
Finding Foundation Models for Time Series
Classification with a PreText Task

Ali Ismail-Fawaz1, Maxime Devanne1, Stefano Berretti2, Jonathan Weber1,
and Germain Forestier1,3

1 IRIMAS, Universite de Haute-Alsace, Mulhouse France
{ali-el-hadi.ismail-fawaz,maxime.devanne,jonathan.weber,germain.forestier}@uha.fr

2 MICC, University of Florence, Florence Italy stefano.berretti@unifi.it
3 DSAI, Monash University, Melbourne Australia germain.forestier@monash.edu

Abstract. Over the past decade, Time Series Classification (TSC) has
gained an increasing attention. While various methods were explored,
deep learning – particularly through Convolutional Neural Networks
(CNNs) –stands out as an effective approach. However, due to the lim-
ited availability of training data, defining a foundation model for TSC
that overcomes the overfitting problem is still a challenging task. The
UCR archive, encompassing a wide spectrum of datasets ranging from
motion recognition to ECG-based heart disease detection, serves as a
prime example for exploring this issue in diverse TSC scenarios. In this
paper, we address the overfitting challenge by introducing pre-trained
domain foundation models. A key aspect of our methodology is a novel
pretext task that spans multiple datasets. This task is designed to iden-
tify the originating dataset of each time series sample, with the goal
of creating flexible convolution filters that can be applied across differ-
ent datasets. The research process consists of two phases: a pre-training
phase where the model acquires general features through the pretext
task, and a subsequent fine-tuning phase for specific dataset classifi-
cations. Our extensive experiments on the UCR archive demonstrate
that this pre-training strategy significantly outperforms the conventional
training approach without pre-training. This strategy effectively reduces
overfitting in small datasets and provides an efficient route for adapting
these models to new datasets, thus advancing the capabilities of deep
learning in TSC.

Keywords: Time Series Classification · Deep Learning · Pre-Training
Deep Learning · Time Series · Convolutional Neural Networks.

1 Introduction

Time series are sequences of data points indexed by time, typically obtained by
observing a random variable over consistent intervals. These data sequences are
prevalent in various machine learning applications, including classification [14]
and clustering [8], among others. Over the past decade, Time Series Classification

This is the author’s version of an article published at PAKDD Workshop IWTA 2024. The final
authenticated version is available online at: https://doi.org/10.1007/978-981-97-2650-9_10

https://doi.org/10.1007/978-981-97-2650-9_10

Fig. 1. Summary of the proposed pre-
text task approach. Given an archive of
N datasets, the first step is to train a
pre-trained model (in blue) on all of the
datasets, where the classification task is to
predict the dataset each time series belongs
to. The second step is to copy the pre-
trained model and follow it with an addon
model (in green) randomly initialized. The
second step is done independently for each
of the N datasets of the archive. After con-
structing the N new models, they are fine-
tuned on each dataset depending on the
task of each one.

Pre-trained
Model...

Archive of N datasets

dataset
1

dataset
2

dataset
N ..

.

dataset
1

Add-on
Model ..

.

..
.

dataset
N

Add-on
Model ..

.

copy

Randomly
Initialized

predicted
dataset

predicted
class

predicted
class

Step 1:

Step 2:

Pretraining

Fine Tuning

Pre-trained
Model

N
Neurons

C1

Neurons

CN

Neurons

Pre-trained
Model

(TSC) has witnessed a surge in research activity. This increasing interest spans
across diverse fields such as medicine and telecommunications.

Deep learning, with its advanced neural network architectures, offers signif-
icant potential for TSC classification [11], often achieving state-of-the-art per-
formance in various TSC tasks. Conventionally, solving a TSC problem with
deep learning involves initializing a neural network architecture randomly and
feeding it with the training data. However, when the training dataset is limited,
this method can lead to overfitting, where the model adapts too closely to the
training data, resulting in poor performance on unseen test samples. This chal-
lenging problem of having a dataset with few training examples does exist almost
everywhere in machine learning research. This common problem reflects a real
case scenario and it has been adapted to datasets of the UCR archive, the most
comprehensive repository for univariate TSC datasets. This large archive is com-
posed of 128 datasets covering various TSC tasks going from motion recognition
to the classification of heart diseases using Electrocardiogram (ECG) signals.
The depth of the UCR archive lies in its diverse representation of tasks across
multiple domains, often providing several example datasets for each domain.

Gathering additional training samples to address the overfitting issue can
be time-consuming and resource-intensive. Furthermore, even if more samples
are generated, annotating them typically necessitates expertise, thus introducing
additional costs. As a solution, various approaches were proposed in the literature
such as data augmentation [9], and the use of hand-crafted generic filters [6].
However, while effective, these methods can introduce noise and disrupt the
training process.

To take advantage of having multiple datasets within a given domain, we aim
to identify a foundation pre-trained model for each domain of TSC, replacing the
random initialization used in traditional techniques. This pre-trained foundation
model is trained on a shared task among the different datasets. Specifically, the
task is to predict the original dataset of each sample. For instance, if we merge
two datasets, dataset1 and dataset2, from the same domain, and temporarily

disregard their specific target classes, the objective of the pre-trained model
becomes discerning the origin of each sample in this combined set.

Once the pre-training phase is completed, the model is fine-tuned for the spe-
cific tasks of each dataset. An overview of our proposed methodology is depicted
in Figure 1. After the pre-trained model has been fully trained on the pretext
task, the fine tuning stage can follow two different options. The first option is to
fine tune the pre-trained model followed by a classification layer with respect to
the classification task of the dataset. The second option is to fine tune the pre-
trained model cascaded with deeper layers to extract deeper features followed by
a classification layer. The first option was followed in the work of [10], where the
authors studied the effect of transfer learning on TSC. However, performance
was not as good as expected, due to the fact that most target datasets were
sensitive on the dataset used as source for the transfer learning.

In this work, we follow the setup of the second option. In particular, we believe
that in the first option ignoring deeper meaningful features correlated with one
dataset during the fine tuning step implies a strong assumption: the pre-trained
model learned the optimal convolution filters that are able to correctly generalize
to the classification task. But this may not be the case.

In summary, the main contributions of this work are:

– Novel domain foundation models trained to solve a pretext task to enhance
deep learning for TSC;

– Novel Batch Normalization Multiplexer (BNM) layer that controls the multi-
dataset (multi-distribution) problem of the batch normalization;

– Extensive experiments on the UCR archive show a significant improvement
when using the pre-trained model over the baseline model.

2 Related Work

Many works in the literature have been proposed to address the TSC task and
have been evaluated on the UCR archive. These tasks range from similarity
based approaches to ensemble models, deep learning, etc. In what follows, we
present the latest state-of-the-art approaches that addressed the TSC task.

2.1 Deep Learning Techniques

In 2019, the authors of [11] released a detailed review on the latest deep learn-
ing approaches for solving TSC on the UCR archive. The two best performing
models were Convolutional Neural Networks (CNNs), the Fully Convolutional
Network (FCN), and the Residual Network (ResNet) [15]. Moreover, the authors
of [12] proposed a new CNN based architecture called InceptionTime, which is an
ensemble of multiple Inception models. More recently, new hand-crafted convo-
lution filters were proposed to enhance InceptionTime by [6] with their proposed
H-InceptionTime model. It achieves new state-of-the-art performance for deep
learners on TSC. Finally, the authors of [4] argued that there is no need for large

complex models to solve the TSC task on the UCR archive, but instead they
proposed a lighter architecture called LITE. LITE balances between its small
number of parameters and its state-of-the-art performance using some boosting
techniques.

2.2 Pre-Training Deep Learning Techniques

In the last few years, some approaches addressed the TSC task using pre-trained
deep learning models. For instance, the work in [10] proposed to apply transfer
learning of a deep learning model from a source time series dataset to a target
dataset. The deep learning model was trained on a source dataset and then fine
tuned on a target dataset. Some works trained a deep learning model with a
Self-Supervised task and then used its output features to learn a classifier [7].
The so called “knowledge distillation” is another technique that uses pre-trained
models. Following such idea, the authors of [1] used a pre-trained FCN [15] model
and distilled its knowledge to a smaller version of FCN. This process helps to
balance between a smaller architecture and its performance.

The difference between our proposed approach and the traditional pre-training
techniques is the usage of multiple domains during training. It is important to
note that the goal of this work is not to solve transfer learning but instead
to enhance deep learners when solving direct TSC tasks using a pre-training
approach. In what follows, we detail our approach and the used pretext task.

3 Proposed Method

3.1 Pretext Task

A Univariate Time Series (UTS) x = {x0, x1, . . . , xT } is a vector of T values
of a random variable changing with time. Univariate Time Series Classification
Dataset (UTSCD) D = {(xi,yi)}N−1

i=1 is a set of N UTS with their corresponding
label vector y. We denote by C the number of unique labels existing inD. Given a
backbone deep learning model for TSC made of n layers, we divided the backbone
model into two sub-models. The first sub-model (referred to as the pre-trained
model) focuses on learning a pretext task; the latter is an additional randomly
initialized model acting as an add-on to the pre-trained model that focuses on
the TSC task. The pretext task chosen in this work is the following: given a set of
M UTSCD, the task of the pre-trained model is to correctly predict from which
dataset each sample belongs to. It is important to note that one could argue
that a more intuitive approach is to combine all datasets and classes and predict
a massive class distribution without the need of going through a pretext task.
This last approach, however, would result in some issues when no correlation
exists between classes of different datasets, so that the class distribution would
not have a meaningful representation.

Once the pre-trained model is fully trained, the model is extended by a
randomly initialized model. The new constructed model, made of a pre-trained

Input
Time Series

32, 40

32, 20

32, 10

32, 13

32

32, 1

128, 1

3

32

32, 13 32, 13

32

32, 13

32

32, 1

128, 1

3

32

32, 13 32, 13

32, 40

32, 20

32, 10

32, 40

32, 20

32, 10

32, 40

32, 20

32, 10

32, 40

32, 20

32, 10

32, 40

32, 20

32, 10

32, 40

32, 20

32, 10

32, 40

32, 20

32, 10

I, D, P
The pre-trained model
(pretext task applied)

Randomly initialized
addon

number
of

filters

kernel
size

Fig. 2. The H-Inception architecture is divided into two sub-models: the pre-trained
model, trained on the pretext task (dotted green rectangle), and the randomly ini-
tialized add-on model (dotted red rectangle). The H-Inception model is made of six
Inception modules, each module containing three convolutional layers (in orange) and
a MaxPooling layer (in magenta), followed by a concatenation (in yellow), a batch
normalization layer (in oily), and an activation function (in red). Each Inception mod-
ule, except the first one, is preceded by a bottleneck layer (in purple) to reduce the
dimensionality and so the number of parameters. The first Inception module contains
the hybrid addition, which is the hand-crafted convolution filter (in green). Residual
connections do exist between the input and the third module, as well as between the
third module and the output (in cyan).

and a randomly initialized sub-model, is then fine tuned on the TSC task for
each dataset independently. In summary, the different steps of the whole training
procedure are:

– Step 1: Given a set of M UTSCD datasets: {D0,D1, . . . ,DM−1}, where

Di={(xj ,yj)}
Ni−1
j=0 , constructDPT ={(xn,ydn)}N−1

i=0 , whereN=
∑M−1

n=0 Nn,
is a dataset including all the time series from Di with new labels yd that
represent the dataset the input sample x belongs to;

– Step 2: Build a pre-trained model, PT (.) with LPT layers trained on D to
correctly classify the dataset each sample belongs to;

– Step 3: Build, for each of theM datasets, a classifier FTi(.) for i ∈ {0, 1, . . . ,M−
1} with LPT + LFT layers;

– Step 4: Fine tune a classifier FTi(.) for each dataset.

Backbone Model. In this work, we base our model on the-state-of-the-art deep
learning model for TSC, the Hybrid Inception architecture (H-Inception) [6]. It
is important to note that H-InceptionTime proposed in [6] is an ensemble of
five H-Inception models trained with different intializations. For this reason,
the backbone architecture in our approach is the H-Inception architecture, and
we ensemble the trained models as well following the original work [6,12]. A
summarized view of how the H-Inception backbone is decomposed into the pre-
trained and fine tuning parts is presented in Figure 2. Given that the original
H-Inception architecture is made of six Inception modules, the first three modules
are set to be part of the pre-trained model and the last three are then added

to the fine tuning part. We refer to our approach using this specific H-Inception
backbone as PHIT (pre-trained H-InceptionTime).

Batch Normalization Multiplexer (BNM). Most deep learning models for
TSC [11] that achieve state-of-the-art performance on the UCR archive [2] are
convolution-based architectures that also use the Batch Normalization layer with
the goal of accelerating the training. In the H-Inception [6] backbone model that
we chose, each convolution layer is followed by a Batch Normalization. The role
of the Batch Normalization is to learn how to scale and shift the batch samples
in order to get a zero mean and unit variance. However, this may be problematic
when samples in a same batch are generated from different distributions, i.e.,
from different datasets, such as in the case of our pre-trained model. For this
reason, while training the pre-trained model on the pretext task, multiple Batch
Normalization layers should be defined, one for each dataset, so as to replace
the one usually used in modern CNN architectures for TSC. For this layer to
work, we should then allow the model to connect each sample in the batch to the
correct batch normalization layer. A visual representation of the proposed Batch
Normalization Multiplexer (BNM) is presented in Figure 3. From the figure, it
can be observed that the BNM takes as input the outcome of the previous layer,
with the information of the dataset of the used series, being this information the
same one the model is trying to predict. The dataset information goes through
the control node of the BNM and chooses which Batch Normalization layer the
output node should be connected to.

Fig. 3. The proposed BNM, is constituted
of multiple batch normalization layers (in
oily with blue and red contours) preceded
by a multiplexer. This multiplexer has three
nodes: (a) the input node, where the in-
put time series goes through, (b) the con-
trol node, where the information about the
dataset this input time series belong to goes
through, and (c) the output node. The path
selected for the output node is controlled by
the node (b).

dataset 1

dataset 2

convolution
layer

convolution
layer

batch norm layer
of dataset 1

batch norm layer
of dataset 2

a

b

c

a

b
c

: input node

: control node

: output node

Time

V
a
lu

e

Cha
nn

el

b

Batch
Normalization

Multiplexer

4 Results and Analysis

Datasets. To evaluate the performance of our proposed approach, we conducted
a series of experiments on the UCR archive dataset [2], which comprises 128
datasets. However, due to redundancies in the archive, our study narrows it
down to only 88 datasets. For instance, identical datasets appear multiple times
but with varied train-test splits for distinct classification tasks. Such overlaps

could compromise the integrity of our model’s training as it aims to predict the
source dataset of a sample. Moreover, some datasets, while seemingly distinct,
merely had varied class counts or were truncated versions of another. A detailed
discussion of the reasons for excluding some datasets is reported in Table 1 of
the supplementary materials. All datasets underwent a z-normalization prior to
training to ensure a zero mean and unit variance. As samples from these datasets
may differ in length, zero padding was applied within each batch (rather than
before training) to align with the length of the longest series.

Division of the Datasets into Types. The purpose of using a pre-trained
model is that of boosting the performance of the deep learning classifier on
small datasets using knowledge learned on large ones. This is intuitively most
applicable in the case where both the large and small datasets have at least
basic information in common. For this reason, we do eight different pretext
experiments following the number of dataset types that exist in the UCR archive.
In particular, we used all of the datasets of the ECG type to train a pre-trained
model, then fine tuned on each dataset independently. These eight types with the
corresponding number of datasets are the following: Electrocardiogram (ECG) -
7 datasets, Sensors - 18 datasets, Devices - 9 datasets, Simulation - 8 datasets,
Spectrogram - 8 datasets, Motion - 13 datasets, Traffic - 2 datasets, Images
contour - 23 datasets.

Implementation Details. The proposed method is implemented in Tensorflow
python and the code will be available upon acceptance. All of the parameters of
the H-Inception model follow the same as in the original work [6]. Each experi-
ment was performed with five different initializations, including the pre-trained
and the fine tuned models. Results of multiple runs were assembled together
and the model used for evaluation is the best model monitored during training
following the training loss. We used a learning rate decay, ReduceLROnPlateau
in keras, to reduce the learning rate during training by monitoring the train loss
with a factor of half. All models were trained on a batch size of 64; the pre-
trained model was trained for 750 epochs and the fine tuned model was trained
for 750 epochs as well. This last condition ensured us to not train the model for
more epochs than the baseline (i.e., the baseline was trained for 1500 in [6]).
All experiments were conducted on an Ubuntu 22.04 machine with an NVIDIA
GeForece RTX 3090 graphic card with 24GB of memory.

4.1 Comparing Pre-Training with Baseline (Ensemble)

We present in this section a 1 vs. 1 comparison between our pre-training approach
using the H-Inception architecture and the baseline. In what follows, we refer to
our approach as Pre-Trained H-InceptionTime (PHIT).

Figure 4 represents this 1 vs. 1 comparison by a scatter plot between PHIT
and H-InceptionTime. Each point represents a UCR dataset, where the x and y
axis report the accuracy metric of H-InceptionTime and PHIT, respectively. The

Fig. 4. A 1 vs. 1 scatter plot that
compares H-InceptionTime (base-
line) and PHIT using the accu-
racy metric. Each point represents
a dataset, where the x and y
axis represent the accuracy of H-
InceptionTime and PHIT, respec-
tively. A blue point represents a
win for PHIT, an orange point
a win for H-InceptionTime and a
green point a tie.

PHIT is
better here

H-InceptionTime
is better here

0.4 0.5 0.6 0.7 0.8 0.9 1.0

H-InceptionTime (baseline)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
H

IT

Win 45

Tie 15

Loss 28

P-Value 0.021

accuracy is evaluated on the test set for each dataset using both methods. This
1 vs. 1 shown that over the 88 datasets, PHIT performs much better than the
baseline. From the legend of Figure 4 it can be seen that PHIT wins 45 times
over the baseline; the baseline wins only 28 times. To evaluate the statistical
significance of this difference in performance, we presented as well a p-value
produced using the Wilcoxon Signed-Rank Test. This p-value, represents the
% of confidence of a difference in performance being statistically significant. If
the p-value is less than 5% it means there is not enough datasets to conclude a
statistical significance in the difference of performance. In this comparison, as
seen in Figure 4, the p-value between PHIT and the baseline is almost 2.1%,
which means PHIT significantly outperforms the baseline.

Table 1. The Win/Tie/Loss count between the proposed PHIT approach and the
baseline (H-InceptionTime) per dataset domain. The first column presents the number
of datasets included per domain followed by the number of Wins for PHIT, number
of Ties, and number of Wins for the baseline. We include as well the percentage of
number of losses and the average difference in accuracy (PHIT - baseline). A positive
value in the last column indicates that on average of all datasets in a specific domain,
PHIT performs better than the baseline on the accuracy metric (lowest value 0.0 and
highest value 1.0).

Dataset
Type

Number of
Datasets

Wins of
PHIT

Ties of
PHIT

Losses of
PHIT

Percentage
of Losses

Difference in
Average Accuracy
(PHIT - Baseline)

Devices 9 4 0 5 55.55 % +0.0046

ECG 7 3 2 2 28.57 % +0.0012

Images 23 14 2 7 30.43 % +0.0087

Motion 13 11 1 1 07.69 % +0.0179

Sensors 18 7 5 6 33.33 % +0.0002

Simulation 8 3 3 2 25.00 % +0.0051

Spectro 8 3 2 3 37.50 % +0.0115

Traffic 2 0 0 2 100.0 % -0.0333

Analysing Performance per Domain. In Table 1, we present a detailed
analysis on the performance of the proposed PHIT approach compared to the
baseline per dataset domain. We present, for each domain used in the UCR
archive, the total number of datasets and the Win/Tie/Loss count with the
average difference in performance in the last column. A positive value in the last
column confirms that on average PHIT outperforms the baseline on the average
accuracy metric. We also present in the 5th column the percentage of number of
losses of PHIT. From the table it can be seen that the percentage of losses never
exceeds 50% more than twice, and that the average difference in performance is
always positive except on one type (Traffic). These observations indicate that not
only PHIT outperforms the baseline on a global scale of the UCR archive on the
majority of domains. This comparison shows that fine tuning a pre-trained model
on a generic task, which is in common between multiple datasets is significantly
better than the traditional approach.

4.2 Visualizing the Filters

Since we base our work on CNNs, we can compare the space of the learned filters
to see the effect of the pre-training approach. In order to visualize this space,
we used the t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization
technique to reduce the dimensionality of the filters into a 2D plane [6]. By taking
the filters of the first Inception module from the baseline, the pre-trained model
and the fine tuned model, we can visualize the filters in Figure 5. In this figure,
we consider the experiment over the ECG datasets, where we choose a couple:
ECG200 and NonInvasiveFetalECGThorax1. We chose these two datasets given
the difference in size of the training set. For instance, ECG200 has 100 training
examples, whereas NonInvasiveFetalECGThorax1 has 1800.

Dimension 1

D
im

e
n
si

o
n
 2

Almost
no common

area

Dimension 1

D
im

e
n
si

o
n
 2

ECG200 (small dataset) NonInvasiveFetalECGThorax1 (large dataset)

Difference in size = x18

Common areas

Fig. 5. A two dimensional representation of the filters coming from the first Inception
module of the baseline (in blue), pre-trained(red) and fine tuned (green) models.
The used datasets in this study are ECG200 (left) and NonInvasiveFetalECGThorax1
(right). The magenta areas represent the areas around the filters of the baseline model.

From Figure 5, the filters of the baseline, pre-trained and fine tuned models
are presented for each dataset. The first noticeable aspect is that the blue points,
representing the filters of the baseline, are quite different from the other red and
green points. This ensures that by using the pre-trained model, then fine tuning
it, the backpropagation algorithm learns different convolution filters than the
traditional baseline approach. The second noticeable thing is that there exists
a difference between both plots. On the one hand, in the case of ECG200 (left
plot), almost no common areas exist between the filters of the three models. On
the other hand, in the case of NonInvasiveFetalECGThorax1 (right plot) there
exist many common areas between the filters of different colors. However, there
exist some new areas for the pre-trained and fine tuned filters (green and red),
which indicates that even though the dataset is large enough, the pre-trained
model explored new filters given what it learned from other datasets.

4.3 Comparison with the State-of-the-Art

In what follows, we utilize a comparison technique proposed in [5] called the
Multi-Comparison Matrix (MCM). This MCM presents a pairwise comparison
between the classifiers as well as their ordering following the average perfor-
mance. The MCM has shown to be stable to the addition and removal of classi-
fiers, which gives it an advantage over other comparison approaches. The MCM
presents as well the Win/Tie/Loss count and a p−value generated using the two
tailed Wilcoxon Signed-Ranked Test to study the significance in the difference of
performance. The MCM presents as well an ordering of performance of all classi-
fiers following their average performance. In what follows, we present the MCM
to compare PHIT to the state-of-the-art approaches including deep and non-deep
learning approaches in Figure 6. It can be concluded that on the 88 datasets of
the UCR archive, PHIT outperforms all of the deep learning approaches follow-
ing the average performance metric. The MCM also shows that given the 88
datasets, no conclusion can be found on the statistical significance difference in
performance between PHIT and the state-of-the-art MultiROCKET.

MultiROCKET
0.8703

PHIT
0.8672

H-InceptionTime (baseline)
0.8609

ResNet
0.8402

PHIT
0.8672

-0.0031
33 / 12 / 43

0.5320

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.0063
45 / 15 / 28

0.0210

0.0271
51 / 6 / 31

0.0010

Mean-Accuracy

If in bold, then
p-value < 0.05 0.02 0.00 0.02

Mean-Difference

Fig. 6. A Multi-Comparison Matrix (MCM) representing the comparison between the
proposed approach PHIT with the state-of-the-art approaches.

In order to also compare our approach with HIVE-COTE2.0 (HC2) [13] and
Hydra+MultiROCKET (HydraMR) [3,14], we only used 86 datasets given that

for some datasets of the UCR archive the results are not provided on the original
versions for these two models. The scatter plots showing the performance of
PHIT compared to HC2 and HydraMR are presented in Figure 7. On the one
hand, this figure shows that PHIT is still not as good as the HydraMR though
the scatter plot shows that on 36 datasets, PHIT wins with a significant margin.
On the other hand, no conclusion can be made on the statistical significance in
the difference of performance between HC2 and PHIT. This concludes that the
proposed approach is able to boost a lot the baseline deep learner to achieve
HC2 state-of-the-art performance.

HC2 is
better here

PHIT is
better here

HydraMR is
better here

PHIT is
better here

Fig. 7. Two 1 vs. 1
scatter plots represent-
ing the comparison
between the proposed
approach, PHIT, with
two state-of-the-art
models for TSC, HIVE-
COTE2.0 (HC2) and
HydraMultiROCKET
(HydraMR).

5 Conclusion

In this work, we addressed the Time Series Classification problem by employing
innovative pre-trained domain foundation models effectively mitigating overfit-
ting issues in small datasets. Leveraging the UCR archive for evaluation, our
methodology involved training models on multiple datasets to accurately classify
each sample’s original dataset. Subsequent fine-tuning of these models on indi-
vidual datasets demonstrated superior performance over traditional methods, as
evidenced by comprehensive experiments and analyses on the UCR datasets. Our
contribution is the creation of domain-specific pre-trained foundation models for
time series datasets in the UCR archive, offering a resource for researchers and
paving the way for future extensions. This approach, with its inherent generic
filters, holds promise for efficient adaptation to new datasets, potentially revo-
lutionizing the training process in time series classification.

Acknowledgment

This work was supported by the ANR DELEGATION project (grant ANR-21-
CE23-0014) of the French Agence Nationale de la Recherche. The authors would
like to acknowledge the High Performance Computing Center of the University of

Strasbourg for supporting this work by providing scientific support and access
to computing resources. Part of the computing resources were funded by the
Equipex Equip@Meso project (Programme Investissements d’Avenir) and the
CPER Alsacalcul/Big Data. The authors would also like to thank the creators
and providers of the UCR Archive.

References

1. Ay, E., Devanne, M., Weber, J., Forestier, G.: A study of knowledge distillation
in fully convolutional network for time series classification. In: Int. Joint Conf. on
Neural Networks (IJCNN) (2022)

2. Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S.,
Ratanamahatana, C.A., Keogh, E.: The ucr time series archive. IEEE/CAA Jour-
nal of Automatica Sinica 6(6), 1293–1305 (2019)

3. Dempster, A., Schmidt, D.F., Webb, G.I.: Hydra: Competing convolutional ker-
nels for fast and accurate time series classification. Data Mining and Knowledge
Discovery pp. 1–27 (2023)

4. Ismail-Fawaz, A., Devanne, M., Berretti, S., Weber, J., Forestier, G.: Lite: Light
inception with boosting techniques for time series classification. In: Int. Conf. on
Data Science and Advanced Analytics (DSAA) (2023)

5. Ismail-Fawaz, A., Dempster, A., Tan, C.W., Herrmann, M., Miller, L., Schmidt,
D.F., Berretti, S., Weber, J., Devanne, M., Forestier, G., et al.: An approach to
multiple comparison benchmark evaluations that is stable under manipulation of
the comparate set. arXiv preprint arXiv:2305.11921 (2023)

6. Ismail-Fawaz, A., Devanne, M., Weber, J., Forestier, G.: Deep learning for time
series classification using new hand-crafted convolution filters. In: IEEE Int. Conf.
on Big Data (IEEE BigData). pp. 972–981 (2022)

7. Ismail-Fawaz, A., Devanne, M., Weber, J., Forestier, G.: Enhancing time series
classification with self-supervised learning. In: Int. Conf. on Agents and Artificial
Intelligence (ICAART) (2023)

8. Ismail-Fawaz, A., Ismail Fawaz, H., Petitjean, F., Devanne, M., Weber, J., Stefano,
B., Webb, G., Forestier, G.: Shapedba: Generating effective time series prototypes
using shapedtw barycenter averaging. In: ECML/PKDD Workshop on Advanced
Analytics and Learning on Temporal Data (2023)

9. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Data aug-
mentation using synthetic data for time series classification with deep residual
networks. In: ECML/PKDD Workshop on Advanced Analytics and Learning on
Temporal Data (2018)

10. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Transfer
learning for time series classification. In: IEEE Int. Conf. on Big Data (Big Data)
(2018)

11. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learn-
ing for time series classification: a review. Data mining and knowledge discovery
33(4), 917–963 (2019)

12. Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber,
J., Webb, G.I., Idoumghar, L., Muller, P.A., Petitjean, F.: Inceptiontime: Finding
Alexnet for time series classification. Data Mining and Knowledge Discovery 34(6),
1936–1962 (2020)

13. Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., Bagnall, A.: Hive-
cote 2.0: a new meta ensemble for time series classification. Machine Learning
110(11-12), 3211–3243 (2021)

14. Middlehurst, M., Schäfer, P., Bagnall, A.: Bake off redux: a review and exper-
imental evaluation of recent time series classification algorithms. arXiv preprint
arXiv:2304.13029 (2023)

15. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neu-
ral networks: A strong baseline. In: Int. Joint Conf. on Neural Networks (IJCNN)
(2017)

	Finding Foundation Models for Time Series Classification with a PreText Task

