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ABSTRACT

Clustering is an essential tool for data analysis and visual-
ization. It is particularly useful in case of a lack of labels,
which prevent the use of supervised methods. The analysis
of satellite images is particularly prone to this problem, es-
pecially when studied as time series, because the access to
this type of data is still recent. Among all clustering methods,
the ones based on Deep Neural Networks (DNNs) have seen
an increasing interest lately, but only a few works have been
conducted on time series yet. This paper aims to give more
insight on how current clustering methods based on DNNs
can be applied to Satellite Images Time Series (SITS) and it
shows that with a proper configuration they can perform bet-
ter compared to classical non-deep methods.

Index Terms— Image time-series, Clustering, Deep
learning, remote sensing

1. INTRODUCTION

The lack of data is not a major problem anymore when study-
ing Satellite Images Time Series (SITS). Indeed, the intro-
duction of a new satellite constellation can now provide reg-
ular and readily available earth observations. These satel-
lites provide useful data that can be used in many applica-
tions, from the management of natural disasters or urban plan-
ning. However, labeling these time series remains a diffi-
cult and time-consuming task that often prevents the use of
supervised methods. In this context, clustering methods of-
fer a useful tool to assist the user during the data analysis.
Nonetheless, most of these clustering methods rely on a norm-
based distance function that implies a fixed mapping between
points in two time-series and are therefore a sensitivity to
noise and misalignment in time [1]. Multiple approaches have
been proposed in the literature to answer this problem and are
mostly based either on a specific metric, such as Dynamic
Time Warping (DTW) [2], or the application of data trans-
formations to reduce or remove the time dimension, such as
Symbolic Aggregate ApproXimation (SAX) [3].
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Deep Clustering methods can be classified among the
transformation group as they consist in learning a data repre-
sentation. These methods have attracted increasing attention
in the past few years, mostly in the image processing domain.
Recently, some works have been conducted to adapt and
evaluate these methods for time series analysis [4, 5]. The
obtained results show a high potential to improve the state
of the art, but with mixed results partially depending on the
analyzed dataset.

In this paper, we study a set of deep clustering approaches
on two SITS datasets to evaluate what types of configuration
are more fitted to this kind of data, and if they are relevant
when compared to non-deep classical approaches.

2. BACKGROUND

2.1. Deep Learning and clustering

Most clustering methods that involve Deep Neural Networks
(DNNs) consist in training a network to learn a representation
that will then be fed to a classical clustering algorithm, usu-
ally the K-Means algorithm. Hence, given a dataset X , the
deep clustering task can be viewed as partitioning the set Z
obtained with the non-linear mapping function fΘ : X −→ Z,
where fΘ is a DNN called an encoder, and Θ are its learn-
able parameters. Z is often called the latent space, or latent
representation of X . Therefore, we aim to find a proper way
to obtain a function fΘ that generates a relevant and easy to
partition representation. To do so, multiple elements have to
be taken into account.

2.2. DNNs decomposition

In [4], the authors proposed to decompose the DNNs into
three elements:

Encoder architecture: the term architecture refers, in
this article, to the set of layers and their hyperparameters. We
can find four major families of layers applied to time series in
the literature: Fully connected layers, Convolutional layers,
Recurrent layers, and Attention layers.

Pretext loss: this loss is used to train the encoder to ex-
tract relevant features from the initial data. In an unsupervised
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setting, we cannot use labels to directly train the DNN for
class prediction. Therefore, we need to find a pretext/proxy
task, assuming that the features learned by the encoder to
solve this task will also be useful for the clustering task. Mul-
tiple pretext losses exist in the literature, such as the recon-
struction loss for autoencoders [6] or its variation for the de-
noising autoencoders, or the triplet loss proposed for times
series in [7].

Clustering loss: this loss is used to train the encoder to
project the data into a latent space that is easier to partition.
As the pretext loss is not designed for classification, the re-
sulting projection may be either too sparse or with intricate
clusters. This loss usually comes in complement to a pretext
loss. It is used after the pretext loss either by replacing it or
in parallel. These losses mainly focus on creating more dense
clusters in the latent space [8].

3. EXPERIMENTS

3.1. Evaluated methods

There is a very large number deep clustering methods in the
literature. Hence, we cannot evaluate all of them. Conse-
quently, the choice was made to only evaluate the methods
presented in the study from [4] as they cover a large spectrum
of methods. These methods are constructed as a set of com-
binations among different architectures, pretext losses, and
clustering losses. But, in this paper, as the number of methods
remains high, we only displayed the most performing combi-
nations selected by average rank over the datasets.

A total of 226 combinations have been evaluated. The
combinations involve:

8 architectures : a multilayer perceptron (MLP) - three
bidirectional Recurrent Neural Networks (RNN), one with
LSTM units (BLSTM), one with GRU units (BGRU) and one
with vanilla RNN units (BRNN) - an encoder based on dilated
RNN, an encoder based on dilated Convolutional Neural Net-
works (CNN) (DCNN) - a CNN with only standard CNN
layers followed by a Average Pooling layer (SCNN) - a CNN
with three residual blocks (RCNN).

8 pretext losses : the classical reconstruction loss (rec)
- the ELBO loss for Variational AutoEncoders (vae) - the
triplet loss [7] with K equals to 1,2,5, 10 and combined
(tripletKxxx)- a joint reconstruction loss [9] (multi rec).

5 clustering losses : the loss from Deep Embedded Clus-
tering method [8] (DEC) - the loss from Improved DEC
method [10] - the loss from Deep Embedded Regularized
Clustering [9] (DEPICT) - an adaptation of VAE for clus-
tering called Variational Deep Embedding [11] (VADE) - an
adaptation of Generative Adversarial Networks for clustering
called ClusterGAN [12] - no use of clustering loss (None).

Each combination is named as follow : <architecure>-
<pretext loss>-<clustering loss>. A more in-depth and de-
tailed review is available in [4]. For the deep clustering meth-

ods, we used the code provided by the authors of [4].
We also used for comparison three non-deep methods

based on the K-Means algorithm. The first one is the classi-
cal version based on Euclidean distance and arithmetic mean.
The second one is using DTW to compute the dissimilarity
and DBA (DTW Barycenter Averaging) [13] for the mean.
The last one is the KShape method [14].

3.2. Data and evaluation procedure

Analysis land cover dynamics, and more particularly agricul-
ture monitoring, is a major topic that has seen a lot of appli-
cations involving temporal data [15, 16]. For this experiment,
we have selected two datasets.

The first one consists of four crop classes, traditional or-
chards, intensive orchards, standard meadows, and wet mead-
ows located around Strasbourg (North-East France). The data
is composed of 39 Sentinel-2 multispectral images on four
bands (Red, Green, Blue, NIR) captured between 2017 and
2018 where at most 50% of annotated data are covered by
clouds (the cloudy time steps are filled by linear interpola-
tion). Some examples of the different classes are presented
in Fig. 1. The reference data comes from expert annotations
labeled by visual interpretation1. This dataset is actually di-
vided into three sub-datasets, one per task. One task is to
discriminate between the two orchards classes (24937 time
series for the test set and 22064 for train). Another is to dis-
criminate between the two meadows classes (241293 for test
and 23445 for train). The last one is to discriminate between
orchards and meadows (combination of the two others).

The second one consists of 12 crop classes located near
Toulouse (Southwest France). The data is composed of 11
Formosat-2 multispectral images on three bands (Red, Green,
NIR) without clouds captured in 2007 2. Some examples of
two crop classes are presented in Fig. 2. The reference data is
extracted from the farmer’s declaration to the EEA’s Common
Agricultural Policy. A total of 1974 time series compose the
test set and 9869 for the train.

For both datasets, the train/test split is based on poly-
gons (time series from the same polygon are only in one set)
but evaluated on pixel time series cluster assignment. The
train set is used to learn the DNNs models’ parameters. Both
datasets are z-normalized as a pre-processing. Performance
is measured by the average Normalized Mutual Information
(NMI) on five repetitions.

4. RESULTS

The results for each dataset are presented in Table 1. For
the deep clustering combinations, we have only displayed the

1Provided by the LIVE, Unité Mixte de Recherche CNRS-Unistra, Stras-
bourg, France, available at https://www.kaggle.com/baptistel/
meadows-vs-orchards

2Provided by the Centre d’Études Spatiales de la Biosphère (CESBIO)
Unité Mixte de Recherche CNES-CNRS-IRD-UPS, Toulouse, France.
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(a) Intensive orchard (b) Traditional orchard

(c) Standard meadow (d) Wet meadow

Fig. 1. Image crops from the Orchard/Meadow dataset from 08/05/2018, 02/07/2018, and 16/08/2018

(a) Irrigated corn (b) Wheat

Fig. 2. Image crops from the Crops dataset from 01/07/2007, 11/08/2007, and 15/09/2007

top 5 combinations based on their average rank on the four
datasets’ train sets but full results are available online 3. This
five deep clustering methods obtain a higher average rank than
the three non-deep methods. One could notice that the three
first datasets on orchards and meadows can’t be considered as
independent. However, on one hand, the combination DCNN-
rec-DEPICT obtains higher results on all datasets than all
non-deep methods and manage to obtain a more separable
data space as illustrated by the UMAP [17] visualization in
Fig. 3. On the other hand, the other combinations result in
more mitigated performances. Moreover, most combinations
lead to worst performances than the Euclidean K-Means al-
gorithm. This highlights the difficulty of choosing the most
fitted hyperparameters for these methods as we don’t have any
labels to help select them for each dataset.

The results partially validate the first observations made
in [4]. Indeed, they showed that both CNN-based architec-
tures and reconstruction-based pretext losses gave better than
other approaches. However, on the clustering loss, it was
shown that not using one gives better results. In our study,
the clustering losses from the clustering method DEPICT and
IDEC improve slightly the performances for the combination
DCNN-rec, but on average on all combinations, it actually de-
grades slightly the performances. For example, the combina-

3https://github.com/blafabregue/
TimeSeriesDeepClustering/blob/main/paper_results/
igarss2022_results.csv

(a) Raw data (b) DCNN-rec-DEPICT

Fig. 3. Visualization with UMAP method of the dataset Or-
chards with the raw data and the latent space computed by
the combination DCNN-rec-DEPICT. Blue is for traditional
orchards and red for intensive orchards.

tion SCNN-rec obtains better performances without any clus-
tering loss (None) while obtaining the best results on both dis-
criminating between meadows classes and between orchards
and meadows.

5. CONCLUSION

Our study shows that Deep clustering methods, when well
parameterized can outperform classical non-deep methods on
satellite images time series. Even though these methods show
a lot of potentials, we also show that the choice of config-
uration and hyperparameters can have a strong influence on

https://github.com/blafabregue/TimeSeriesDeepClustering/blob/main/paper_results/igarss2022_results.csv
https://github.com/blafabregue/TimeSeriesDeepClustering/blob/main/paper_results/igarss2022_results.csv
https://github.com/blafabregue/TimeSeriesDeepClustering/blob/main/paper_results/igarss2022_results.csv


Table 1. ARI average results for the top 5 deep combination (by rank on train set) and non-deep methods. The best performance
for each dataset is highlighted in bold. The average rank is one over all 229 methods (226 deep combinations + 3 non-deep
methods) evaluated.
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Orchards vs Meadows 0.155 0.136 0.155 0.108 0.193 0.109 0.057 0.062
Meadows 0.127 0.128 0.152 0.158 0.200 0.113 0.030 0.000
Orchards 0.636 0.668 0.639 0.609 0.564 0.622 0.278 0.029
Crops 0.507 0.752 0.497 0.683 0.490 0.557 0.429 0.531

Average rank 17.75 11.5 16 19 17.25 23 74.75 87.5

the performance of the method. Therefore, a further study
should be conducted to investigate the potential correlation
between some specific parameters and the datasets’ charac-
teristics on the quality of the learned representation for the
clustering task.

6. REFERENCES

[1] E. Keogh and S. Kasetty, “On the need for time se-
ries data mining benchmarks: a survey and empirical
demonstration,” Data Min. Know. Disc., vol. 7, no. 4,
pp. 349–371, 2003.

[2] H. Sakoe and S. Chiba, “A dynamic programming ap-
proach to continuous speech recognition,” in Interna-
tional Congress on Acoustics, 1971, pp. 65–69.

[3] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experienc-
ing sax: a novel symbolic representation of time series,”
Data Min. Know. Disc., vol. 15, pp. 107–144, 2007.

[4] B. Lafabregue, J. Weber, P. Gançarski, and G. Forestier,
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