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Abstract—Ensemble methods have played a crucial role in
achieving state-of-the-art (SOTA) performance across various
machine learning tasks by leveraging the diversity of features
learned by individual models. In Time Series Classification
(TSC), ensembles have proven highly effective whether based
on neural networks (NNs) or traditional methods like HIVE-
COTE. However most existing NN-based ensemble methods for
TSC train multiple models with identical architectures and
configurations. These ensembles aggregate predictions without
explicitly promoting diversity which often leads to redundant
feature representations and limits the benefits of ensembling.
In this work, we introduce a diversity-driven ensemble learning
framework that explicitly encourages feature diversity among
neural network ensemble members. Our approach employs a
decorrelated learning strategy using a feature orthogonality loss
applied directly to the learned feature representations. This
ensures that each model in the ensemble captures complementary
rather than redundant information. We evaluate our framework
on 128 datasets from the UCR archive and show that it achieves
SOTA performance with fewer models. This makes our method
both efficient and scalable compared to conventional NN-based
ensemble approaches.

Index Terms—Time Series Classification, Deep Learning, En-
semble Learning, Decorrelated Learning

I. INTRODUCTION

Time Series Classification (TSC) is a fundamental problem
in machine learning with applications across various domains
including healthcare [1], human activity recognition [2], social
security [3], remote sensing [4], etc.. Increasing availability of
large-scale time series datasets, such as the UCR archive [5],
has led to the development of more advanced classification
methods. Recent progress in deep learning has significantly
improved TSC performance by leveraging convolutional neural
networks (CNNs) which can automatically extract meaningful
temporal features [6].

Currently state-of-the-art (SOTA) deep learning models for
TSC including InceptionTime [7], H-InceptionTime [8] and
LITETime [9] achieve high accuracy using ensemble learning.
The Time suffix in their names signifies that these models
are ensembles of five identical neural networks, each trained
independently. These methods combine predictions from their
individual members to improve classification performance.
However they do not explicitly enforce feature diversity within
the ensemble just relying instead on random initialization to
introduce variation. This often leads to feature redundancy and
limits the potential gains from ensembling.

In ensemble learning, diversity among individual models is
key for improving generalization [10]. Traditional approaches
such as HIVE-COTE [11] achieve diversity by ensembling
heterogeneous models with different architectures. However,
in this work, we take a different approach by focusing on
homogeneous neural network ensembles. Our goal is to pro-
mote diversity among models with the same architecture by
encouraging them to learn distinct feature representations. This
is an important but often overlooked aspect of deep ensembles
where models trained independently often converge to similar
solutions.

To address this issue we propose a decorrelated learning
framework that explicitly promotes feature diversity within
ensembles by penalizing redundant representations. Inspired
by knowledge distillation [12], we introduce a feature orthog-
onality loss that forces ensemble models to learn complemen-
tary rather than overlapping features. This loss minimizes the
cosine similarity between feature vectors produced by different
ensemble members. As a result, each model captures unique
aspects of the input, reducing redundancy across the ensemble.
This enhances generalization without increasing computational
complexity or modifying the base model architecture.
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The overall idea is exemplified using the BirdChicken
dataset from the UCR archive, as shown in Figure 1. On
the left, two base LITE models trained separately with dif-
ferent initializations produce highly similar feature maps.
Conversely, in our proposal, a second decorrelated LITE
model is guided to learn diverse features compared to the
first base model trained previously. Figure 1 clearly illus-
trates on the right side that the decorrelated model learned
different features. This differentiation enables the decorrelated
ensemble to achieve 100% test accuracy which exceeds the
90% accuracy achieved by the base ensemble. Furthermore, it
also exceeds the best performance of SOTA models such as
InceptionTime [7] which achieves a maximum test accuracy
of 95% using an ensemble of five models. It suggests that
learning diverse features in an ensemble of deep models can
result in better generalization and classification performance.

We assessed our approach on 128 datasets from the UCR
archive, demonstrating its effectiveness across diverse real-
world time series data. As a result our approach achieves
performance comparable to LITETime [9] but with fewer
models which offers a more efficient solution.

Our main contributions in this work are:
• We propose a novel diversity-driven ensemble framework

that explicitly promotes feature diversity and improves
deep ensemble effectiveness for TSC.

• We conduct a comprehensive empricial validation across
128 UCR datasets, showing that our method achieves
SOTA-level performance with fewer models and im-
proves efficiency.

• We provide quantitative and qualitative diversity analysis
to demonstrate increased feature diversity using Fréchet
Inception Distance (FID) scores and t-SNE visualizations
of learned convolutional filters.

The rest of the paper is organized as follows: Section II pro-
vides background information and discusses related work on
deep learning-based TSC and ensemble methods. Section III
describes our proposed decorrelated learning framework. Sec-
tion IV presents the experimental setup, dataset details and
evaluation metrics, followed by a detailed analysis of results.
Finally Section V concludes the paper and discusses potential
future directions.

II. BACKGROUND AND RELATED WORK

In this work we focus on TSC task where recent studies
demonstrated that deep neural networks (DNNs) leveraging 1D
temporal convolutions achieve impressive performance [13].
Many traditional TSC algorithms especially those not based
on deep learning rely heavily on feature engineering as part of
the classification task. While this approach has shown strong
performance in certain cases [6] it often requires domain
expertise and poses challenges in scalability and automation.
On the other hand deep learning models integrate feature
extraction and classification into a single pipeline and optimize
both jointly. This capability allows them to scale efficiently
to large datasets and take advantage of hardware acceleration
such as GPUs.

SOTA deep learning models for TSC often employ ensemble
learning where multiple models of the same architecture are
trained independently with different initializations and their
predictions are combined [9]. While ensembling has been
shown to improve accuracy [10], this approach does not
explicitly enforce feature diversity among individual models.
As a result, ensembles may suffer from redundant feature
representations which limits their overall effectiveness.

In this work, we address this issue by focusing on increasing
diversity among ensemble members. Specifically, we introduce
a decorrelated feature loss that actively encourages diverse
feature learning across models during training. Our approach
optimizes ensemble diversity by ensuring that individual mod-
els learn complementary instead of redundant representations
which leads to improved generalization and classification
performance.

A. Definitions

A univariate time series is defined as an ordered set of nu-
merical values that represents evolution of a specific quantity
over time. A time series dataset is denoted as D = (Xi,Yi)

N
i=1

where N represents the number of samples, Xi is an individual
time series and Yi is its corresponding label vector. The label
vector follows a one-hot encoding scheme where Yi ∈ RC

represents a class label c from a set of C predefined categories.
Time series classification (TSC) task involves assigning a

class label to a given sample based on its temporal charac-
teristics. The objective is to train a model that can effectively
identify patterns, trends and dependencies within time series
data. Formally, the task consists of learning a mapping func-
tion f : X → Y that accurately classifies each input time
series Xi into one of the predefined categories in Yi.

B. Deep Learning for Time Series Classification

Time series analysis has been a fundamental area of research
for many years with various machine learning techniques
applied to tasks like TSC. Early approaches often relied
on similarity-base methods such as Dynamic Time Warping
(DTW) [14] between time series or classification models
such as Random Forests [15] and Support Vector Machines
(SVMs) [16]. A key limitation of these traditional methods is
that feature extraction is typically treated as a separate process
from classification which can lead to information loss and
increase the complexity of the overall pipeline.

In recent years deep learning has gained significant popu-
larity in the TSC due to its ability to learn complex patterns
from raw time series data without requiring manual feature
engineering. One of the first deep learning models applied
to TSC was the Multi-Layer Perceptron (MLP) [17] but
its fully connected nature made it inefficient in capturing
temproal dependencies. A major step forward came with the
introduction of 1D CNNs which proved highly effective for
extracting meaningful features from time series data. The Fully
Convolutional Network (FCN) [18] was one of the first deep
learning models to achieve strong results in TSC. FCN consists
of three convolutional blocks, each containing a convolutional
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Fig. 1. Comparison of ensemble model performances and feature maps on the BirdChicken dataset, from standard and decorrelated training.

layer, batch normalization and activation functions. Unlike
standard CNN architectures, FCN does not use pooling layers
which allows it to preserve the original time series length and
retain temporal relationships more effectively. Following FCN,
researchers introduced ResNet for TSC [18] which applies
nine convolutional layers but also incorporates residual con-
nections. These connections improve gradient flow, mitigate
information loss and make training deeper models more stable.
In 2020, Inception-based model were introduced for TSC
in the form of InceptionTime [7], drawing inspiration from
Google’s Inception v4 [19]. InceptionTime consists of six
Inception modules where each module applies convolutions of
different kernel sizes to capture patterns at varying temporal
resolutions. Building on InceptionTime, an improved model
called Hybrid Inception (H-Inception) [8] was developed,
incorporating custom convolutional filters in the initial layers
to enhance feature extraction and classification performance.

Recently, LITE (Light Inception with Boosting Techniques)
was proposed as a more efficient alternative to Inception-based
model [9]. LITE significantly reduces parameter count to just
2.34% of that of InceptionTime while maintaining competi-
tive classification performance. The model consists of three
convolutional layers, combining custom, multiplexed, dilated
and depthwise separable convolutions to reduce computational
cost while preserving predictive accuracy

To achieve SOTA performance, ensemble versions of these
models, InceptionTime, H-InceptionTime and LITETime, are
widely used in TSC. Each model is trained five times under the
same setup but with different initializations and their predic-
tions are combined to produce a final ensemble output. While
ensembling improves classification accuracy these approaches
do not explicitly enforce diversity among the individual clas-
sifiers. Instead they rely solely on random initialization to
introduce variation. However, this does not guarantee diverse
feature learning and often leads to redundant representations.

C. Ensemble Learning

Ensemble learning is a powerful machine learning tech-
nique that improves performance by combining predictions
from multiple individual models. It leverages their collec-
tive strengths to mitigate individual weaknesses and reduce
generalization errors [10]. Common ensemble strategies in-
clude bagging where models are trained on different sub-
sets of the training data [20], boosting which iteratively fo-
cuses on difficult-to-classify samples [21] and stacking where
predictions of base models are combined through a meta-
learner [22].
In deep learning, ensemble approaches have been highly suc-
cessful in improving generalization and reducing overfitting,
particularly in complex tasks such as image recognition and
time series classification. The work [17] demonstrated the
effectiveness of deep neural network ensembles for time series
classification by highlighting the importance of combining
diverse predictions for improved accuracy. The recent model
CoCaLite [23] which utilizes ensemble strategies to balance
computational efficiency and predictive accuracy has demon-
strated SOTA performance. It is important to note that most
existing works overlook critical aspects of feature diversity
within ensembles. Various techniques such as decorrelated
learning and feature orthogonality have been introduced to
explicitly promote diversity during training [24]. These meth-
ods are particularly relevant for deep neural networks where
similar architectures and training setups can lead to redundant
feature extraction and limits ensemble benefits. For instance,
the kernels tailored for time series similarity have been em-
ployed with ensemble models to enhance temporal pattern
recognition [25].
The key advantage of ensembling lies in its ability to exploit
the diversity of features learned by each individual model.
Because of the stochastic nature of deep learning, each model
may learn slightly different features which collectively en-
hance overall performance of the ensemble. In convolutional
neural networks this diversity is largely attributed to the
variation in features learned by each model. Our experiments



have shown that when the models in an ensemble learn very
similar features, the performance gains are minimal. This
observation is really intuitive and underscores the importance
of feature diversity in the success of ensemble learning.

D. Decorrelated Learning

To the best of our knowledge, most SOTA deep learning-
based TSC models rely on training multiple instances of the
same model and ensembling their outputs [7]–[9]. Base models
within these ensembles are trained independently without
mechanisms for sharing information or coordinating their
learning. This independent training process often leads the
model to converge similar, nearby local minima which results
in reduced diversity. Both theoretical and experimental studies
suggest that generalization ability of an ensemble can be
greatly enhanced if base models are negatively correlated [26].

In contrast, decorrelated learning explicitly introduces
shared training mechanisms that encourage diversity among
ensemble members. Instead of training models independently,
decorrelated learning ensures that training process of each
model is influenced by others in the ensemble. By explicitly
minimizing correlations between filters, features or predic-
tions decorrelated learning ensures that each model is guided
to learn distinct patterns. This approach helps the features
produced by different models to complement one another
rather than overlap. This shared training paradigm is partic-
ularly valuable in ensemble settings where diversity among
individual models plays a curcial role in improving overall
performance [27].

Techniques such as Orthogonality Loss have been devel-
oped to enforce feature decorrelation by minimizing cosine
similarity between filters [28]. These methods are particularly
relevant for tasks where redundant feature extraction limits
performance, as is often observed in deep neural networks
trained on datasets with identical architectures. Most existing
approaches in CNN-based models apply orthogonality loss
to convolutional filters to achieve diversity in the feature
space [29].

In this work, we demonstrate that for TSC tasks applying
orthogonality loss to convolutional filters does not lead to
meaningful diversity in features. To address this, we propose
applying orthogonality loss directly to the feature outputs. This
approach ensures a higher level of feature diversity which
is critical for improving ensemble performance. Additionally,
decorrelation has been shown to be effective in unsupervised
representation learning, helping to mitigate representational
collapse and improve downstream task performance [24].
These findings reinforce the value of decorrelated learning
in addressing redundancy and enhancing the discriminative
power of deep learning models.

Our method promotes diversity explicitly at the level of
convolutional features, a strategy we have found effective for
ensemble learning in TSC tasks. We utilize a diversity-driven
auxiliary loss to improve diversity among ensemble models
during training. The core idea of our decorrelated learning
approach is to train ensemble models sequentially, ensuring

that each model learns features distinct from those learned by
previously trained models. In this paper, we focus on exploring
the impact of decorrelated learning in convolution-based TSC
models to deepen our understanding of its effects.

III. PROPOSED METHOD

In this section we introduce our diversity-driven ensemble
learning framework for TSC. We first describe the transition
from filter-level orthogonality to feature-level orthogonality,
highlighting its advantages in promoting meaningful diversity
among ensemble members. Next we provide a detailed de-
scription of our proposed framework, outlining the sequential
training process and incorporation of feature orthogonality
constraints. Finally we present the mathematical formulation
of the feature orthogonality loss which serves as the core of
our method.

A. Rethinking Diversity: From Filter Orthogonality to Feature
Orthogonality

The primary objective of this work is to enhance diversity
among ensemble models while maintaining the performance
of individual models. One possible approach to promote
feature diversity is to use techniques such as Deep Negative
Correlation Classification (DNCC) [30] where diversity is
encouraged during training by explicitly forcing one model to
focus on samples that are misclassified or have low confidence
in another model. However, in our experiments with LITE
model [9] we observed that it achieves 100% training accuracy
on majority of datasets from UCR archive This indicates that
the model effectively fits training data and leaves minimal
room for misclassified or low-confidence samples to enhance
diversity through misclassification-based methods. Given this
limitation we explored alternative methods for promoting
diversity, focusing on feature and filter-level diversity. From
the literature we identified several works that employ filter or-
thogonality loss to promote diversity among ensemble models,
particularly in image classification tasks [28], [29], [31]. The
central idea behind these methods is to enforce orthogonality
between convolutional filters, encouraging them to learn dis-
tinct representations. From our experiments we realized that
filter orthogonality often shifts discriminative patterns rather
than creating diverse representations. While filters become
orthogonal, feature maps remain similar, limiting the benefits
of decorrelation. Thus filter-level orthogonality alone does not
guarantee meaningful diversity in ensembles of time series
classifiers.

To address this challenge, we propose a feature diversity loss
function and a diversity-driven optimization strategy aimed at
encouraging each model in the ensemble to extract distinct fea-
tures from the input data. Unlike existing approaches that tar-
get filter diversity our method focuses on promoting diversity
directly in the feature space itself. Specifically, we introduce an
orthogonality loss function that operates on the feature outputs.
The goal is to explicitly enforce orthogonality between the
feature representations produced by different models in the
ensemble. This loss function encourages each model to learn



L
a

ye
r 

1

L
a

ye
r 

2

L
a

ye
r 

3

L
a

ye
r 

1

L
a

ye
r 

3

L
a

ye
r 

2

CE loss
predictions

ground truth

Feature loss total loss

Input time series

Decorrelated model

Reference model

Fig. 2. Proposed decorrelated learning framework for a 2-model ensemble where the decorrelated model is trained with feature orthogonality loss to
enhance diversity.

orthogonal features thereby reducing redundancy in the feature
space. By encouraging orthogonal feature representations we
aim to promote diversity among individual models within
the ensemble, ultimately improving the generalization and
overall performance. This approach ensures that each model
contributes unique information to the ensemble, leading to a
more robust and generalizable classification system.

B. Framework Overview

In this work we introduce a sequential training framework
designed to enhance diversity in neural network ensembles
for TSC. Our approach explicitly encourages each model in
the ensemble to learn distinct feature representations thereby
improving generalization. Unlike conventional ensemble meth-
ods where models are trained independently our framework
introduces decorrelated models which are explicitly guided to
learn features that are orthogonal to those of previously trained
models. The training follows a sequential process where each
base model in the ensemble (n) is trained to minimize feature
redundancy with respect to all earlier models (< n).

To achieve this goal we define an orthogonality function that
measures the degree of overlap between the feature represen-
tations of the current model and those of previously trained
models. This function penalizes feature similarity, ensuring
that the newly trained model captures complementary infor-
mation. The resulting feature orthogonality loss is combined
with cross-entropy loss to form the training loss. By optimizing
both losses jointly, our framework promotes feature diversity
while maintaining high classification accuracy.

Figure 2 illustrates the overall architecture of our proposed
method, highlighting how cross-entropy (CE) loss and feature

orthogonality (FO) loss are integrated into the training process.
CE loss ensures that each model learns to accurately map time
series inputs to class labels. Meanwhile FO loss is applied
directly to the feature outputs of the final convolutional layer
to encourage diversity among ensemble members.

A key consideration in DNNs is that lower layers typically
learn generic features while upper layers capture task-specific
representations [32]. Applying orthogonality constraints to
early layers can disrupt essential feature learning, negatively
impacting performance. To mitigate this issue we apply FO
loss only to the final layer of the LITE model, ensuring that
only high-level features are decorrelated thereby maintaining
both diversity and classification performance.

The total loss function balances CE loss and FO loss,
ensuring that both classification accuracy and feature diversity
are optimized during training. In ensemble configurations, this
process is iteratively applied to all base models. For each new
model FO loss is computed relative to all previously trained
models and the results are averaged to ensure consistency.
During training, feature outputs from the base models are
extracted and each decorrelated model is explicitly optimized
to produce feature representations that are distinct from its pre-
decessors. This approach enhances ensemble diversity, leading
to a more robust and generalizable classification system while
maintaining performance.

C. Diversity Loss

To enhance diversity among ensemble models, we employ
a feature orthogonality loss based on cosine similarity, applied
directly to the feature outputs. While traditional methods focus
on filter-level orthogonality, we found that encouraging orthog-



onality in the feature space leads to more meaningful diversity
in the context of time series data. This ensures that each
model in the ensemble contributes unique, complementary
information.

Let Fdeco ∈ RB×C×T and Fbase ∈ RB×C×T represent the
feature outputs of the decorrelated and base models where B,
C and T denote batch size, number of channels, and time
series length, respectively. The diversity loss is defined as in
the following equation 1:

Lorth =
∑
i ̸=j

∣∣∣∣∣ Fdeco,i · F⊤
base,j

|Fdeco,i||Fbase,j |

∣∣∣∣∣ (1)

This formulation penalizes overlap between features, en-
couraging decorrelated model to learn distinct representations
relative to the base models. By penalizing the magnitude of
off-diagonal elements in the similarity matrix, we encourage
feature independence while maintaining computational effi-
ciency. Notably, the use of cosine similarity is not compu-
tationally expensive as matrix operations can be efficiently
parallelized. The diversity loss is then integrated into the total
loss function as shown in the equation 2:

Ltotal = αLCE + (1− α) · Lorth (2)

LCE is the cross-entropy loss which ensures accurate clas-
sification and α is a weight parameter that balances cross-
entropy and feature diversity. In our experiments, we set α =
0.5, giving equal importance to both losses. By minimizing
this total loss, the decorrelated model learns features that
are both task-relevant and orthogonal to those of previously
trained models, enhancing diversity across the ensemble.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Data: To validate effectiveness of our proposed ap-
proach we evaluated it on UCR Archive [5], the largest
publicly available repository for time series classification. The
archive includes 128 univariate time series datasets from var-
ious domains, such as healthcare, motion tracking and sensor
data, with diverse characteristics in terms of sequence length,
sample size, and class distribution. The number of classes
ranges from 2 to 60, providing a broad evaluation spectrum.
For a fair comparison with state-of-the-art methods we used
the original train/test splits provided by the UCR Archive.
All time series were z-normalized to ensure zero mean and
unit variance, reducing the influence of scale differences and
emphasizing intrinsic temporal patterns.

2) Experimental protocol: For our experiments, we fol-
lowed the exact same setup as described in the LITE pa-
per [9]. We trained five standard LITE classifiers and also
four decorrelted LITE classifiers which we refer to as base
and decorrelated models respectively. The base models trained
using only CE loss while the decorrelated models incorpo-
rated an additional feature diversity loss. To ensure a robust
comparison and confirm that performance changes are not

due to random initialization, each base model was initializaed
with a unique seed. For consistency, decorrelated models
were initlized with the same seeds as their corresponding
base models. This guarantees that any observed performance
improvements are due to the feature orthogonality (FO) loss
rather than randomness in initialization.

The training process for decorrelated ensembles can be
summarized as follows:

1) Base Model Training: The first model in each ensemble
is trained using only CE loss.

2) Decorrelated Model Training: Subsequent models in the
ensemble are trained as decorrelated models.

3) Sequential Training: For each additional model, FO loss
is computed on all previously trained models from the
ensemble. Specifically, the FO loss formula for (n+1)-th
model is given by equation 3.

Ln+1
orth =

1

n

n∑
i=1

Lorth(Fn+1, Fi) (3)

where Fn+1 and Fi represent the feature outputs of the
(n + 1)-th and i-th models, respectively, Lorth denotes
the orthogonality loss and n is the number of previously
trained models from the ensemble.

We evaluate four ensemble cofigurations with sizes varying
from two to five models and systematically comparing decor-
related ensembles against base enesembles. Each ensemble
consists of a reference model combined with either additional
independently trained base models or decorrelated models
trained sequentially. For base ensembles, all models are trained
independently without any form of coordinated learning and
their predictions are aggregated. In contrast decorrelated en-
sembles are constructed by progressively replacing base mod-
els with their corresponding decorrelated versions which are
trained sequentially. In this process, each decorrelated model
is guided to learn feature representations that are explicitly di-
verse from those of previously trained models in the ensemble.
In all cases, the first base model serves as a fixed reference
to ensure consistency across configurations. Each ensemble
configuration is trained five times independently and the final
results are obtained by averaging performance across these five
runs. To denote different ensemble types we use LiteTime-
N to represent an ensemble of N independently trained base
models while Deco-LiteTime-N refers to an ensemble where
all but the reference model are decorrelated.

3) Comparison Protocol: We evaluate classification perfor-
mance using accuracy across the 128 datasets in the UCR
archive. To compare our decorrelated framework with standard
ensembles, we use the Multi-Comparison Matrix (MCM) [33],
which ranks classifiers by Mean Accuracy—the average accu-
racy across all datasets. This provides a more interpretable
comparison than traditional average-rank methods [34]. MCM
also reports the Mean Difference, which measures the average
accuracy gap between pairs of classifiers, and the Win/Tie/Loss
counts across datasets. Statistical significance is assessed using
the Wilcoxon signed-rank test [35] with p < 0.05. Significant
results are shown in bold.



4) Implementation details: The LITE model was used as
the base architecture, following the original configuration
described in prior work [9]. The models were trained using
the Adam optimizer with an initial learning rate of 0.001,
a reducing factor of 0.5 and a patience of 50. Each model
was trained for 1500 epochs with a batch size of 64. All
experiments were conducted on a system equipped with an
NVIDIA RTX 4090 GPU with 24GB of memory, running
Ubuntu 22. The models were implemented using PyTorch
2.5.1 and Python 3.12. The source code is publicly available
https://github.com/MSD-IRIMAS/decorrelated-learning .

B. Overall Performance on UCR Archive

In this section we present a comparative analysis of our
proposed framework against the SOTA LITETime [9]. Our
objective is to evaluate effectiveness of our diversity-driven
approach in enhancing generalization and classification accu-
racy by analyzing various ensemble configurations.

The comparative results are presented in the form of an
MCM matrix as illustrated in Figure 4. Among all configu-
rations, the 4-model decorrelated ensemble (Deco-LITETime-
4) achieves the highest mean accuracy even surpassing the
state-of-the-art LITETime-5 which is an ensemble of five
LITE classifiers. This performance clearly demonstrate effi-
ciency of decorrelated learning in extracting complementary
features which enables superior classification accuracy with
fewer models. The p-value between the Deco-LITETime-4 and
LITETime-5 indicates that these two classifiers are not statis-
tically different. In contrast the p-value between LITETime-
4 and LITETime-5 is lower than 5% which highlights a
statistically significant difference. From the figure we can also
notice that Deco-LITETime-4 also outperform its couterpart,
LITETime-4 with a statistically significant lower p-value.
Furthermore, the results from the Figure 4 also indicate that the
Deco-LITETime-4 performs almost on par with LITETime-
5 despite using one fewer model. Additionally, a one-vs-
one performance comparison between Deco-LITETime-4 and
LITETime-5 is shown in the Figure 3.

Similarly, from the Figure 4, we can also observe that the
3-model decorrelated ensemble (Deco-LITETime-3) achieves
comparable performance to the more parameter-intensive
LITETime-5. The difference between Deco-LITETime-3 and
LITETime-5 is not statistically significant, as indicated by the
high p-value. The performance of Deco-LITETime-3 estab-
lishes it as a viable alternative to the SOTA LITETime-5 whille
offering comparable results with two fewer models.

From the same figure, it seems that advantages of decorre-
lated learning are less evident in smaller ensembles. The 2-
model decorrelated ensemble (Deco-LITETime-2) shows only
a marginal improvement over its base counterpart (LITETime-
2) and does not fuly bridge performance gap with LITETime-
5. These results shows that benefits of decorrelated learning
become more apparent as ensemle size increases. It can be
explained based on the fact that, in smaller ensembles, features
from 2-base models already exhibit some inherent diversity
which diminishes immediate impact of decorrelation. The
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Fig. 3. Performance comparison between Deco-LITETime-4 and
LITETime-5.

feature overlap among base models increases as the ensemble
size grows in which decorrelated learning plays a crucial role
in maximizing feature diversity and enahncing generalization
and overall performance.

C. Comparison with State-of-the-Art Methods

As shown in Figure 5, our proposed method achieves an
average accuracy of 0.8496, ranking third among the evaluated
models. It performs competitively against other SOTA deep
learning approaches and surpasses several existing methods.
The only approach that significantly outperforms it with sta-
tistical significance is MultiROCKET [36] which remains the
highest-ranked model. This highlights the effectiveness of our
diversity-driven ensemble strategy in improving classification
performance while maintaining efficiency. Notably, the Deco-
LITETime-4 contains less than 10% of the parameters of
a single Inception-based classifier, demonstrating that our
method achieves strong performance with significantly re-
duced computational cost. It is important to note that while
the results for our baseline were obtained through our own
experiments, the results for the other methods, including
MultiROCKET, were sourced from the official repository [36].
These findings further demonstrate that explicitly promoting
feature diversity within ensembles enhances generalization and
provides a strong alternative to conventional ensemble learning
techniques.

D. Quantitative Diversity Analysis

To quantitatively assess the impact of our decorrelated learn-
ing framework on feature diversity, we compare two different
ensemble configurations using the Fréchet Inception Distance
(FID) [37], [38]. FID measures the similarity between two
distributions where each distribution represents the statistical
properties of features extracted by an individual model. By
computing FID scores within two distinct 2-model ensembles,
we can directly compare the feature diversity of base models

https://github.com/MSD-IRIMAS/decorrelated-learning
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Fig. 4. The Multi-Comparison Matrix illustrates performance of each decorrelated and base ensemble variants in one-vs-one comparisons.
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Fig. 5. The Multi-Comparison Matrix applied to show the performance of Deco-LITETime-4 compared to state-of-the-art approaches.

and their decorrelated counterparts. Figure 6 presents a one-vs-
one FID score comparison across 128 datasets from the UCR
archive. In this figure, the x-axis represents the FID scores
computed between a reference model and a base model while
the y-axis represents the FID scores computed between the
same reference model and corresponding decorrelated model.
The results indicate that the decorrelated model produces
higher FID scores in 90 datasets, often with a larger margin
while the base model results in higher FID scores in 32
datasets. In 6 datasets, there is no observed difference between
the two configurations. The p-value computed between these
two sets of FID scores is 0.0, confirming that the observed dif-
ference is statistically significant. These findings demonstrate
that decorrelated learning explicitly enhances feature diversity,
encouraging models to learn more distinct representations.
By reducing feature redundancy, this approach contributes to
better generalization and improved ensemble performance in
time series classification tasks.

E. Qualitative Diversity Analysis

To further emphasize our results, we analyze the filter space
of base and decorrelated models. The primary objective of
the decorrelated loss is to explicitly enhance feature diversity
which indirectly drives convolutional filters to learn more
distinct representations. To investigate this effect we visualize
the learned convolutional filters from both base and decorre-
lated models to assess filter diversity. Following the default
configuration outlined in the LITE model [9], the number of
filters in the final layer is 32, resulting in a convolutional
filter dimension of 32 × 20 for each base and decorrelated
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Fig. 6. FID score comparison between two base models and a
base-decorrelated model pair.

model. To quantitatively analyze filter diversity we employ
Dynamic Time Warping (DTW) [39] to measure the simi-
larity between all pairs of filters. Additionally, we employ
t-distributed Stochastic Neighbor Embedding (t-SNE) [40]
to project the high-dimensional filter representations into a
two-dimensional space, enabling straightforward visualization
within a Cartesian coordinate system. As illustrated in Fig-
ure 7, the convolutional filters from all five base models exhibit
a highly similar distribution, forming two distinct clusters



where each cluster contains filters from all base models. This
redundancy in the filter space clearly indicates that, despite
different initializations, base models tend to learn highly
similar filters.

In addition, we analyze the filter space of decorrelated mod-
els as shown in Figure 8. This figure includes convolutional
filters from the first base model (used as a reference model)
along with all four decorrelated models. The diversity between
base and decorrelated filters is evident and the decorrelated
models themselves also exhibit diversity among them. As
previously mentioned, the decorrelation loss for the n-th model
is computed as the sum of individual diversity losses with
each previously trained model (1, ..., n− 1). From the results
it seems that the diversity loss between a given decorrelated
model and the base model is easier to optimize than that of
previously trained decorrelated models. We believe that fine-
tuning the weighting of individual diversity losses within the
total diversity loss can lead to better results as the optimal
trade-off may vary across datasets. From Figure 8, we can
observe that the filters of Deco 5 are distributed similarly to
those of Deco 2, suggesting that the fifth decorrelated model
fails to introduce additional diversity. This can be explained
by the fact that most diverse and useful features have already
been captured by previously trained decorrelated models,
leaving Deco 5 with limited room to learn new and distinctive
patterns. Furthermore, it is also worth noting that the 2-
model decorrelated ensemble (Deco-LITETime-2) achieves
approximately 3.6% higher test accuracy than LITETime-5
which is an ensemble of five base models. These results high-
light the effectiveness of our decorrelated learning framework,
demonstrating that smaller but more diverse ensembles can
outperform larger ensembles composed of redundant models.

Convolutional Filter Visualization - Base Models
Model Base 1

Model Base 2

Model Base 3

Model Base 4

Model Base 5

Fig. 7. t-SNE visualization of learned convolutional filters by highlighting
redundancy in the filters of base models.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a diversity-driven ensemble
learning framework for time series classification that explicitly

Model Base 1

Model Deco 2

Model Deco 3

Model Deco 4

Model Deco 5

Convolutional Filter Visualization - Deco Models

Fig. 8. t-SNE visualization of learned convolutional filters by highlighting
diversity between the filters of base and decorrelated models.

encourages feature diversity through feature orthogonality
loss. By enforcing decorrelation at the feature representa-
tion level, our method mitigates redundancy among ensemble
members and improves generalization without requiring addi-
tional model complexity. Comprehensive experiments on 128
datasets from the UCR archive demonstrated that our approach
achieves SOTA performance with fewer models, highlighting
the efficiency of diversity-driven ensembling. Both quantitative
and qualitative analyses confirmed that enforcing feature di-
versity results in more complementary feature representations,
leading to improved classification accuracy. Future work will
explore refining the balance between classification loss and
diversity loss, optimizing the trade-off dynamically across
different datasets. Additionally, we aim to extend the frame-
work to multivariate time series classification and investigate
alternative diversity-promoting strategies beyond feature or-
thogonality. Further research will also focus on improving
computational efficiency by potentially leveraging parallel
training strategies to enhance scalability.
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