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Abstract: In today’s data-driven world, time series forecasting is an intensively investigated temporal
data mining technique. In practice, there is a range of forecasting techniques that have been proven
to be efficient at capturing different aspects of an input. For instance, classic linear forecasting
models such as seasonal autoregressive integrated moving average (S-ARIMA) models are known to
capture the trends and seasonality evident in temporal datasets. In contrast, neural-network-based
forecasting approaches are known to be best at capturing nonlinearity. Despite such differences, most
forecasting techniques inherently assume that models are fitted using a single input. In practice, there
are often cases where we cannot deploy forecasting models in this manner. For instance, in most
wireless communication traffic forecasting problems, temporal datasets are defined by taking samples
from hundreds of base stations. Moreover, the base stations are expected to have spatial correlation
due to user mobility, land use, settlement patterns, etc. Thus, in such cases, it is often advised that
forecasting should be approached using clusters that group the base stations based on their traffic
patterns. However, when this approach is used, the quality of the cluster centroids and the overall
cluster formation process is expected to have a significant impact on the performance of forecasting
models. In this paper, we show the effectiveness of representation learning for cluster formation
and cluster centroid definition, which in turn improves the quality of cluster-level forecasting. We
demonstrate this concept using data traffics collected from 729 wireless base stations. In general,
based on the experimental results, the representation learning approach outperforms cluster-level
forecasting models based on classical clustering techniques such as K-means and dynamic time
warping barycenter averaging K-means (DBA K-means).

Keywords: clustering; forecasting; representation learning; time series; multitasking

1. Introduction

Time series forecasting (prediction) is a well-developed temporal data mining tech-
nique [1–4]. The theory of time series forecasting often relies on the data having recogniz-
able patterns that can either be captured or learned. In practice, patterns or components
within a time series dataset include trends, seasonality, cycles, and irregular (error) compo-
nents [2,5,6]. In general, given a set of time series denoted by S = {X1, X2, X3, . . . Xt−1} :
Xi ∈ RN , the forecasting task can be formalized as:

X̂i,t:t+p = f (Xi,t−L:t−1, Yi,t−L:t−1) (1)
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where, X̂i,t:t+p = {X̂i,t, X̂i,t+1, . . . , X̂i,t+p} is the forecast for the ith series for p forward
steps or horizons. Moreover, Xi,t−L:t−1 = {Xi,t−L, . . . , Xi,t−1} are past observations over a
look-back window L. In most practical cases, different forecasting techniques often aim to
provide predictions for a range of future time stamps [1,2,5]. However, when this is the case,
it is important to carefully address the propagation of errors and the size of the look-back
window. In this regard, some forecasting techniques often incorporate exogenous variables
that are presumed to add value to (improve) the prediction accuracy [6]. In Equation (1),
the possibility of incorporating exogenous variables is indicated using the parameter
Yi,t−L:t−1. In practice, we can broadly categorize forecasting models based on different
factors. For instance, we can categorize them into univariate or multivariate models based
on their ability to incorporate either a single or multiple time series. We can also categorize
them, based on their mathematical formulation, as linear or nonlinear [1]. In general, on
deployment, the underlying data often govern which of the different forecasting models
is to be utilized. For instance, if forecasting is performed on a group of input time series
that have some degree of correlation, then multivariate techniques are more fitting [6–8]. In
contrast, if forecasting is performed on a group of series that show a sense of independence,
standard univariate techniques are often considered [9].

In practice, despite the differences among forecasting approaches, we must overcome
certain challenges and limitations that are associated with either the underlying data or a
forecasting model [1]. For instance, a limited number of training samples often leads to the
overfitting problem. In reality, overfitting is a problem in both univariate and multivariate
forecasting approaches [2,5,10]. However, in reality, there are also challenges (limitations)
that are specific to a given forecasting approach. For example, in some practical cases,
univariate forecasting models often fail to capture the dynamic nature of the underlying
data [3,11]. This is because, in these approaches, the model’s locality with respect to an
individual time series will restrict its scalability in the context of other correlated time
series [5,7]. For instance, in most wireless communication forecasting problems, tempo-
ral datasets are collected from a range of base stations that share a certain geographical
area [6,11]. In these cases, deploying univariate forecasting models on an individual base
station is often not advised for two reasons [3,11]. Firstly, due to the presence of user mobil-
ity, settlement patterns, land use, etc., base stations cannot be treated as isolated entities.
Consequently, a given base station is expected to have a piece of inherent hidden informa-
tion about its neighbors [12,13]. In addition to this, in wireless communication networks,
the base stations number hundreds if not thousands. Therefore, the sheer number alone
makes it challenging to deploy univariate forecasting models. In order to overcome these
and other additional challenges, most univariate time series forecasting tasks make use of
pre-processing techniques. For instance, prior to fitting most univariate linear forecasting
models, an input series is often processed in the context of identifying seasonal patterns,
extracting external explanatory variables, putting a limit on the forecasting horizon, and
using a “global” approach, which clusters the time series based on similarity [1,2,5,6,11,14].
Among such pre-processing steps, clustering is often considered to be useful in capturing
the spatial correlations and reducing the number of required forecasting models [11,14].
This is because, while clustering, we often group base stations that have similar traffic
patterns around a centroid (average). Thus, given an optimal cluster centroid, the patterns
observed within cluster members can be generalized. This, in turn, provides a way to
embed the information a base station has about its neighbors. Moreover, it has been shown
to be possible to further incorporate spatial correlation by defining a cluster correlation
matrix [11].

Although pre-processing techniques have proved to be useful, they often induce
challenges of their own. In reality, this will be evident if the techniques are not properly
configured or if the right technique is not utilized. In this respect, the quality of cluster-
level forecasting is often dependent on the separability of clusters, the correlation among
cluster members, and the quality of cluster centroids [11,14]. If, for instance, we focus on
the cluster centroids (averages), we at times find them being utilized as representatives
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while fitting univariate or multivariate forecasting models [11]. However, in practice,
time series cluster centroids are often significantly affected by temporal distortion, which
misaligns patterns (shapes) [15,16]. For instance, in Figure 1, we show a cluster of 50-Hertz
sinusoids (sin signals) that have phase differences of 0, π/3, π/6, 2π

3 , and π. We also show
the cluster centroids (averages) that are estimated using an arithmetic mean (shown in
Figure 1a) and the soft dynamic time warping barycenter averaging (SDBA) (shown in
Figure 1b) [17]. The average estimated using the arithmetic mean is smaller, due to the
presence of a phase shift (temporal distortion). In general, in practice, temporal distortion
often forces the arithmetic mean to aggregate shapes in a destructive manner [17,18].
Therefore, we often expect a cluster-level forecasting model that is based on an arithmetic
mean to be affected by underprediction. In addition to this, the impact of a temporal shift
is not limited to the distortion of the cluster centroids. A sub-optimal cluster centroid could
also lead to the grouping of members that have no significant correlation (similarity). This
in turn could affect the quality of cluster-level predictions that aim at capturing spatial
correlations via clustering [11,14].
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Figure 1. A demonstration of the impact of temporal distortion on the estimation of cluster centroids.
(a) An arithmetic mean. (b) An average estimated using SDBA.

With these observations in mind, in this paper, we propose to utilize a neural network
arrangement for cluster formation and centroid estimation. In this regard, we show the
advantage of utilizing representation learning, which aims to identify patterns that are
presumed to be useful for cluster formation in the latent space of neural networks [19].
Moreover, we also propose to utilize a neural network architecture that is able to estimate
time-domain cluster centroids from latent representations [18]. In reality, the utilization
of neural networks for the cluster formation and centroid estimation is expected to be
advantageous as a result of at least one factor, i.e., transfer learning [20]. In this regard,
neural networks are known to be good at generalizing for a range of unseen datasets.
Therefore, well-organized and trained clustering and centroid estimation networks are
capable of generating clusters and centroids without the need for costly re-runs, i.e., if
additional datasets (base stations) become available.

We have organized the rest of the paper into three additional sections. In Section 2, we
give a brief review of different clustering and forecasting techniques. Following this, i.e.,
in Section 3, we present the methodology used in this study. In Section 4, we present the
experimental evaluations. Finally, in Section 5, we present our concluding remarks.

2. Background
2.1. A Brief Review of Common Time Series Forecasting Techniques

On a holistic level, the different time series forecasting methods can be grouped
into [1,5,10]:

• Statistical models that aim to explicitly model time series patterns using domain knowledge.
• Deep-learning-based models that learn temporal dynamics in a purely data-driven

way and without explicit formulations.
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In practice, we find both categories of forecasting approaches deployed in wireless
network traffic prediction problems. Forecasting models that are deployed in this appli-
cation domain could be either one of the two or a hybrid of both approaches [2,9–12]. In
general, in this domain, one of the dominant knowledge-driven forecasting approaches
is the S-ARIMA forecasting model. The main driving force behind this dominance is the
seasonal nature of most mobile traffic data [2,6,9]. For instance, we expect base stations
located in residential areas to have a cyclic peak traffic demand in the early mornings,
late at night, and at weekends. The S-ARIMA model is found to be capable of modeling
such seasonalities by linearly combining the forecasts of autoregressive (AR) and mov-
ing average (MA) models (θ) [1,5]. However, in practice, increasing (decreasing) trends
within datasets have been found to introduce offsets into predicted values. Consequently,
S-ARIMA incorporates a difference operation, which is indicated with the keyword I(d).
Moreover, to account for seasonality, it treats the seasonal and non-seasonal parts of the
data independently. In general, assuming a (1 − L) lag operator, a S-ARIMA model is
mathematically represented as [1]:

(φp(L)ΦP(Lsk ))(1− L)d(1− L)Dsk (Xt − µ) = (θq(L))(ΘQ(Lsk ))εt (2)

where the (p; P(.)) and (q; Q(.)) orders of polynomials are used for AR(φ; Φ) and MA(θ; Θ)
coefficients, i.e., for the non-seasonal and seasonal parts. The parameters d and D are also
used to represent the differencing operation performed on the non-seasonal and seasonal
parts of the data. Moreover, Xt, εt, and µ are the value of a series at t, its residual term, and
a constant.

In practice, there are also cases where the underlying data could have patterns that can-
not be captured with linear models [8,11]. When this is the case, researchers often propose
deploying neural networks that are capable of performing nonlinear transformations. In
this regard, neural networks that are based on the long short-term memory (LSTM) method
are often found to be efficient [2,10]. This is because these networks are capable by design
of capturing the dependencies between time stamps, which is a useful characteristic in time
series forecasting. However, in some cases, combining S-ARIMA and neural networks has
been proposed, to better capture the seasonal, linear, and nonlinear aspects of an underlying
series [8,11]. We now conclude this section and proceed to the discussion of time series
clustering techniques.

2.2. A Brief Review of Time Series Clustering Techniques

Like time series forecasting, time series clustering is also an intensively investigated
temporal data mining technique [15,21,22]. In general, we can broadly categorize time series
forecasting as either distance- or features-based. In distance-based approaches, clustering
techniques utilize distance metrics either to group series around their centroids or to group
them in a hierarchical manner [22,23]. However, in practice, distance-based approaches
are often expected to incorporate some type of temporal alignment technique, to overcome
the impact of temporal distortion. When this is the case, the most frequently proposed
alignment technique is dynamic time warping (DTW) [24]. However, the incorporation
of DTW into the clustering process often increases the computational complexity of the
clustering process [16]. With this understanding, in recent years, researchers have proposed
performing clustering by utilizing latent space embedding of neural networks [19,21]. For
instance, in [19], the authors proposed deep embedding clustering (DEC), which uses a
denoising autoencoder to extract latent features from the input series. The latent features
are then grouped into K clusters by first computing the soft cluster assigning given in (3).

qi,j =
(

1+||Zi−µj)||l2
α )

−α+1
2

∑K
j=1(

1+||Zi−µj)||l2
α )

−α+1
2

(3)
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In (3), Zi ∈ Rτ is a latent embedding corresponding to a time series Xi ∈ RN , where
τ < N. Moreover, µi ∈ Rτ is the arithmetic mean of the latent embedding corresponding
to a cluster. In reality, the soft cluster assignment computes cluster labels based on the
likelihood of latent features under the Student t-distribution. In order to make the soft as-
signments meaningful, the authors proposed to define the auxiliary distribution (pi,j) given
in (4). Finally, the network was forced to minimize the Kullback–Leibler (KL) divergence
between its soft assignments and the auxiliary distribution (4).

L = KL(P||Q) = ∑
i

∑
j

pi,j log
pi,j

qi,j
, where pi,j =

q2
i,j

∑K
j=1 qi,j

∑K
j=1

q2
ij

∑K
j=1 qi,j

(4)

In this paper, we propose to cluster base stations using the DEC setup. However, one
minor inconvenience is that the DEC setup cannot generate time-domain cluster centroids.
We propose to overcome this limitation by utilizing a multitasking autoencoder, which is set
to perform multi-class classification and reconstruction. This configuration was proposed
in [18], in order to estimate the averages of multi-class temporal datasets from their latent
embedding. With this in mind, we will next present the methodology used.

3. Methodology
3.1. Proposed Network Architecture

In this study, we utilized the multitasking architecture shown in Figure 2, in order to
estimate time-domain cluster centroids. Moreover, we also used the architectures shown at
the encoder for deep embedding clustering under the DEC arrangement. In general, the
multitasking setup optimizes for reconstruction and the multi-class classification losses
given in (5), where Xi, X̂i are input and reconstructed time series in RN . Moreover, pi,j are
the softmax activation values (the likelihood) of a series Xi belonging to category (Cat) [18].
In terms of layer arrangements, the multitasking network is constructed from transposed
and normal convolutional, max-pooling, flattening, and dense layers [25].

LMulti(Xi, X̂i, Cat, pcat) =
1
N

N

∑
i=1
||Xi − X̂i||l2 −

1
N

N

∑
i=1

C

∑
j=1

Cati,j lnpi,j (5)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Depth  

Time 

Channel 

2 convolutional 

layer 

3 

convolutio

nal layer 

5 

convolutio

nal layer 

Figure 2. Neural network architecture utilized for cluster centroid estimation.

In reality, the layer arrangements are motivated by the layer configurations observed
in the Visual Geometry Group-16 (VGG16) architecture [26]. Overall, we configured the
convolutional and max-pooling layers with a kernel size of 3. Moreover, we configured the
transposed convolutions to have a stride of 2. In contrast, the non-transposed convolutional
layer and the encoder’s last max-pooling layer had a stride of 1. Furthermore, the number
of neurons in the encoder’s dense layer was set to b 2688

4 c. Moreover, we configured the
dense layers of the three classifiers to have b 0.9 × 2688

8 c, b 0.8 × 2688
16 c, and K neurons, where
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K is the number of clusters. Finally, we set the number of neurons for the decoder’s
dense layer to 2688. In terms of layer activation, we utilized a rectified linear unit (ReLU)
activation function on most of the proposed neural network’s layers. However, for the
first encoder’s convolutional layer and the last decoder’s dense layer, we utilized a linear
activation function. Finally, we set the classifier’s last dense layer to use a softmax activation
function [20,25].

3.2. Datasets

The datasets used were collected from 729 base stations providing wireless data
services to regions located within Addis Ababa, Ethiopia. In order to define the temporal
datasets, 24 h of data traffic measurements were taken for four consecutive months, i.e.,
from September 2019 to the end of December 2019. Hence, we obtained 729 temporal
datasets that were 2688 time stamps long.

3.3. Experimental Setup

In order to evaluate the proposed approach, we first converted the datasets from
terabytes to gigabytes by dividing by 1024. We then took the encoder and decoder portion
of the multitasking setup and trained it for a reconstruction loss, i.e., using the first part
of (5). Following this, we took the encoder portion of the trained autoencoder and trained
it for 1500 epochs using the objective function given in (4). We then used the network to
predict cluster labels for the latent embedding of input datasets. Next, we used the labeled
series to train the full multitasking setup using (5). This training was performed in order to
generate time-domain centroids (averages) for the clustered latent space representations.
After training, we estimated time-domain cluster centroids using the decoder portion
of the multitasking autoencoder and by taking the arithmetic mean of the latent space
represenations. We then took the estimated centroids and fitted a D-SARIMA model,
which was implemented in R [27]. The model fitting was performed using a segment of
the estimated cluster centroids, i.e., a segment that corresponded to 3 1

4 months of traffic
measurements. However, in addition to segmenting the centroids, we also identified the
most strongly correlated cluster centroids. We used these centroids as exogenous variables
of one another while fitting the D-SARIMA model. This, in turn, becomes useful for
capturing the spatial correlation among base stations that is evident due to land use.

Finally, we used the D-SARIMA models that were fitted to the cluster centroids to
generate 1 1

2 weeks of predictions for individual cluster members. However, in order to
generate the predictions, we substituted the centroid segments used for model fitting
with the corresponding segments of the individual cluster members. In this way, it is
possible to test the representativeness of the coefficients learned using the segments of the
cluster centroids. Finally, we assessed the quality of the predictions using the root mean
square (RMS) error and mean absolute error (MAE), as given in (6). As a comparison,
we performed the same evaluations using the TSLearner implantation of K-means and its
variant, DBA K-means [16,23,28].

RMSE =

√√√√ 1
N

N−1

∑
i=0

(yti − ŷti )
2 MAE =

1
N

N−1

∑
i=0
|yt+i − ŷt+i| (6)

4. Experimental Results and Discussion

Prior to any model training or fitting, we first assessed the inter-cluster inertia of the
traffic datasets, i.e., we determined the optimal number of clusters (K). In this regard, we
first conducted a basic K-means clustering for different values of K. We then observed the
average within-group squared sum (WGSS) for different values of K. From this observation,
we found that five clusters sufficiently minimized the inter-cluster inertia. Next, we
decomposed the datasets into their trend, seasonal, and residue components. Moreover, we
conducted autocorrelation (AC) and partial autocorrelation (PAC) analyses of the datasets
in order to determine the period of the seasonalities. Figure 3a,b show that the datasets have
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seasonal and trend components. Moreover, Figure 3c,d show that there are two seasons,
i.e., a daily (24 h) season and a weekly (168 h) season. Therefore, we decided to deploy a
double seasonal ARIMA (D-SARIMA) model rather than an S-ARIMA model.
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Figure 3. Demonstration of the seasonality of the data traffic. (a) Daily seasonality. (b) Weekly
seasonality. (c) Autocorrelation. (d) Partial autocorrelation.

We then used R’s auto.sarima package to determine the optimal model parameters
for D-SARIMA {S1(P, Q, D), S2(P, Q, D), and (p, q, d)}. In this regard, we found that D-
SARIMA {(2, 1, 2), (2, 0, 0)24, (2, 0, 0)168} gave a better validation error. Therefore,
we first clustered the base stations into five groups using the DEC arrangement. We then
plotted the clusters on the map of Addis Ababa in order to visually assess whether the
clusters had a geographical meaning, as shown in Figure 4.

Figure 4. Geographical location of clusters corresponding to base stations within Addis Ababa.

In general, the clustering algorithm identified geographical locations that correlated
with the offered traffic demand. For instance, cluster 1 corresponded to the areas locally
known as “Megenagna” and “Bole”. These locations are known to accommodate large
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entertainment facilities and the country’s largest airport. Additionally, the locations cor-
responding to cluster 2 accommodate governmental and non-governmental institutions,
universities, residential areas, and embassies. Furthermore, cluster 0 and cluster 3 corre-
sponded to mixed use areas that are densely populated, such as “Cherkos” and “Autobis
Tera”. Finally, cluster 4 was a purely residential area that is sparsely populated. Overall, the
DEC arrangement identified geographical locations that correlated with the amplitudes
of the centroids. The alternative clustering also identified similar patterns. However, we
observed minor distortions in the centroids of the DBA K-means clustering. We associated
these distortions with the sensitivity of DBA to the offset (trend) that is evident in the
datasets. Figure 5 demonstrates DBA’s response to the offsets, which are manifested as
sharp spikes.

Figure 5. Clusters and cluster centroids estimated by DBA K-means.

We next compared the performances of the D-SARIMA models fitted on the cluster
centroids estimated using the different clustering techniques. In this regard, we made two
types of predictions. First, we predicted cluster members using D-SARIMA models that
were fitted on the cluster centroids, as discussed in the Experimental Setup section. In
Table 1, these predictions are differentiated using the keyword CS. In addition to this, as
a benchmark, we made similar predictions using D-SARIMA models that were fitted on
the individual cluster members. In Table 1, these prediction are differentiated using the
keyword BS.

We can interpret the results shown in Table 1 from two different angles. First, we can
note that whatever the utilized clustering technique, cluster-level forecasting approaches
better captured the dynamics of the underlying data. This is evident, because we have
incorporated the spatial information by using highly correlated cluster centroids as ex-
ogenous variables. In addition to this, we can also note that the representation learning
approach had the lowest aggregate prediction error. This, in turn, implies that the approach
is able to overcome the impact of temporal distortion either on cluster formation or on
centroid estimation. We conclude this section by presenting the forecasts generated by
the three approaches for one of the base stations. For the forecasts shown in Figure 6, the
D-SARIMA based on representation learning achieved RMSE and MAE values of 0.758 and
0.596. In contrast, the DBA K-means and basic K-means approaches achieved RMSE and
MAE values of 0.802 and 0.617, and 0.669 and 0.847.
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Table 1. Comparison of cluster-level and data-level forecasting.

Techniques Errors Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Average

DEC_CS
RMSE 1.104 1.050 0.409 1.524 0.863 0.990

MAE 0.816 0.778 0.305 1.145 0.671 0.743

DEC_Clust_BS
1.417 1.205 0.426 1.867 0.992 1.181

1.092 0.932 0.308 1.158 0.758 0.909

DBA K-Means_CS
RMSE 0.714 2.129 1.079 0.416 1.468 1.161

MAE 0.524 1.715 0.789 0.318 1.156 0.901

DBA_K-Means_Clust_BS
0.868 2.012 1.205 0.330 1.652 1.214

0.664 0.565 0.919 0.239 1.288 0.935

K-Means_CS
RMSE 1.131 0.938 0.389 1.774 1.906 1.228
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(c)
Figure 6. Example forecasts generated using K-means, DBA K-means, and DEC clustering multitask-
ing autoencoder centroid estimation. (a) DBA-K-means-based forecasts. (b) K-means-based forecasts.
(c) DEC and multitasking autoencoder based forecasts.

5. Conclusions

In this paper, we argued that the effect of temporal distortion on cluster formation
and cluster centroid estimation cannot be ignored. With this in mind, we proposed a
representation-learning-based clustering and cluster centroid estimation approach for
cluster-level forecasting. We showed that this approach has the ability to better capture the
spatial correlation evident among base stations within wireless communication networks.
In general, to validate our argument we only utilized a basic linear forecasting model.
However, in reality, the potential of the proposal is not limited to this. In our future work,
we aim to assess the improvement in the quality of forecasts using either neural-network-
based forecasting techniques or a hybrid of linear and neural-network-based forecasting
approaches.
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