
A study of Knowledge Distillation in Fully
Convolutional Network for Time Series

Classification
Emel Ay, Maxime Devanne, Jonathan Weber, and Germain Forestier

IRIMAS
Universit de Haute-Alsace, Mulhouse, France

firstname.lastname@uha.fr

Abstract—In recent years, deep learning revolutionized the
field of machine learning. While many applications of deep
learning are observed in computer vision, other domains like
natural language processing (NLP) or speech recognition also
benefited from advances in deep learning research. More re-
cently, the field of time series analysis and more especially
time series classification (TSC) also witnessed the emergence
of deep neural networks providing competitive results. Through
the years, the proposed network architectures became deeper
and deeper pushing the performance higher. While these very
deep models achieve impressive accuracy, their training and
deployment became challenging. Indeed, a large number of
GPUs is often required to train state-of-the-art networks and
obtain high performances. While the requirements needed for
the training step can be acceptable, deploying very deep neural
networks can be difficult especially in embedded systems (e.g.
robots) or devices with limited resources (e.g. web browsers,
smartphones). In this context, knowledge distillation is a machine
learning task consisting in transferring knowledge from a large
model to a smaller one with fewer parameters. The goal is to
create a lighter model mimicking the predictions of a larger one
in order to obtain similar performances with a fraction of the
computational cost. In this paper, we introduce and explore the
concept of knowledge distillation for the specific task of TSC.
We also present a first experimental study showing promising
results on several datasets of the UCR time series archive. As
current state-of-the-art models for TSC are deep and sometimes
ensemble of models, we believe that knowledge distillation could
become an important research area in the coming years.

Index Terms—Times Series Classification, Knowledge Distilla-
tion, Fully Convolutional Network

I. INTRODUCTION

The creation of increasingly deep neural networks (DNNs)
now makes it possible to perform tasks that were still unthink-
able a few years ago. High performance has been achieved in
various areas such as computer vision tasks [1] and natural
language processing [2]. The great success of DNNs in such
domains can in part be explained by the huge amount of avail-
able data to train complex models. Following the trend, the last
few years have also seen an explosion in the amount of time
series data of various modalities such as electrocardiogram [3],
power consumption [4], human motion [5] and satellite im-
ages [6] among others. Due to its wide range of applications,
time series analysis has attracted researchers who developed
deep learning-based models for time series clustering [7],
averaging [8], forecasting [9] and classification [10]. In this

paper, we focus on the task of time series classification (TSC)
for which a recent study has shown that DNNs based on 1D
temporal convolutions are achieving great performances [10].

Similarly to other fields, the network architectures have
gotten deeper and deeper over the years for TSC, always
pushing performance up. However, it is difficult to deploy
these large deep models into devices with limited resources,
such as mobile phones and integrated devices, not only due
to the high complexity of the calculations, but also the large
storage requirements. Thus, to achieve faster speeds while
maintaining good performance, recent work in computer vision
focuses on knowledge distillation techniques. The distilla-
tion process begins with separately training a bulky model
(teacher), followed by learning a smaller model (student) that
seeks to mimic the teacher’s predictions and / or its feature
representations. This strategy has first been developed in [11]
and later extended by Hinton et al. [12] and Romero et al. [13]
for image classification. Findings in these papers convincingly
demonstrate that a shallower model can achieve competitive
or even superior performance in comparison to a very deep
model.

With the advent of newer and deeper neural networks
architectures, the efficiency of knowledge distillation has been
validated not only in computer vision but also in document
retrieval [14] or speech recognition [15]. Surprisingly, out of
our knowledge, no study considering knowledge distillation
has been undertaken in the area of TSC. Hence, in this work,
we propose to investigate the use of knowledge distillation
for the task of TSC. Our aim is to analyze the impact
of some hyper-parameters on the performances of smaller
student models leveraging the knowledge of deeper pre-trained
teacher models. The use of knowledge distillation for TSC
is evaluated on the UCR Archive 2018 [16]. Experiments
show that knowledge distillation can be very beneficial for
intermediate deep student models.

II. RELATED WORK

A. Knowledge Distillation

In parallel with the race for performance of DNNs devel-
oping deeper and deeper neural networks, Hinton et al. [12]
proposed to investigate a different idea on building shallower
models mimicking behavior of more complex neural networks.
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Authors evaluated this process called knowledge distillation
for image classification where a student model is trained to
output soft probabilities similar to a pre-trained ensemble of
teacher models. Results demonstrated that by leveraging the
teacher ensemble’s knowledge, a single student can obtain
very competitive results. An extended approach has then been
proposed in [13] by not only considering the outputs but
also intermediate feature maps as hints for improving the
student performance. Moreover, intermediate features have
also been considered in [17]. Additional extensions of the
original approach have been proposed like in [18] where metric
learning is introduced through a triplet loss. Differently, in [19]
a teacher assistant is proposed as an intermediate model to
fill the gap between a very deep teacher and a shallower
student. While knowledge has mainly been used in computer
vision [20], its promising results also motivated research
to employ it in various fields like document analysis [14],
speech processing [15] and natural language processing [21].
For time series analysis, only a few works investigated the
use of knowledge distillation for regression tasks [22] and
forecasting [23]. In this work we propose to study the use
of knowledge distillation for the classification of time series.

B. Time Series Classification

Time series analysis and in particular TSC has attracted
many researchers in the last decade. The use of the nearest
neighbor (NN) classifier coupled to a distance function has
been the subject of numerous studies. In particular, Dynamic
Time Warping (DTW) distance [24] showed excellent per-
formances compared to other distance measures. Moreover,
instead of using a single model for classifying time series, the
combination of several models was also considered and led to
very satisfactory results. For instance, a set of decision trees,
i.e. a random forest, was employed in [25], while the ensemble
of different classifiers, i.e. Hive Cote 2.0 proposed in [26], be-
came the state-of-the-art when evaluated on the UCR archive.
However, these models have the huge disadvantage of being
too large and are associated with a high computational time-
consuming training process.

In parallel, with the rapid development of deep learning,
TSC did not make the exception. A first approach consid-
ering Convolutional Neural Network (CNN) in a multi-scale
paradigm was proposed in [27]. Moreover, a Fully Convolu-
tional Network (FCN) demonstrated very good results in [28].
These architectures have been later compared with other deep
learning-based approaches in a review paper proposed by
Ismail Fawaz et al. [10]. Comparative results demonstrated that
the Residual Network (ResNet) obtained the best performances
on the UCR archive. A more recent approach adapting the
famous Inception architecture for TSC, namely Inception-
Time [29], demonstrated that considering various sizes of
convolutional filters results in better classification accuracies.
Finally, inspired by the success of convolutional filters for TSC
and to overcome the huge training time of deep learning-based
approaches, a large amount of random convolutions kernels
was employed as feature extractor combined with a Ridge

regression-based classifier [30]. This approach called RandOm
Convolutional KErnel Transform (ROCKET) is currently the
state-of-the-art for TSC. In this paper, our aim is not to develop
a state-of-the-art model but instead to study the impact of
knowledge distillation in convolution-based models. For that,
we consider the classical FCN architecture.

III. KNOWLEDGE DISTILLATION FOR TIME SERIES
CLASSIFICATION

A. Background on Deep Learning for TSC

A time series, or chronological series, is an ordered series
of numerical values representing the evolution of a specific
quantity over time. Let t1, t2, ..., tT be successive timestamps,
a time series can be defined as X = [xt1 , xt2 , . . . , xtT ],X ∈
RT . In this work, we are considering univariate time series,
i.e. xti ∈ R, i = 1, . . . , T .

An univariate time series dataset D, including M time
series, is a collection of pairs (Xi,Yi), i = 1, . . .M , where
Yi ∈ RC is a one-hot vector representing the class label
c ∈ [1, C] associated to Xi.

The time series classification (TSC) problem consists of
assigning label vector Y to a time series X. Hence the TSC
task consists of training a classifier F mapping inputs Xi to
their corresponding label vectors Yi.

In deep learning, such function F corresponds to a Deep
Neural Network (DNN). During training, the true labels for
each time series are available, thus the goal is to optimize DNN
parameters so that predicted labels Ŷ match the true labels Y
as much as possible. For that, a loss function L measuring the
difference between predictions and true labels is employed. In
most DNNs used for TSC, the categorical cross-entropy loss
LCE is considered. Hence the training objective is, given a
training dataset Dtrain find a DNN F∗ minimizing LCE .

As shown in [10], deep models performing better for TSC
are the one using convolutional layers computing 1D temporal
convolutions on time series. A convolution operation can be
seen as applying and sliding a filter ω of size l along the time
series X of size T . For a time step t, a convolution operation
Ct in a convolutional layer is defined as:

Ct = f(ω ∗Xt−l/2:t+l/2 + b) | ∀t ∈ [1, T ], (1)

where f is a nonlinear function and b is the biais.

B. Knowledge Distillation for TSC

The core idea of knowledge distillation implies two neural
networks, a teacher (generally a deep model) and a student
(generally a shallow model). The knowledge distillation pro-
cess is illustrated in Figure 1. The goal is to train a student
model on a time series dataset D by leveraging the knowledge
acquired by a pre-trained teacher model. The knowledge
generally refers to the last layer’s output of the teacher model.
Hence, during training the student model is optimized to
mimic teacher final predictions.
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Fig. 1: Overview of our knowledge distillation architecture for time series classification

For a TSC task, neural networks generally produce class
probabilities, i.e. predicted labels Ŷi using the Softmax func-
tion in the last layer applied on the output logits zi, i =
1, . . . C, as defined in equation 2.

Ŷi = Softmax(zi) =
ezi∑C
j=1 e

zj
(2)

As stated before, the aim of knowledge distillation is to
make the student model mimics predictions of the pre-trained
teacher model. For relaxing the problem, soft labels are
considered by incorporating a temperature hyper-parameter τ
in the Softmax function, as defined in equation 3.

Ŷτ
i = Softmax(zi) =

ezi/τ∑C
j=1 e

zj/τ
(3)

The temperature hyper-parameter τ allows to control the
smoothness of predicted probabilities. The more τ is higher
than 1, smoother the probabilities are (the uncertainty among
classes is considered). Let Ŷτ

T and Ŷτ
S be the predictions

of the teacher model and the student model, respectively.
The distillation loss measuring the similarity between the two
probability distributions is the Kullback-Leibler divergence
LKL(Ŷτ

T ,Ŷτ
S).

Finally during training, the student model is optimized to
both maximize classification of training time series and to
leverage the knowledge of the pre-trained teacher model.
Thus, the final knowledge distillation loss LKD is defined as:

LKD = λ×LCE(Y, ŶS)+(1−λ)×τ2×LKL(Ŷτ
T , Ŷ

τ
S), (4)

where λ controls the weight of both distillation loss LKL and
student loss LCE . The student loss LCE corresponds to the
classification loss defined as the cross-entropy between student
predictions ŶS and true labels Y.

C. Teacher model

Inspired by the great success of Convolutional Neural
Networks for TSC [10], we choose a Fully Convolutional
Neural Network (FCN) [28] as our teacher model. As our

main goal is to assess the impact of reducing the number
of convolutional layers and convolutional filters, we keep the
teacher architecture simple instead of considering deeper and
more complex architectures like ResNet and InceptionTime
despite their demonstrated performances for TSC. Hence, our
teacher FCN model includes three convolutional blocks where
each block contains three operations. First, 1D convolutions
are applied on input time series, followed by a Batch Nor-
malization. Then, the result is fed to a ReLU activation. In
all blocks, 1D convolutions have a stride equal to 1 with
a zero padding preserving lengths of time series. The first
convolutional block contains 128 filters with a kernel size
equal to 8. The second block employs 256 filters of size 5. The
last convolutional block is composed of 128 filters with a filter
length of 3. The output of this third block is averaged along
the temporal dimension using a Global Average Pooling (GAP)
and finally fed to the Softmax classifier. The architecture of the
teacher, including 267 018 parameters, is depicted in Figure 1
and summarized in Table I.

D. Student models

For our student models, we followed the same idea of FCN
but with different hyper-parameters to evaluate their impacts.
For that, we build different versions of our teacher models
as summarized in Table I. For evaluating the impact of the
filters, we first consider smaller student models, denoted as
Model F#, with three layers but with fewer convolutional
filters. For assessing the impact of the number of layers, two
student models (Model L#) are then built with one layer and
two layers, respectively but with a similar number of filters
than the teacher model. Finally, inspired by what is done in
computer vision, we also investigate the use of depthwise sep-
arable convolutions [31] instead of traditional convolutions in
the two student models (Model DSC). In depthwise separable
convolution, the convolution operation is factorized into two
steps. In the first step, a depthwise convolution is applied to
each input channel to capture temporal correlations. Then, the
second step applies a 1× 1 pointwise convolution to combine



TABLE I: Configurations of our teacher and student FCN
architectures

Filters # Filters # Filters # Total
Models layer 1 layer 2 layer 3 param. #

teacher 128 256 128 267 018

student

Model F64 64 128 64 67 978
Model F32 32 64 32 17 610
Model F28 28 56 28 13 618
Model F24 24 48 24 10 138
Model F20 20 40 20 7 170
Model F16 16 32 16 4 714
Model F12 12 24 12 2 770
Model F8 8 16 8 1 338
Model F4 4 8 4 418
Model L2 128 256 - 169 354
Model L1 128 - - 2 954
Model DSC 128 256 128 70 930

the output of depthwise convolution and capture channel-wise
correlations.

IV. EXPERIMENTAL EVALUATION

In this section, we propose to quantitatively evaluate the
use of knowledge distillation for TSC. After describing the
employed experimental setup, we analyze the impact of both
number of layers and number of filters in fully convolutional
network architectures, as well as the replacement of traditional
convolutions by depthwise separable convolutions.

A. Experimental setup

1) Data: For all our experiments, in order to generally
assess the impact of knowledge distillation for TSC, we
employ the UCR Archive 2018 [16]. The archive consists
of 128 univariate time series datasets coming from various
domains and sensors and with very different characteristics
(time series length, number of samples, etc.). Among these
datasets, the number of classes varies from 2 to 60. For a fair
evaluation analogous to state-of-the-art, we use the original
train/test split. Moreover, all time series are z-normalized.
Following the state-of-the-art for a fair comparison, we discard
datasets containing series of unequal length or missing values,
as well as the Fungi dataset, which only provides a single
train case for each class label. As a result, we consider 112
univariate time series datasets.

2) Experimental protocol: For each dataset, we first train a
FCN teacher model five times and keep the best model for
distilling knowledge to the student. We note that to select
such a best model, we consider the best loss value obtained
on the training set to keep experiments reproducible in a real
world context. We then use the best teacher model to train
a smaller student model following the procedure described in
section III-B. Different student models are trained according
to the hyper-parameter that we modify (number of filters,
number of layers or use of depthwise separable convolutions),
as detailed in Table I. For a given student model configuration,
we also train in parallel a similar model from scratch, without
considering knowledge distillation from the teacher model.
We denote this model studentAlone to differentiate from the
student leveraging knowledge distillation. In order to be less

dependent on random initialization of FCN models, we train
both student and studentAlone models five times. Finally, for
all our models, average accuracy and standard deviation among
the five runs are considered for comparing the performances.

3) Comparison protocol and metrics: For each student
architecture configuration, we compare the performance on the
whole UCR Archive with first both the teacher and studen-
tAlone models, and second with only the studentAlone model.
For that, we consider the number of datasets where a particular
model wins, i.e. obtains a higher classification accuracy than
other models. Similarly, the number of ties and losses are also
counted. In addition, as we are also interested in assessing the
robustness of models to random initialization, we do the same
win/tie/loss computation by considering accuracy’s standard
deviation among the five runs of each model. Conversely to
classification accuracy, a target model wins if its corresponding
standard deviation is lower than other models.

4) Implementation details: All our models are built using
Keras framework. Except for the number of layers and the
number of filters that are varying according to the architec-
tures, we are following the same configuration as [10] in all
our FCN models. Kernel sizes are set to 8, 5 and 3 for the
first layer, second layer (if present) and third layer (if present),
respectively. As optimizer, we adopt the Adam algorithm with
a reducing factor of 0.5, a patience of 50 and an initial learning
rate of 0.0001. During training, we use a batch size of 16. For
knowledge distillation, we set the temperature τ to 10 and
weight factor λ to 0.1. All experiments were conducted on
a Desktop with Ubuntu 20.04 OS, a AMD Ryzen 9 5950X
16-Core Processor with 64 GB of RAM, and a Nvidia RTX
3090 GPU. Our code is publicly available1.

B. Impact of fewer convolutional filters
We first propose to analyze the impact of the number

convolutional filters in the student FCN architectures. Com-
parative results considering the number of wins, ties and losses
based on the classification accuracies are reported in Table II.
Moreover, the number of wins for each model is depicted
in Figure 2. We can first observe that if we include the
teacher model in the comparison, it not surprisingly obtains
better results on average than all configurations of both student
models. This is further depicted in Figure 2a emphasizing the
number of wins for each model with various number of filters.
However, we can also notice that, except when compared to
very small student models, the teacher model wins on less
than half of the datasets. This shows the large variability in
the UCR archive where it is difficult to identify a particular
architecture with a fixed number of filters performing well on
all datasets. As seen in the third and fourth group of columns
of Table II, a student model with less convolutional filters is
able to win against a larger teacher model for about a third of
datasets. This can be explained by the fact that smaller models
are less prone to overfit.

Then, we focus on the comparison of only student and
studentAlone models for evaluating the impact of knowledge

1https://github.com/maxwell1503/kdFCN-4-tsc
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Models
Comparison of three models Comparison of two student models only

teacher student studentAlone student studentAlone
Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss

Model F64 45 4 63 22 4 86 40 4 68 37 4 71 71 4 37
Model F32 47 7 58 28 6 78 28 8 76 44 5 63 63 5 44
Model F28 51 3 58 31 4 77 26 4 82 49 6 57 57 6 49
Model F24 52 6 54 36 5 71 15 9 88 60 6 46 46 6 60
Model F20 58 4 50 37 5 70 11 6 95 63 5 44 44 5 63
Model F16 55 3 54 35 4 73 18 3 91 59 3 50 50 3 59
Model F12 54 3 55 28 4 80 26 4 82 46 5 61 61 5 46
Model F8 66 3 43 18 4 90 24 3 85 35 4 73 73 4 35
Model F4 82 0 30 11 0 101 19 0 93 25 2 85 85 2 25

TABLE II: Win/Tie/Loss comparison of teacher, student and studentAlone models with various numbers of filters.

distillation. By analyzing the fifth and sixth group of columns
of Table II and Figure 2b, we can clearly identify three main
distinct parts. First, for a larger number of filters, we can see
that a studentAlone model without any knowledge distillation
is performing better than a distilled student model. This can
be explained by the fact that as models still have a large
number of filters, they are able to capture discriminant features
through convolution operations and thus obtain quite com-
petitive results with the teacher. Moreover, these results also
show that constraining the distilled student model to mimic
the teacher model does not allow learning different features to
improve the performance. Second, for an intermediate number
of filters, we can see that the distilled student model is able
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Fig. 2: Number of wins considering classification accuracy
according to various numbers of filters of student models.
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Fig. 3: Accuracy plot showing how the student Model F20 is
performing better than studentAlone Model F20.

to leverage teacher’s knowledge to obtain better performances
than the studentAlone model. This shows that in the case of
intermediate models, knowledge distillation allows to reduce
the performance loss due to the models complexity decrease.
Hence, the best student configuration leveraging knowledge
distillation is the architecture including 20 filters in the first
and third layers and 40 filters in the second layer. For this
particular configuration, Figure 3 depicts the accuracy plot of
the student model against the studentAlone model for each
of the 112 UCR datasets. Finally, when the number of filters
is low, we can notice that the student model is not complex
enough to capture the teacher’s knowledge. Thus, it results in
very poor results compared to the studentAlone model.

In addition, we propose to consider the standard deviation
among different runs for each student model. Figure 4 illus-
trates the number of wins considering standard deviation for
both student models with different numbers of filters. We can
observe that except for the larger and smaller models where
performances are competitive, the distilled student models
result in lower standard deviation for the majority of datasets.
This shows that knowledge distillation allows to make student
models much more robust to random initialisation.

C. Impact of fewer convolutional layers

We then propose to assess the impact of the number of
convolutional layers in our knowledge distillation framework.
Table III includes the number of wins, ties, and losses consid-
ering classification accuracy for the teacher model and student
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Fig. 4: Number of wins considering standard deviation accord-
ing to various numbers of filters of student models.

models with 1 and 2 layers. Moreover, the number of wins is
depicted in Figure 5. Similarly to the number of filters we
consider both cases where the teacher is included or not in
the comparison. As expected, we can observe that the teacher
model with three layers performs largely better than both
student models with fewer layers with a number of wins equal
to 74 and 96 against student models with two layers and one
layer, respectively. By comparing only student models (fifth
and sixth group of columns in Table III), we can notice that the
distilled student model with two layers performs slightly better
than the studentAlone model, with a total number of wins equal
to 58. However, if only one layer is included in the model
the classification performance of the distilled student model
drops significantly. This is inline with the observations made
in Section IV-B. A model with an intermediate complexity can
leverage the knowledge of a larger teacher model. However,
if the model complexity is too low, it is not able to mimic the
teacher’s behavior.

In addition, similarly to the number of filters, we assess
the impact of varying the number of layers on the robustness
of student models to random initialization. Number of wins
considering standard deviation of both student models are
depicted in Figure 6. We can notice that the robustness of the
distilled model is much higher compared to the studentAlone
for both configurations with one and two convolutional layers.
This confirms the intuitions drawn in the previous section
that knowledge distillation improves the robustness of student
models to random initialization.

D. Impact of depthwise separable convolutions

Finally, we analyze the impact of using depth separable
convolutions instead of traditional convolutions in student ar-
chitectures in our knowledge distillation scheme. Comparative
Win/Tie/Loss results are reported in Table IV and number
of wins are depicted in Figure 7. By comparing with the
teacher model, we can see that while the replacement of
traditional convolutions by depth separable convolutions sig-
nificantly affects the performances, its impact is mitigated by
the use of knowledge distillation. This is further emphasized
by analyzing the fifth and sixth group of columns of Table IV
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Fig. 5: Number of wins considering classification accuracy
according to various numbers of layers of student models.

Model_L2 Model_L1
Models

0

20

40

60

80

100

Nu
m

be
r o

f w
in

s

student
studentAlone

Fig. 6: Number of wins considering standard deviation accord-
ing to various numbers of layers of student models.

where we can see that by only comparing the performances
of studentAlone and student models, the latter obtains better
classification performances on 62 datasets among 112 datasets
from the UCR Archive. In addition, like other experiments,
we also compare the robustness of both architectures by
comparing their standard deviations among multiple runs’
performances. Like other experiments, the student model is
more robust with a total number 65 datasets where it obtains
lower standard deviation than the studentAlone model.



Models
Comparison of three models Comparison of two student models only

teacher student studentAlone student studentAlone
Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss

Model L2 74 2 36 22 2 88 14 2 96 58 3 51 51 3 58
Model L1 96 2 14 4 1 107 9 3 100 9 4 99 99 4 9

TABLE III: Win/Tie/Loss comparison of teacher, student and studentAlone models considering classification accuracies
according to various number of layers in both student and studentAlone models.

Models
With teacher Without teacher

teacher student studentAlone student studentAlone
Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss

Model DSC 71 3 38 21 2 89 17 2 93 62 3 47 47 3 62

TABLE IV: Win/Tie/Loss comparison of teacher, student and studentAlone models considering classification accuracies when
depth separable convolutions are employed in convolutional layers of both student and studentAlone models.
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Fig. 7: Number of wins considering classification accuracy
when using depth separable convolutions in student models.

E. Impact of reducing models complexity

Previous experiments suggest that employing knowledge
distillation on smaller student models with fewer parameters is
beneficial in the majority of cases. However, they also show
that even with knowledge distillation, reducing the number
of parameters of student models results in lower classification
performances on most of the time series datasets from the UCR
Archive. Here we propose to assess the impact of reducing the
number of parameters in the student model on its performance.
For that, we consider the following student architectures:
Model F20, Model L2 and Model DSC. We then compare
their performance with respect to the teacher architecture by
counting the number of datasets for which the performance
difference between the student and the teacher is positive or
superior to a threshold. For instance, for a threshold of 0.02,
every dataset for which the student performs better than the
teacher or the deviation between both models’ performances
is lower than 2% is considered. Results for a threshold varying
from 0.0 to 0.1 are depicted in Figure 8. A threshold of
0.0 means that only cases where the student obtains better
results than the teacher are counted. Obviously, the more we
relax the threshold, the more cases are considered. We can
observe that for high values of the threshold, performances of
the three compared student models are quite similar while for
lower values, Model F20 seems to be more efficient, despite
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Fig. 8: Number of datasets for which the performance differ-
ence between the student and the teacher is positive or superior
to a threshold

its lower complexity. Moreover, we can see that if we accept
a maximum performance loss of 4%, the use of knowledge
distillation is beneficial for about two thirds of the datasets
for all the three compared models. This seems to be a good
trade-off between the model’s performance and complexity.

V. CONCLUSION

In this paper, we have proposed a first study of the use
of knowledge distillation in Fully Convolutional Network
for TSC. We assessed the impact of reducing the number
of parameters in student models while leveraging teacher
performance through knowledge distillation. In particular, we
investigate the reduction of the number of convolutional filters
and convolutional layers, as well as the use of depthwise
separable convolutions instead of traditional convolutions. The
experimental evaluation carried out on the UCR archive 2018
suggests that intermediately complex student architectures can
benefit from a deeper teacher’s knowledge. This is in line
with the observations made in [19] for image classification.
Among the three assessed hyper-parameters, reducing the
number of convolutional filters seems to be the most suitable
when combined with knowledge distillation. In particular,
experiments showed that the Model 20 student architecture
allows to significantly reduce the total number of parameters



by a factor of about 38 while preserving relatively good
performances in comparison to a more complex teacher model.
However, conversely to image classification where knowledge
distillation is evaluated on few datasets, we considered 112
time series datasets showing that finding a suitable architecture
for every type of time series is not trivial. Nevertheless, we
note that our experiments showed that knowledge distillation
has a major impact on student models robustness to random
initialisation among different runs. This is particularly crucial
when models are deployed in real-world scenarios.

Finally, as we consider a FCN model which is not a very
complex model, we believe that the impact of knowledge
distillation may be even more interesting for larger models
like ResNet and InceptionTime. This is particularly true for the
latter as it includes an ensemble of multiple complex models.
Hence, considering a single smaller student model leveraging
the knowledge of an ensemble is part of our future work.
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