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ABSTRACT:

Landscape reconstruction is crucial to measure the effects of climate change or past land use on current biodiversity. In particular,

retracing past phenological changes can serve as a basis for explaining current patterns of plant communities and predict the

future extinction of species. Old spatial data are currently used to reconstruct vegetation changes, both morphologically (with

landscape metrics) and semantically (grasslands to crops for instance). However, poor radiometric properties (single panchromatic

channel, illumination variation, etc.) do not offer the possibility to compute environmental variables (e.g. NDVI and color indices),

which strongly limits long-term phenological reconstruction. In this study, we propose a workflow for reconstructing phenological

trajectories of grasslands from 1958 to 2011, in the French central Vosges, from old aerial black and white (B&W) photographs.

Noise and vignetting corruptions were first corrected in B&W photographs with non-local filtering algorithms. Panchromatic scans

were then colorized with a Generative Adversarial Network (GAN). Based on the predicted channels, we finally computed digital

greenness metrics (Green Chromatic Coordinate, Excess Greenness) to measure vegetation activity in grasslands. Our results

demonstrated the feasibility of reconstructing long-term phenological trajectories from legacy photographs with insights at different

levels : (1) the proposed correction methods provided radiometric improvements in old aerial missions; (2) the colorization process

led to promising and plausible colorized historical products; (3) digital greenness metrics were useful for describing past vegetation

activity.

1. INTRODUCTION

It is widely recognized that present day biodiversity may reflect

past land use or past climate (Jansson, Davies, 2007) because

of a possible delay in the response of certain species to habitat

perturbations (Kuussaari et al., 2009). This interval depends

on changes themselves (e.g. intensity and cyclicity) as well as

species traits, namely mobility dispersion abilities. In order to

assess time-lag between changes in a landscape, and changes in

the associated populations, studies rely most of the time on old

spatial data that help highlighting spatio-temporal trajectories

over large extents and long time periods (Proença et al., 2017).

Among these spatial data, legacy aerial photographs are largely

under-exploited while they offer unique opportunities to mon-

itor landscapes at a very high spatial resolution (≤ 1m) from

up to the early 1930s (Morgan et al., 2010, Morgan et al.,

2017). Despite these advantages, their use remains problematic

for many reasons. First, they feature heterogeneous specifica-

tions and quality (e.g. noise and vignetting), mainly due to the

properties of the acquisition system and the scanning procedure.

Second, they lack inherent exploitable attributes, especially in

the case of panchromatic pictures, making the development of

automatic processing chains a complex task (Paine, Kiser, 2012,

Aber et al., 2016).

Another major problem refers to the type of information that

can be retrieved from these data. Landscape reconstruction
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is generally carried out one of two different ways : (1) mor-

phologically by monitoring landscape metrics (e.g. area and

connectivity) over the considered time period (Franco, Mor-

gan, 2007, Herrault et al., 2015); (2) semantically by describing

changes in the nature of spatial objects (grasslands to crops for

instance) (Treitz, Rogan, 2004). Recently, analysis of radiomet-

ric properties in aerial photographs provided useful information

to monitor vegetation health or forest phenology (Franco, Mor-

gan, 2007, Reid et al., 2016). Indeed, metrics such as the Green

Chromatic Coordinate (GCC) or Excess Greeness (EG) are in-

variant to illumination conditions and outperform conventional

indices such as the NDVI when processing near-sensing images

(Nijland et al., 2014). Unfortunately, inherent characteristics of

the oldest aerial missions (i.e. B&W photographs) do not offer

the possibility to retrieve these indices (Morgan et al., 2010).

Thus, long term phenological reconstructions are strongly re-

stricted temporally.

In this study, we develop a generic framework to reconstruct

phenological trajectories of grasslands from 1958 to 2011, in

the central Vosges from old aerial B&W photographs. We pro-

pose a workflow divided in three major steps :

1. Correction of noise and vignetting effects in old aerial

B&W photographs;

2. Spectralization of old aerial B&W photographs;

3. Reconstruction of changes in grasslands with greenness in-

dices.

This is the author’s version of an article published at ISPRS 2020. The fi-

nal authenticated version is available online at: https://doi.org/10.5194/
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2. STUDY SITE

The study site is located in the central Vosges, 30 km from

Strasbourg in the East of France (Figure 1. It covers approxim-

ately 15,000 ha and includes 10 municipalities. This is a hilly

region (100 to 400m) dissected by north-south valleys. The cli-

mate is semi-continental with oceanic influences. It comprises

a majority of grasslands and crops (wheat, corn) with remnant

traditional orchards delineated by hedges. A positive gradual

landscape openness is directly observable from North to South,

indicating changes in management practices, from traditional

to intensive agriculture. Thus, heterogeneous landscape traject-

ories were provoked by this management diversity and might

explain part of the spatial distribution of grasslands plant spe-

cies over the study site.
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Figure 1. Study site location and surroundings. Infrared false

color (bottom left panel) and natural color (right panel) images

are provided for visualization.

In the scope of this paper, 34 grasslands were selected to be

monitored according to two criteria: (1) grasslands must persist

without discontinuity over time, and (2) they vary in terms of

openness throughout the years.

3. METHODOLOGY

3.1 Preparation of spatial data

Six air missions acquired between 1958 and 2011 were used

to reconstruct long term phenological trajectories of grasslands

(Table 1). For testing out the proposed methodology, only 1

single photograph was included in our database for each mis-

sion. All photographs that were selected overlapped. Each pic-

ture was acquired in spring (from May to June). This means

that the proposed photographs captured the signal of grasslands

just before the first peak of annual greenness or after the first

mowing event of the year. Therefore, for specific years, some

grasslands exhibited an almost bare soil.

Panchromatic scans were manually georeferenced and rectified

using around 10 GCPs and by applying a second-degree poly-

nomial transformation between image and ground coordinates

(RMSE = 1.21± 0.33 m). The most recent RGB orthophoto-

graph acquired in 2011 systematically served as a reference for

the registration of B&W aerial photographs.

Date Scale/Pixel size(m) Bands Type Provider

01/05/1958 1:24,613 / 0.94* Pan Scanned film IGN

29/05/1976 1:19,707 / 0.40* Pan Scanned film IGN

29/06/1986 1:16,918 / 0.34* Pan Scanned film IGN

29/06/1992 1:28,108 / 0.62* Pan Scanned film IGN

08/06/2000 1:30,995 / 0.60* Pan Scanned film IGN

05/05/2011 / 0.16 RGB Digital CIGAL

Table 1. Specifications for the selected aerial photographs. * For

scanned films, scale is followed by a pixel size estimate that was

computed using calibration certificates.

In order to demonstrate the limitations imposed by historical

photos, as well as the techniques available to address them, a

processing chain has been developed to reconstruct long-term

phenological trajectories (Figure 2). The workflow can be di-

vided in three steps : (1) correction and harmonization of old

aerial photographs, (2) spectralization of panchromatic photo-

graphs and (3) phenological time series analysis.

Figure 2. Proposed workflow for reconstructing phenological

trajectories of grasslands from old aerial photographs

3.2 Correction and Harmonization of spatial data

3.2.1 Noise correction Noise in aerial photographs is the

result of data acquisition or transmission (Jalobeanu et al.,

2002). The consequence is a random variation in pixels val-

ues, independent of the original data, making interpretation and

processing complicated tasks (Jalobeanu et al., 2002, Corner et

al., 2003). In the context of old aerial photographs, Gaussian

corruption is the most prominent, mainly due to illumination,

sensor temperature and film scanning. Since aerial stills were

not acquired following a standard and non-evolving scheme,

the degree of corruption may vary across the entire time series

(Morgan et al., 2010). Thus, noise analysis and correction are

mandatory for harmonizing the available photographs.

In this paper, we assess noise with a pyramid-based method.

The standard deviation of the Gaussian noise distribution was

first obtained by computing the median absolute deviation of

the wavelet detail coefficients (Donoho, Johnstone, 1994) at 6

different scales. Each photograph in the series was resampled

into lower resolution overviews, by factors of 1, 2, 3, 4, 6 and

12. The outputs were then averaged for each scale and year

so as to retrieve an estimate of the standard deviation for each

photograph.



After estimation, noise in photographs was corrected with the

non-local means (NLM) algorithm (Buades et al., 2011). This

technique has been used in a significant number of remote sens-

ing applications, where it was able to smooth surfaces while re-

taining fine details, such as roads and edges, as in (Huang et

al., 2017) for example. Unlike other filtering techniques, NLM

performs denoising at patch-level. The algorithm recursively

takes one pixel to process, along with its neighborhood. It then

retrieves all the patches available in the image and measures

their similarity to the processed area. An average of the patch

values is then calculated, each contribution being weighted by

the degree of similarity to the processed pixel. The standard de-

viation estimates that we previously computed were passed to

the algorithm so as to guide the weighting process. Finally, the

pixel value is updated with the weighted and averaged contri-

butions.

3.2.2 Vignetting correction In aerial photographs, spa-

tially organized variations in brightness can be observed, most

of the time following a radial gradient (Yu et al., 2004). This

results in a bright principal point and dark borders around the

fiducial marks. This phenomenon is called vignetting and can

be troublesome when the photographs in question are used in

photogrammetry or remote sensing applications. Indeed, the

gradual darkening of the image results in a non-homogeneous

signal for similar surfaces. This can notably disturb the match-

ing of homologous points for the relative orientation of several

photographs (Kim, Pollefeys, 2008), reduce image classifica-

tion performance, or compromise the analysis of time series

(Kelcey, Lucieer, 2012).

We propose a simple but efficient technique for removing not

only vignetting, but also other local variations in brightness.

After masking fiducial marks, the estimation of a correction

map was carried out following a pyramid scheme similar to the

one previously described for measuring the standard deviation

of Gaussian noise. Each photograph was resampled into lower

resolutions. All scales were sized back to the original photo-

graph dimensions using bicubic interpolation, and later aver-

aged, in order to compute a multi-scale mean illumination map.

It was then subtracted from the initial still, thus eliminating any

illumination effect, whether due to exposure or vignetting for

example. Finally, pixel values from the output were rescaled so

as to match the distribution of the original.

3.2.3 Spectralization of B&W photographs After correc-

tion and in order to ensure spatial coherence, all of the available

photos were resampled to a 1m resolution. It was then neces-

sary to enrich the spectral content of the available series before

calculating phenological metrics and characterizing vegetation

activity at each date. Indeed, panchromatic and single-infrared

channels provided by old aerial missions are insufficient for the

calculation of environmental variables (NDVI or color indices).

Thus, we recommend the development of a spectralization tech-

nique that would help predict new channels in the visible do-

main, based on initial panchromatic information.

In essence, spectralization corresponds to colorization. Several

techniques are available for colorizing black and white pho-

tographs. Recently, various techniques based on deep learn-

ing have been proposed, mostly non-convolutional networks

(Cheng et al., 2015), CNNs (Zhang et al., 2016) and GANs

(Isola et al., 2017). Unlike other methods that rely on human

intervention for placing color scribbles (Yatziv, Sapiro, 2006),

guiding transfer algorithms (Welsh et al., 2002) or comput-

ing appropriate attributes for standard machine learning (Desh-

pande et al., 2015), the advent of deep learning has helped al-

leviate the colorization process, as models automatically learn

feature maps to solve the grayscale-to-color mapping problem.

In the scope of this work, we propose a deep colorization model

based on a generative adversarial network (GAN). It is built

around two neural networks pitted against one another. The

first corresponds to a generator G that learns how to produce

samples that could belong to a reference distribution. The

second corresponds to a discriminator D, whose role is to dis-

tinguish true samples from generated ones (Goodfellow et al.,

2014). The end objective is to train a generator capable of de-

ceiving the discriminator. In this paper, we conditioned G by

giving it grayscale samples as inputs, so as to learn color chan-

nels (Mirza, Osindero, 2014). It should be pointed out that, as

of the submission of this paper, the colorization of aerial photo-

graphs time series has not been tackled in any other work. The

only other papers that come close were either focused on pro-

cessing singe-date products, with (1) the colorization of single-

polarization SAR images to obtain full-polarization samples

(Song et al., 2018), or (2) the colorization of modern high res-

olution multispectral satellite imagery (Liu et al., 2018). Thus,

the proposed methodology is meant to address different short-

comings, with the colorization of archive spatial data that were

compiled into long-term time series.

Since there is no proper aerial photographs database available

at the moment for deep learning development, we built our own

training and validation data sets. To minimize training time,

and since the aim was only to colorize old photographs for a

small extent, we randomly extracted a total of 3, 000 128× 128
samples from the 05/05/2011 color reference, spatially inde-

pendent from one another. Samples were split into training and

validation sets given a 10:1 ratio.

In order to learn a panchromatic-to-color mapping, all samples

were converted from the RGB color space to CIE Lab. This

resulted in images with 3 channels : L, a and b. L contains lu-

minance information, and approximately corresponds to a black

and white photograph. Its values range from 0 to 100. The last

two channels, a and b, are uncorrelated and contain color in-

formation. Their values range from −128 to +127. This step

allowed separating grayscale and chromatic information. Thus,

the proposed model only had to learn how to predict a and b,

while preserving spatial information provided by L after con-

catenation of the input and the two predicted channels. This

step also made it possible to learn only two channels (a and b)

instead of three (R, G and B), making the training step less

costly in terms of time and resources. At last, pixel values from

the Lab samples were scaled to a [−1;+1] range as a prerequis-

ite for traditional GAN training (Goodfellow et al., 2014).

The generator was based on a fully-convolutional UNet archi-

tecture (Ronneberger et al., 2015). It was fed with a batch of

black and white (L) samples that were first downsampled, and

later upsampled after passing through a bottleneck. The out-

put corresponded to a and b channels for the input samples.

Features learned during downsampling were concatenated in

a symmetric fashion to their corresponding upsampled coun-

terparts. This technique helped recognize spatial semantics at

various scales, while maintaining spatial information. During

training, samples passed to the generator were augmented by

applying random horizontal and vertical flips, rotation, blur and

variation in lightness. Data augmentation was necessary for

simulating the look and feel of old aerial photographs taken un-

der different conditions with specific sensors. In the end, the



generator was trained to minimize the probability of the dis-

criminator labeling generated data as not being part of the ref-

erence color distribution (Goodfellow et al., 2014). The cost

function for the generator was defined as:

LG = E [log(D(G(p), p))] (1)

where G = generator

D = discriminator

p = panchromatic sample

G(p) = colorized sample

The discriminator was based on the PatchGAN architecture pro-

posed by (Isola et al., 2017). It was fed alternatively with real

color and colorized samples and was tasked with the evaluation

of generated chroma, in regards to the reference distribution.

The discriminator was trained to maximize its probability of

distinguishing between both real and generated samples (Good-

fellow et al., 2014). The cost function for the discriminator was

defined as:

LD = E [log(D(c, p))] + E [log(1−D(G(p), p))] (2)

where D = discriminator

G = generator

p = panchromatic sample

c = color sample

G(p) = colorized sample

The model was trained for 1, 000 epochs, using a free Tesla K80

GPU provided by the Google Colab platform.

Colorized photographs from the validation set were evaluated

with image quality metrics such as peak signal to-noise ratio

(PSNR), and structural similarity index (SSIM). PSNR provides

information regarding the quality of reconstruction after color-

ization. Its values range from 0 db (different) to +∞ (identical).

The SSIM was computed in order to provide information re-

garding the similarity in lightness, contrast and color fidelity.

Unlike PSNR, it is said to correlate with human vision assess-

ment (Wang et al., 2004). Its values range from 0 (different) to

1 (identical).

Finally, after training and evaluation, the old aerial photographs

(L) were colorized using the generator. The input L channel,

along with the predicted a and b channels, were concatenated

and converted to RGB, in order to compute phenological in-

dices.

3.3 Time series analysis

Based on the corrected and harmonized photographs, we were

then able to analyze changes for grasslands since 1958. It is

important to note that the reconstructed trajectories cannot be

used to evaluate long-term productivity trends because of irreg-

ular acquisition dates between air missions, and the use of one

single date per year. Our objective was to assess the possibility

of obtaining plausible trajectories after correction and spectral-

ization of old aerial photographs.

First, one 10 × 10 m quadrat was randomly placed in each

of the 34 selected grasslands. All pixels entirely contained in

each quadrat were extracted in order to compute phenological

indices.

Then, two digital phenological metrics were calculated. Re-

cent works showed the usefulness of computing color indices

for measuring vegetation activity in near-sensing images (Reid

et al., 2016). Differences in scene illumination is a major issue

when processing old aerial photographs, mainly due to vign-

etting and variations in exposition (Aber et al., 2016). Tak-

ing this issue into account, two metrics were computed in the

scope of this study : (1) Green Chromatic Coordinate (GCC,

see Equation 3), which is well suited for suppressing variab-

ility in scene illumination, and (2) Excess Greenness (EG, see

Equation 4), which provides better differentiation between plant

material and soil background compared to other color indices

(Nijland et al., 2014, Reid et al., 2016).

GCCi =
Gi

(Ri +Gi +Bi)
(3)

EGi = 2×Gi − (Ri +Bi) (4)

where Gi, Ri and Bi are the predicted green, red and blue pixel

values respectively.

In order to reconstruct greenness trajectories from 1958 to

2011, the mean and standard deviation of GCC and EG were

computed for each quadrat and year. We also reported these

metrics both for the original and the corrected photograph at

each date to assess the effects of the proposed correction work-

flow on the greenness metrics.

Temporal profiles for greenness were finally clustered so as to

highlight different groups of grasslands trajectories over time.

An agglomerative clustering technique was used. The number

of clusters n was set empirically after trying out multiple values.

Samples were then merged recursively using cosine distance

affinity. More robust time series clustering techniques, such

as the ones based on dynamic time warping (Berndt, Clifford,

1994), were not explored in this study due to non-monotonic

intervals between air missions (Petitjean et al., 2014).

4. RESULTS AND DISCUSSION

In this section, we first demonstrate the effectiveness of the pro-

posed methodology for correcting and harmonizing old aerial

photographs. Results from the pipeline are presented for 1958

in Figure 3.

For all available samples in the time series, we were able to es-

timate standard deviation of the Gaussian noise corruption. The

estimated values based on a 1 byte pixel depth were the follow-

ing for each year: 1.18 (1958), 3.01 (1976), 1.79 (1986), 2.06
(1992) and 2.44 (2000). Standard deviations were then used

to denoise all of the available photographs, based on the NLM

algorithm. A visual inspection of the corrected sample shows

this technique has managed to retain details, while smoothing

the provided photograph. This is further highlighted by the cor-

responding error map, which is highly textured and contains the

removed noisy component (Figure 3). Even though there is no

literature regarding the correction of additive Gaussian noise in

archive photographs, other papers have come to the same find-

ings. Indeed, the NLM algorithm was successfully applied in
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Figure 3. Step-by-step results for the proposed correction and harmonization pipeline. Results are given for the 1958 photograph, as it

was the most deteriorated. The original photograph and correction results are presented so as to show the contribution of each step.

Error map are also provided, and correspond to the difference between the original and the corrected picture. Finally the colorization

result is presented for the studied area.

both spatial (Zhao et al., 2010) and wavelet (Iqbal et al., 2012,

Kang et al., 2015) domains, and was able to remove noise while

preserving edges and texture, at the cost of some blurring.

The proposed methodology for correcting local and non-local

variations in brightness also proved to be efficient. In Figure

3, vignetting is indicated in the original photograph by a strong

intensity fall-off around the edges. Meanwhile, the brightest

area does not correspond to the center of the picture, nor to its

principal point, as would normally be the case. The estima-

tion of a multi-scale mean illumination map made it possible

to account for these specific features, as can be seen in the cor-

responding error map. In an ideal case, the proposed method

should only provide an illumination field. However, the error

map shows that it also takes into account large spatial struc-

tures, such as forests and hedges. One technique to consider for

estimating only vignetting, for example, would be to estimate it

directly using a time series. The sample to be corrected would

be compared to a reference photograph, taken at an earlier or

later date. However, the difference between the two pictures

should be small enough to minimize possible differences, such

as changes in land use, which could affect the estimation of

vignetting. Even though the proposed technique was not the

same as ours, (da Silva, Candeias, 2012) have obtained sim-

ilar results, with an increase in mean brightness value and a

decrease in standard deviation after vignetting correction.

The distribution of pixel values for each year is shown in Figure

4. Mean pixel values along with standard deviations are given

in Table 2 for both the original and corrected samples. Despite

visually noticeable changes before and after correction on the

photographs (Figure 3), the distribution of pixel values varied

only slightly (Figure 4 and Table 2). This is encouraging, as the

objective is to preserve the initial signal, while cleaning it of

any imperfection that might disturb subsequent analyses. From

1976 to 2000, the mean of pixel values increased slightly, by an

average of 0.0525 points. The standard deviation decreased by

0.4425 points on average for the same dates. Similar trends are

observed for the 1958 photograph, but with a greater amplitude,

as the mean of pixel values increased by 7.67 points, and the

standard deviation decreased by 0.9 points. This picture was the

most deteriorated, especially due to a strong vignetting, which

explains the significance of the corrections that were made.

After correction, photographs were colorized using a generative
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Figure 4. Distribution of pixel values, before and after

correction, for each of the studied years.

Date Before correction After correction

1958 137.54 ± 26.83 145.21 ± 25.93

1976 137.25 ± 12.42 137.26 ± 11.98

1986 200.72 ± 16.65 200.76 ± 16.49

1992 163.16 ± 18.22 163.25 ± 18.06

2000 157.16 ± 11.39 157.26 ± 10.38

Table 2. Average and standard deviation of pixel values, before

and after correction, for each of the studied years.

adversarial network that was conditioned and pre-trained with a

2011 color reference. After 1000 epochs, results from the valid-

ation data set indicate robust performances for the colorization

task, with PSNR = 39.17± 4.79 and SSIM = 0.93± 0.05.

Our model performs as well as or better than approaches pro-

posed in other deep learning articles. In comparison, (Varga,

Szirányi, 2017) and (Deshpande et al., 2017) obtained mean

SSIM values of 0.89 and 0.93 respectively. Regarding PSNR,

(Larsson et al., 2016) and (Liu et al., 2018) obtained scores

of 24.45 db and 25.05 db respectively. After training, chroma

was predicted for all of the available black and white photo-

graphs. A colorization example is shown in Figure 3 for the

1958 sample. No color reference is available for old photo-

graphs. However, visual analysis of the results testify to the

model’s ability to process old photographs, although it was

trained with recent pictures. Despite local errors, colors were

properly predicted for all types of surfaces, including urban



areas, crops, grasslands and bare soils (Figure 5). Most errors

are located around image corners, or come in the form of large

brown, blue or cyan patches. This behavior could imply that the

model is sensitive to edge effect, and does not perform well over

homogeneous surfaces larger than training images. Increasing

the height and width of training samples could thus help over-

come this issue.

Figure 5. Colorization results for the corrected archive aerial

photographs.

Given the decent performances of the model and the adequacy

of the colorizations, the latter served as a medium for the calcu-

lation of phenological metrics.

We first observe similar relative greenness trends calculated be-

fore and after correction (Figure 6). It was an expected result

since brightness correction was not meant to drastically change

the radiometric distribution of aerial photographs, but rather

correct local and global anomalies. Then, mean and standard

deviations at each date showed comparable absolute results be-

fore and after correction (Table 3). Differences between GCC

and EG means are lower than 0.05 between the two steps, indic-

ating minor effects from brightness correction on the calcula-

tion of phenological metrics. These results might be explained

by several reasons. First, considering observations made from

Figure 4, noise correction had no major impact on the gray

levels distribution except decreasing the amplitude of the dis-

tribution values. This effect is particularly noticeable in 1986,

1992 and 2000. Nonetheless, patterns in the texture of grass-

lands remained heterogeneous even if they were attenuated.

The NLM algorithm successfully preserved the radiometric het-

erogeneity in grasslands since it was not considered Gaussian

noise. Second, the proposed metrics for measuring phenology

are supposed to be insensitive to variations in illumination. It is

particularly true for GCC for which the results after correction

were similar to that of the original photographs. Outcomes are

more nuanced for EG since a significant decrease in the stand-

ard deviation was observed after correction on the 1958 mission

(from 0.072 to 0.066) for which photographs were the most cor-

rupted by vignetting and dark outliers (Figure 4). Corrections

allowed enhancing low brightness values, which reduced the

EG variability among grasslands. Our results confirm findings

from (Nijland et al., 2014), who recommend the use of GCC in-

stead of EG in images where strong brightness variations occur.

Secondly, GCC and EG temporal profiles showed similar trends

over the studied time period (Figure 6). Average profiles only

indicated a reverse trend between 1986 and 1992, where GCC
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Figure 6. Average temporal profiles of GCC and EG for the

sampled grasslands.

Before correction After correction

Date GCC EG GCC EG

1958 0.36 ± 0.02 0.08 ± 0.08 0.35 ± 0.02 0.07 ± 0.06

1976 0.36 ± 0.01 0.13 ± 0.05 0.36 ± 0.01 0.12 ± 0.05

1986 0.35 ± 0.01 0.12 ± 0.06 0.35 ± 0.01 0.12 ± 0.06

1992 0.36 ± 0.02 0.10 ± 0.08 0.35 ± 0.02 0.09 ± 0.08

2000 0.35 ± 0.01 0.07 ± 0.06 0.34 ± 0.01 0.05 ± 0.06

2011 0.37 ± 0.02 0.11 ± 0.06 — —

Table 3. Mean and standard deviation for GCC and EG, before

and after correction, for each of the studied years.

was increasing (+0.3%) while EG was decreasing (−17%).

One explanation might be that EG is more sensitive to extreme

values than GCC. Therefore, an excessive number of bare soils

in 1992 (19 out of 34 grasslands) contributed to the decrease of

mean EG, leading to a trend reversal between those two dates.

These results reinforce the necessity of using EG to maxim-

ize the differentiation between plant materials and background

soils (Nijland et al., 2014, Reid et al., 2016). However, prob-

lems might occur in case of non-corrected illuminations vari-

ations, typical of the oldest B&W air missions.

High standard deviations were observed for each year, espe-

cially for 1958, 1992 and 2011, demonstrating a high green-

ness variability amongst the grasslands monitored in this study

(see Figures 6 and 7). This variability might be explained by

several factors. First, species assemblages in grasslands vary

strongly, leading to important phenological time-lags between

grasslands. Furthermore, recent works showed that the intra-

annual phenological cycle is a powerful proxy to predict species

diversity in grasslands from satellite image time series (Rapinel

et al., 2018, Fauvel et al., 2020). Secondly, the diversity of man-

agement practices provoked variations in the timing of mowing

events. It results in a large contrast of greenness between grass-

lands at each date because of the presence of bare soils and

grasslands advanced in their phenological cycle.

Last, we tested the possibility of clustering phenological grass-

lands trajectories (Figure 7). We remind that the retrieved tra-

jectories cannot be used to analyze long-term grasslands pro-

ductivity because of the non-monotonic acquisition dates, and



the use of one single air mission per year. Nevertheless, cluster-

ing results showed the feasibility of identifying distinct groups

of grasslands (6 clusters in total) and formulating assumptions.

In particular, clusters 1 (n = 7) and 3 (n = 6) exhibit sim-

ilar trends over time, but grasslands from the third cluster show

higher differences between dates, namely between 1958 and

1976. These grasslands might correspond to ancient hay mead-

ows, with a function that has evolved over time. Individuals

from the first cluster showed a higher relative stability, without

the presence of bare soils. They might have not been used as a

forage resource for a long time. Similarly, clusters 2 (n = 12)

and 5 (n = 6) displayed similar trends, but grasslands from the

latter group showed higher greenness values in the most recent

photograph. Unlike cluster 2, the species composition of these

grasslands might need more time to reach its peak of greenness,

leading farmers to mow later in the season.

Figure 7. Clusters of trajectories obtained from the GCC on

corrected products. In green, the average profile for the cluster.

In gray, the individual trajectories for the grasslands. Each

square corresponds to one of the 10× 10 m quadrats that were

used for sampling. Background images correspond to the

colorized aerial photographs.

These preliminary results are promising but should be pursued

in order to retrace long-term productivity of grasslands. Several

options must be considered. Fist, long-term grasslands traject-

ories must be retrieved from entire annual cycles to be recon-

structed. However, only a handful of air missions are available

each year in the best case scenario, with a maximum of 2 to

3 acquisitions for the studied area. One solution would be to

densify these series by learning new acquisition dates based on

present day satellite time series. Second, these reconstructed

phenological series should be analyzed with caution and require

further validation due to high uncertainty. Ex situ phenological

metrics, such as satellite NDVI at lower resolutions, are avail-

able from up to early 1980s. In situ long-term data, such as

herbariums, might also be interesting to analyze species com-

position and vegetation signal for the oldest available dates.

5. CONCLUSIONS

In this work, we presented a novel methodology for retrieving

long-term trends in grasslands phenology. In order to go as far

back in time as possible, and to promote the use of national

photo libraries, a time series was created with six air missions

from 1958 to 2011. Five of which were carried out with pan-

chromatic sensors. Due to the heterogeneity of archive aerial

products, the photographs were corrected from noise and vign-

etting, and then colorized with a conditional GAN to provide

consistent multispectral information on the remotely sensed

surfaces. The proposed techniques for correction and harmon-

ization showed good performances for the entire series. The

colorized photos then served as a basis for the computation of

greenness indices, namely GCC and EG, which can be used as a

proxy for assessing biodiversity. The output time series showed

specific trends for different grasslands, allowing to group them

by means of an agglomerative clustering technique. We assume

that these clusters reflect different trends in grassland manage-

ment or species composition in particular. However, the results

must be considered with caution, due to the irregular frequency

of photo acquisition and the lack of in situ and ex situ data for

validation. Nonetheless, this work demonstrates the usefulness

of archive aerial photographs for retrieving long-term and large-

scale data for environmental monitoring and evaluating changes

in grasslands phenology.
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