
spectra from data acquired by existing sensors, with higher
spectral resolution. This simulation consists in combining nar-
row hyperspectral bands into broader multispectral bands. This
kind of approach has already been used, especially for sensor
calibration and sensor simulation. The spectra simulation step
uses the Relative Spectral Response (RSR) functions of the
multispectral sensor, which describes the spectral response
of each simulated sensor’s band. The spectra used for the
simulation were extracted from a spectral library which is
a repository of spectra of various kinds of materials (e.g.
mineral, man-made material, vegetation. . . ) generally captured
in situ using field instruments. We used this library along the
various sensor characteristics to simulate datasets for different
satellites available on the market. In order to mine these
multisource data and to assess the use of multiple sources,
we used a collaborative clustering approach.

Collaborative clustering [5] has been originally used to
make collaborate different clustering methods working on
the same dataset. Consequently, the goal was to use the
information provided by each clustering method to improve the
clustering of a single and common dataset. In this paper, we
address the problem of multiple data sources clustering using
the collaborative clustering paradigm. Indeed, while most data
mining algorithms are conceived for mining a single data
source, collaborative clustering is naturally able to handle
data from multiple sources. Furthermore, each data source
can be handled by a different algorithm specifically chosen to
cluster each specific source. Forestier et al. [6] already used
collaborative clustering to mine multisource remote sensing
data. However, they only used already acquired images. In
this paper, we present a way to simulate sensor’s data without
actually having to acquire the images. This approach allows
us to easily compare more satellite systems and to gain
some insights on which satellite sensor to use for a specific
application.

The rest of the paper is organized as follows. Section
2 presents an overview of collaborative clustering. Section
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3 gives more details on the sensor simulation approach. In
Section 4, the different experiments are presented, and Section
5 concludes the paper.

II. MULTISOURCE COLLABORATIVE CLUSTERING

Given a set of different clustering results, the goal of
collaborative clustering is to find a consensus among these
different results by reducing the disagreements between the
different results of the ensemble. To identify and solve the
conflicts between the clusters of the different results, the
similarity of the clusters from the different results has to be
evaluated. Consequently, we have to design a local similarity
measure capable to compare two clusters from two different
results. This measure will then be used to identify the couples
of clusters (of two different results) having a poor similarity
(i.e. sharing a poor overlap of data objects). These couples will
define the conflicts to solve to increase the similarity between
the results.

Moreover, we also have to estimate the global similarity of
all the clusterings involved in the collaboration to be able to
assess the global usefulness of a local modification. Indeed, a
conflict is identified between a couple of results whereas more
than two methods can be involved in collaboration process.
Consequently, modification at the local level (i.e. between a
couple of results) has to be assessed at a global level (i.e.
all the results involved in the collaboration). The goal of
collaborative clustering is to maximize this global similarity
which is an indicator of the agreement among the set of results.

A. Local clusterings comparison

A large number of criteria exist to evaluate the similarity be-
tween two clustering results. However, these criteria only give
a global evaluation of the similarity between two partitions.
As we want to identify exactly which clusters are involved in
the conflict, we need to compare each cluster of one result
with all the clusters of the other results. In order to compare
a couple of results, we use the confusion matrix or matching
matrix (1).

Let R̆ = 〈Ri〉i=1...m be the set of m results and 〈Ci
k
〉k=1...ni

be the ni clusters of Ri . This set is composed of clustering
results created with different algorithms or the same algorithm
with different parameters.

The matching matrix Mi, j between two results Ri and R j

is a ni × n j matrix defined by:
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To compute the local similarity between two results, the
adequacies of each couple of clusters of the two results are
averaged. The similarities have to be computed in each of the
two ways, as the matching matrices are not usually symmetric
(ωi, j

k
, ω

j,i
k

).
However, if we try to only maximize the local similarity

of the results, we could easily end up with a trivial (and
not wanted) solution like a unique cluster with all the data
objects inside it. To cope with this problem, we introduce an
evaluation of the quality of the two clusterings in the local
similarity measure as follows:

γi, j =
1
2

*.......
,

*
,

1
ni

ni∑
k=1

ω
i, j
k
+

1
n j

n j∑
k=1

ω
j,i
k

+
-︸                            ︷︷                            ︸

similarity

+
(
δi + δ j

)︸     ︷︷     ︸
quality

+///////
-

(4)

where δi is a measure of the quality of a result Ri . This
measure depends on the algorithm used in the process. Any
partition validity index can be used here, like compacity,
Silhouette [7] or Davies Bouldin [8]. Furthermore, if the user
has some knowledge about the number of expected clusters,
a penalty measure can be introduced. If more background
knowledge is available like labeled objects or constraints, this
measure can also leverage this information.

B. Global clusterings comparison

The local similarity (4) evaluates the similarity and the
quality of a couple of results. Though, more than two methods
can be involved in the collaboration process. The global
similarity evaluates the similarity of each couple of results
involved in the collaboration and gives a global assessment of
the results similarities:

Γ =
1
m

m∑
i=1
Γ
i (5)

where

Γ
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C. Conflict definition and assessment

There is a conflict between two clustering results Ri and R j

about the cluster Ck
i of Ri , if there is no cluster in R j similar

to Ci
k
. Each conflict K i, j

k
is therefore identified by one cluster
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and one result R j . Its importance CI
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The list of conflicts K̆ containing all the conflicts of a set
of results R̆ is defined by:



K̆ = conflicts(R̆) (8)

where the method conflicts computes the conflicts of
the set of results R̆. Each conflict has an importance (7) and
involves a couple of results.

D. Conflict resolution

The approach to solve the conflicts in collaborative cluster-
ing works in an iterative way. At each iteration, one conflict
is selected and its resolution is computed. The resolution of
a conflict uses one of the three operators: split, merge and
recluster. These operators are used to modify the results. The
implementation of these operators depends on the clustering
algorithm used. The process iterates, and one conflict is solved
at each step if this conflict improves the local agreement (4).
If the resolution of this conflict is not relevant, this conflict
is removed from the conflict list. When the list of conflicts
is empty, the process stops. At the end of the collaboration,
the different results are expected to be highly similar. If the
user needs a single result, the different similar results can be
unified using a voting algorithm or by selecting one result.

III. SENSOR SIMULATION

A. Sensor simulation applications

Sensor simulation, also called band simulation or band syn-
thesis, consists in generating simulated multispectral spectra
from data acquired by existing sensors, with higher spec-
tral resolution. This simulation consists in combining narrow
hyperspectral bands into broader multispectral bands. This
kind of approach has already been used, especially for sensor
calibration and sensor simulation. The spectra simulation step
uses the Relative Spectral Response (RSR) functions of the
multispectral sensor, which describes the spectral response
of each simulated sensor’s band. The Figure 1 presents the
RSR function of three satellite sensors: Quickbird, SPOT5 and
Landsat.

Sensor simulation has already been used for different appli-
cation. For example, Salvatore et al.[9] used band simulation to
simulate the response of a new sensor from AVIRIS data. This
simulation allowed the investigators to evaluate in advance
the potentialities of the new multispectral sensor. This kind
of simulation provides an opportunity to try variations in the
original spectral response, and to adjust the RSR to achieve
better results for the multispectral sensor objectives. Herold
et al.[1] studied spectral resolution requirements for mapping
urban areas. They used AVIRIS data and an urban spectral
library to study the most suitable spectral bands in separating
urban land cover types. The AVIRIS data were also used to
simulate Landsat TM and Ikonos data. The results showed that
Ikonos and Landsat TM lack of spectral details to efficiently
map several urban classes.

B. Sensor simulation method

To simulate multispectral data from hyperspectral data, the
responses of narrow hyperspectral bands have to be aggre-
gated. However, the reflectance values of the hyperspectral

narrow bands cannot be summed directly to reproduce mul-
tispectral bands. Indeed, they must be weighted to account
for the relative response of the multispectral bands. The
RSR of each band of a sensor system is characterized by
the effective spectral quantum efficiency, which indicates the
spectral sensitivity of the band at each wavelength [10]. Each
sensor has consequently a different spectral sensitivity, which
is described by its individual RSR functions.

As stated by Clark et al.[11], different strategies have
been proposed to compute the weights to apply to each
hyperspectral band. For the simulation used in this paper, each
hyperspectral center wavelength was linked with the mean
RSR value (in the range of the full width half maximum
(FWHM) of the hyperspectral spectral band) of the simulated
band. This approach is similar to the one proposed by Franke
et al.[10] and is described in details in [12].

One should notice that in this study some external pa-
rameters are not simulated. For example, some other simu-
lation approaches [13] take into account other variables like
atmospheric effects or geometric differences between sensors.
In this study, we are interested on the sensor discrimination
ability according to their RSR, that is why we only focused
on spectral differences caused by different RSR functions.
However other aspects like the spatial resolution should also
be investigated and simulated to truly assess the difference be-
tween sensors. However, focusing only on spectral resolution
already provides some insight on each sensor capability. The
six different sensors were used in this study: Spot5, Quickbird,
Pleiades, Landsat TM, Ikonos and Formosat.

IV. EXPERIMENT

A. Spectral libraries

Spectral libraries are repositories of spectra of various kinds
of materials (e.g. mineral, man-made material, vegetation. . . )
generally captured in situ using field instruments.

Different spectral libraries are freely available. In this study
we used the ASTER[14] library which includes contributions
from the Jet Propulsion Laboratory (JPL), Johns Hopkins
University (JHU) and the United States Geological Survey
(USGS). This library contains spectra of rocks, minerals,
lunar soils, terrestrial soils, man-made materials, meteorites,
vegetation, snow and ice covering the visible through thermal
infrared wavelength region (0.4-15.4 µm). The first version
was released in July 1998 and the second one is available
since 2007 on simple request through the ASTER website1.
To the best of our knowledge the ASTER library is the most
comprehensive and freely available library.

The spectra of this library were convolved with the RSR of
each sensor to create different views of the library. Indeed, the
simulation process allows us to simulate the sensor view of
each library’s spectra. Consequently, we have for each spectra
of the library its view according to the characteristics of the
sensor. This is illustrated with the Figure 3 which presents a
full spectrum extracted from the ASTER library, and Figure 2

1http://speclib.jpl.nasa.gov

http://speclib.jpl.nasa.gov
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Fig. 1. Example of three Relative Spectral Response (RSR).

which presents the simulated spectra for each sensor used in
this study. The aim is to use these different views of the same
data in order to evaluate the benefit of using various satellite
information simultaneously.

B. Evaluation

To evaluate the benefit of using different views of the data,
we carried out a series of experiments which consisted in
evaluating the interest of the collaboration between couple of
satellite systems. Indeed, as remote sensing image acquisition
is still expensive, users cannot generally afford to buy more
than two images of the same area. Consequently, evaluating
the interest of the collaboration of a couple of satellite systems
is of particular interest.

We used the collaborative clustering approach to study if the
collaboration between two satellite systems was interesting.
For each couple of satellite systems, the collaborative cluster-
ing method was used with two clustering methods working on
the two different views of the data. In order to evaluate if the
use of different data views was interesting instead of using

only one view, we also calculated the accuracy for different
other configurations. Let D1 be the data view of the first
satellite and D2 the data view of the second one. The evaluated
configurations are:

• D1 : evaluation of the use of only the first satellite view
• D2 : evaluation of the use of only the second satellite

view
• D1 + D2 : evaluation of the collaboration between the

two views by merging the description of the objects from
D1 and from D2. Each object is then described by the
attributes from D1 and D2

• D1 � D1 : collaboration using two times the view of D1
(two methods using the dataset D1 as input)

• D2 � D2 : collaboration using two times the view of D2
(two methods using the dataset D2 as input)

• D1 � D2 : collaboration using two methods using the
two views of the data D1 and D2

In each of the experiment, we used the KMeans algorithm as
base clustering method. For the configuration involving only
one dataset (i.e. the first three), the KMeans algorithm was
initialized to find a number of cluster equals to the number of
classes of the dataset. For the collaboration configuration (the
remaining three), each of the KMeans method was initialized
randomly with a number of clusters chosen in [5; 10]. This
choice was made to insure a certain diversity of the two results
which is mandatory to obtain an interesting collaboration
between the two methods. The clustering results obtained with
and without collaboration were evaluated thanks to two well
known partition evaluation indexes: the Jaccard (J) index and
the Folks-Mallows (FM) index.

Table I presents the results for each configuration (15 pairs
of satellite systems). The values in the table are means and
standard deviations on 100 runs of each experiment. Note that
for the collaboration involving two times the same dataset we
only present the results of one of the method as the results at
the end of the collaboration were identical. The two columns
(D1/D1 � D2) and (D2/D1 � D2) are the results for each
method at the end of the collaboration involving the two
different views (D1 and D2). The last column indicates if the
collaboration was beneficial or not (i.e. if the results were
better when using the two views). The • sign indicates that
the collaboration was beneficial, and the sign ◦ that it was not.

The use of the two views in the collaboration was beneficial
nine times out of fifteen for the ASTER dataset. The sensor
which seems to better leverage from the collaboration is
SPOT5 as its results improved for four different collaborations
with Pleiades, Landsat, Formosat and Quickbird. The use
of data provided by very similar sensors like Pleiades and
Quickbird, which have very close RSR, does not seems to
be interesting. However, the use of very different sensors
like Ikonos and Landsat seems to be beneficial. These results
support the idea that it is more interesting to combine very
different sensors which can consequently provide different
and complementary information. The collaboration using very
similar sensors is not relevant as the information are not
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Fig. 2. Example of simulated spectra of a spectrum extracted from the ASTER library.

 0

 10

 20

 30

 40

 50

 60

 70

 0  2  4  6  8  10  12  14

re
fle

ct
an

ce

wavelength

manmade asphalt

Fig. 3. Example of a full spectrum of a man-made asphalt extracted from
the ASTER library.

complementary and rather correlated.

V. CONCLUSION

In recent years, the availability of satellite data greatly
increased. Consequently, a large amount of potential data is
now available. The users often use multiple data sources of the
same area to better grasp the complexity of the Earth surface.
However, as the acquisition of images is still expensive, it is of
particular interest to possess simulation tools able to evaluate
the interest of using multiple sources of data. In this paper
we presented such a tool through collaborative clustering. We
presented how the different views of the data can be simulated
using spectral library and sensor characteristics (RSR). Six dif-
ferent satellites were simulated, and the collaboration between
each couple of satellites was evaluated. We identified several
configurations where the collaboration between multisource
data was worthy.

However, the simulation approach presented in this paper
does not take into account several parameters like the spatial
resolution of the sensor (i.e. the size of one pixel) and the
atmospheric effects. Further studies have to be carried out to

better assess the differences between each sensor. However, the
study presented in this paper already provides some insights
and can be used as a starting point for further studies.
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TABLE I
EVALUATION OF THE COLLABORATION OF PAIRS OF SATELLITE SYSTEMS.

D1 D2 D1 + D2 D1 � D1 D2 � D2 D1/D1 � D2 D2/D1 � D2
D1=pleiades J 0.283 (0.002) 0.283 (0.003) 0.281 (0.001) 0.272 (0.056) 0.295 (0.042) 0.291 (0.094) 0.292 (0.093) ◦

D2=formosat FM 0.447 (0.002) 0.445 (0.003) 0.444 (0.002) 0.438 (0.059) 0.464 (0.043) 0.460 (0.099) 0.461 (0.098) ◦

D1=pleiades J 0.282 (0.001) 0.283 (0.001) 0.283 (0.001) 0.214 (0.083) 0.183 (0.018) 0.465 (0.099) 0.465 (0.098) •

D2=spot5 FM 0.446 (0.002) 0.448 (0.001) 0.448 (0.001) 0.387 (0.079) 0.365 (0.023) 0.653 (0.111) 0.654 (0.109) •

D1=pleiades J 0.285 (0.004) 0.285 (0.002) 0.283 (0.005) 0.211 (0.033) 0.262 (0.065) 0.311 (0.073) 0.311 (0.077) •

D2=ikonos FM 0.449 (0.004) 0.447 (0.002) 0.445 (0.005) 0.390 (0.030) 0.426 (0.064) 0.484 (0.071) 0.483 (0.076) •

D1=pleiades J 0.284 (0.001) 0.288 (0.001) 0.287 (0.002) 0.258 (0.044) 0.263 (0.060) 0.408 (0.074) 0.406 (0.073) •

D2=landsat FM 0.449 (0.002) 0.454 (0.001) 0.452 (0.002) 0.432 (0.037) 0.445 (0.056) 0.586 (0.085) 0.584 (0.084) •

D1=pleiades J 0.285 (0.002) 0.283 (0.001) 0.284 (0.005) 0.272 (0.085) 0.239 (0.068) 0.236 (0.054) 0.234 (0.055) ◦

D2=quickbird FM 0.450 (0.002) 0.445 (0.001) 0.446 (0.005) 0.446 (0.082) 0.407 (0.065) 0.397 (0.054) 0.394 (0.056) ◦

D1=formosat J 0.283 (0.003) 0.286 (0.001) 0.282 (0.002) 0.226 (0.042) 0.208 (0.058) 0.359 (0.015) 0.357 (0.013) •

D2=spot5 FM 0.446 (0.003) 0.451 (0.001) 0.446 (0.002) 0.391 (0.044) 0.386 (0.056) 0.531 (0.018) 0.528 (0.016) •

D1=formosat J 0.283 (0.003) 0.283 (0.001) 0.284 (0.000) 0.211 (0.073) 0.224 (0.066) 0.252 (0.048) 0.253 (0.048) ◦

D2=ikonos FM 0.445 (0.002) 0.445 (0.001) 0.446 (0.000) 0.379 (0.073) 0.397 (0.060) 0.419 (0.047) 0.420 (0.047) ◦

D1=formosat J 0.281 (0.001) 0.287 (0.001) 0.287 (0.002) 0.298 (0.027) 0.258 (0.032) 0.399 (0.035) 0.391 (0.043) •

D2=landsat FM 0.443 (0.001) 0.453 (0.002) 0.452 (0.003) 0.465 (0.029) 0.443 (0.033) 0.577 (0.041) 0.568 (0.050) •

D1=formosat J 0.283 (0.004) 0.285 (0.003) 0.285 (0.002) 0.215 (0.062) 0.259 (0.064) 0.223 (0.057) 0.226 (0.057) ◦

D2=quickbird FM 0.445 (0.004) 0.448 (0.003) 0.447 (0.002) 0.387 (0.062) 0.420 (0.066) 0.388 (0.061) 0.392 (0.061) ◦

D1=spot5 J 0.285 (0.001) 0.286 (0.004) 0.282 (0.002) 0.250 (0.044) 0.204 (0.052) 0.422 (0.092) 0.421 (0.093) •

D2=ikonos FM 0.450 (0.001) 0.448 (0.004) 0.446 (0.002) 0.426 (0.045) 0.368 (0.056) 0.603 (0.106) 0.601 (0.107) •

D1=spot5 J 0.285 (0.001) 0.288 (0.002) 0.288 (0.001) 0.217 (0.054) 0.246 (0.023) 0.281 (0.093) 0.279 (0.095) ◦

D2=landsat FM 0.450 (0.002) 0.453 (0.002) 0.453 (0.002) 0.392 (0.055) 0.429 (0.020) 0.455 (0.091) 0.451 (0.094) ◦

D1=spot5 J 0.285 (0.001) 0.287 (0.004) 0.280 (0.001) 0.285 (0.041) 0.192 (0.047) 0.365 (0.042) 0.367 (0.045) •

D2=quickbird FM 0.450 (0.002) 0.449 (0.004) 0.444 (0.002) 0.453 (0.039) 0.360 (0.048) 0.539 (0.047) 0.542 (0.050) •

D1=ikonos J 0.284 (0.003) 0.288 (0.001) 0.288 (0.001) 0.273 (0.068) 0.207 (0.045) 0.366 (0.039) 0.363 (0.043) •

D2=landsat FM 0.446 (0.003) 0.453 (0.002) 0.453 (0.002) 0.444 (0.064) 0.394 (0.049) 0.539 (0.046) 0.535 (0.050) •

D1=ikonos J 0.286 (0.004) 0.284 (0.003) 0.283 (0.001) 0.205 (0.058) 0.196 (0.036) 0.227 (0.081) 0.230 (0.084) ◦

D2=quickbird FM 0.448 (0.004) 0.446 (0.003) 0.445 (0.001) 0.366 (0.059) 0.358 (0.036) 0.396 (0.080) 0.400 (0.084) ◦

D1=landsat J 0.289 (0.001) 0.284 (0.001) 0.287 (0.002) 0.271 (0.040) 0.252 (0.037) 0.398 (0.080) 0.399 (0.078) •

D2=quickbird FM 0.455 (0.001) 0.446 (0.002) 0.452 (0.003) 0.459 (0.042) 0.422 (0.033) 0.575 (0.093) 0.576 (0.090) •

[13] K. T., “Simulating landsat etm+ imagery using dais 7915 hyperspectral
scanner data,” International journal of remote sensing, vol. 25, no. 22,
pp. 5049–5067, 2004.

[14] A. M. Baldridge, S. J. Hook, C. I. Grove, and R. g., “The aster spectral
library version 2.0,” Remote Sensing of Environment, 2008.
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