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Abstract Adversarial attacks represent a threat to every deep neural network. They are particu-
larly effective if they can perturb a given model while remaining undetectable. They have been
initially introduced for image classifiers, and are well studied for this task. For time series, few
attacks have yet been proposed. Most that have are adaptations of attacks previously proposed
for image classifiers. Although these attacks are effective, they generate perturbations containing
clearly discernible patterns such as sawtooth and spikes. Adversarial patterns are not perceptible on
images, but the attacks proposed to date are readily perceptible in the case of time series. In order
to generate stealthier adversarial attacks for time series, we propose a new attack that produces
smoother perturbations. We introduced a function to measure the smoothness for time series. Using
it, we find that smooth perturbations are harder to detect both visually, by the naked eye and by
deep learning models. We also show two ways of protection against adversarial attacks. The first
one by detecting the attacks using a deep model. The second one by using adversarial training to
improve the robustness of a model against a specific attack, thus making it less vulnerable.

Keywords Time series · Adversarial attack · Smooth perturbations · InceptionTime · BIM.

1 Introduction

A time series is a set of data points ordered in time. Time series have become a growing field
of research in deep learning and more globally in artificial intelligence. Nowadays, thanks to the
presence of sensors, they have become abundant and we can find use cases in almost all sectors of
industry. For example, time series are used in healthcare [13], for weather forecasting [14] and for
predictive maintenance [8].

Time series classification, refers to the task of classifying time series according to the presence
or not of phenomena. Szegedy et al. [7] have found that adding a small perturbation to an input
sample can change a classifier’s output. This is known as an adversarial attack. It is illustrated in
Figure 1.

As all neural networks are vulnerable to adversarial attacks, many attacks have been proposed.
However, to date the majority of these have been developed for image classification tasks. It is
necessary to study adversarial attacks in order to assess the robustness of the models, and to
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Fig. 1: Scheme of adversarial attack. Time series from the BME dataset, perturbation generated
with SGM, not represented at scale.

prevent them on critical systems. For example, Eykolt et al. [6] showed an application on real-
world road sign classification, which is an obvious threat for autonomous vehicles.

Fawaz et al. [10] introduced and adapted some of them for time series classification. The main
difference between adversarial attacks on images and time series lies in the visualization and the
interpretation of the data. When sightly changing the value of one or few pixels, an image will
always look the same and have the same appearance to the human visual system. These changes
only affect how the neural network will process the data, but not how we, humans, perceive the
image. For images, the human classifier is a competitive benchmark, often used as gold standard.
For time series classification it is not, because time series data are more complex to analyze.

The attacks introduced by Fawaz et al. [10] are effective to perturb time series of the UCR
Archive in order to mislead a deep learning system [4]. But when we look at their visual appear-
ance, it is sometimes easy to distinguish the disturbed series from the original ones. Indeed, these
perturbed samples often contain patterns like spikes of a sawtooth. Because the presence of such
elements can easily be spotted, they can warn about the presence of an attack.

In this paper, we will introduced a novel adversarial attack based on a gradient method. We will
show that it outperforms BIM’s performance over most of the UCR archive datasets in terms of
misleading a deep learning classifier. But unfortunately this method generates perturbations that
also contain spike and sawtooth patterns. We will then explain how we reduced these patterns, by
enforcing a smoothness condition. First, we will show its impact visually, using a set of examples.
Secondly, we introduced a function used to measure and compare the smoothness of time series.
Finally, we will show how adversarial training is a good way to improve a time series classifier’s
robustness against smoothed perturbations.

Our main contributions are:

– A novel adversarial attack for time series classifiers that outperforms BIM

– An altered version of the first attack, that produces smooth perturbations

– We introduced a function in order to measure and compare the smoothness of time series

– A quantitative benchmark of our two methods along with BIM over the UCR archive

– Qualitative evidence that smoothed perturbations are harder to detect by visual inspection

– Quantitative evidence that adversarial training is a good counter measure against smooth attacks

2 Related Work

Given a neural network trained on an image classification task, such as ImageNet, Szegedy et
al. [21] showed that it is possible to change the model output by adding low magnitude noise, small
enough to be imperceptible to the human eye. It was also shown that this vulnerability is present
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regardless of the number of layers, activation functions or training data and thus affects all deep
neural networks.

Goodfellow et al. [7] proposed a single step attack called Fast Gradient Sign Method (FGSM).
Then, Kurakrin et al. [15] presented the Basic Iterative Method (BIM), an iterative version of
FGSM. Inspired by them, many similar attacks were proposed, like M-FGSM [5] or vr-IGSM [22].

Other approaches where studied, like adding black and white strips on stop signs [6] or stickers
on objects [16]. These real life attacks raised the issue of security threat for sensitive applications
like autonomous vehicles. Along with new attacks, multiple defensive strategies have also emerged,
including leveraging denoisers [17], randomization [24] and adversarial training [23,12].

Adversarial training trains a model using both normal and perturbed samples. Rathore et al. [19]
shows how adversarial training can help a model to become more robust.

Most of the work on adversarial attacks was first done on image classification, as it is a trending
topic in deep learning. It is only later that Fawaz et al. [10] introduced adversarial attacks for time
series classification.

It is sometimes quite straightforward to adapt adversarial attacks from images to times series.
However, some attacks that work well on images can’t be used, or are ineffective on time series.
For example Su et al. [20] describes attacks where only one pixel of an image is affected. An
equivalent perturbation for time series would modify the value of only a single data point. But such
modifications would be very noticeable as it takes extreme values to sufficiently perturb a sample
based solely on a single data point.

Adversarial attacks can be categorized into black and white-box strategies. Black-box attacks,
like those presented in [18,2], don’t use any knowledge of the architecture, the parameters, or the
weights of the model. They also do not have access to the training data. Huan et al. [9] showed that
even in these conditions, many current models are still at risk. In contrast, white-box attacks may
use any of those elements to perform the attack. Some attacks have both black-box and white-box
variants like the Carlini & Wagner method [3]. In this paper, we will focus exclusively on white-box
attacks.

3 Background Material

3.1 Mathematical Description

In this paper, we only use univariate time series. We can describe each time series as a vector x
such as x ∈ RT ,x = [x1, ..., xT ] with T denoting its length.

Given a time series classifier f and a time series x, the aim of an adversarial attack is to
perturb the classifier by adding a small variation r to a time series x. r will be referred as noise or
perturbation. We call the perturbed time series xadv = x+ r an adversarial sample. The attack is
successful if the class predicted for the original time series is different from the class predicted for
the adversarial sample, argmax f(x) ̸= argmax f(xadv). The added noise r must be imperceptible
by design, thus we need that x and xadv remain close to each other.

3.2 Basic Iterative Method

In order to improve the success rate of FGSM, Kurakin et al. [15] developed BIM. At each iteration
N , the gradient is computed and then added to the input, in the same way as for FGSM. Instead
of minimizing the loss function, the aim is to maximize it by taking a step in the direction of the
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gradient. At each iteration, the values are clipped using an ϵ parameter. This ensures that each
value of xadv will stay close to x within a ϵ-neighbourhood.

xadv
0 = x

xadv
N+1 = Clipx,ϵ

{
xadv
N + α sign(∆xJ(Θ,xadv

N , ytrue))
} (1)

ytrue denotes the label of the time series x. If we don’t know ytrue, as in a real attack scenario,
we replace it with f(x). The noise clipping is done for r = xadv − x as follow:

∀ri ∈ r, ri =

{
ϵ, if ri > ϵ

−ϵ, if ri < −ϵ

By adding iterations, BIM becomes more effective than FGSM to perturb time series. But BIM
requires clipping in order to control the amount of noise. This method had two main disadvantages.
First, clipping the noise in such a way often produce sawtooth shapes between −ϵ and +ϵ as we
can see in Figure 7. This particular pattern can easily be detected when added to a smooth time
series and is, therefore, to be avoided.

With BIM, in order to obtain a stealthier noise, we need to reduce the value of ϵ. By doing this,
the saw-tooth shapes will be harder to be noticeable, but this will result in a lower attack success
rate. This trade-off prevents the perturbations that are both hard to detect and have a high attack
success rate.

In this paper, we decided to use BIM as our main competitor. FGSM and BIM are the most
well-known attacks. Moreover, to our knowledge, they are the only adversarial attacks adapted
for time series, so it was convenient to work with them. Other methods that we cited previously,
M-FGSM and vr-IGSM, are respectively variations of FGSM and BIM. They do not tackle the issue
of the occurrence of perceptible patterns. Thus, they should behave in the same way as FGSM and
BIM, and we have not added them into our benchmark.

3.3 Carlini & Wagner

Carlini and Wagner’s adversarial attack (C&W) [3] is a state-of-the-art adversarial attack for image
classifiers. C&W is an optimization-based method that aims to minimize:

min ||r||2 + c× ϕ(x+ r) with ϕ(x+ r) ≤ 0 (2)

where c is a hyper-parameter balancing the tradeoff between the L2 regularization and ϕ, a function
that enforces the misclassification. Several functions ϕ are proposed in the original paper. We chose
to use the recommended one:

ϕ(x) =

([
max
i ̸=t

Z(x)i

]
− Z(x)t

)+

. (3)

Here Z(x) denotes the logits of the model before the softmax function. As the C&W method is a
targeted attack, t depicts the class to be obtained after perturbation.

In this work, we adapted this attack to time series classifiers. The original work applied the
constraint xadv ∈ [0, 1]n. For time series we removed this constraint as we are not working with
pixels and time series are not bounded by specific values. When benchmarking C&W with other
non-targeted attacks, we will select the targeted class as the class with the second biggest softmax
score.
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4 Proposed Methods

4.1 Gradient Method (GM)

In order to correct the flaws of BIM, we need to design a method that, given a model, can perturb
a time series while optimizing the quantity of noise according to the L2 norm.

Ensuring f(x) ̸= f(x′) can be written as a maximization problem of the KL-divergence between
the two probability distributions, as follows:

maxDKL(f(x), f(x
′)) ≡

c∑
f(x) log

f(x)

f(x′)
, (4)

with c denoting the classes in the dataset.
Generating an adversarial example can then be written as follows where the primary addition

is the term (−∥x− x′∥2) to be maximized:

max
{
µDKL(f(x), f(x

′))− ∥x− x′∥2
}
, (5)

with µ denoting a hyper-parameter to control the penalty of miss-classification.
Let us consider the generated time series x′ = x+r. Then the maximization problem is equivalent

to the following minimization problem:

min {−µDKL(f(x), f(x+ r)) + ∥r∥2} (6)

We can add a hyper-parameter α in order to control the regularization of ∥r∥. Finally, we have:

xadv = min {−µDKL(f(x), f(x+ r)) + α∥r∥2} (7)

4.2 Smooth Gradient Method (SGM)

The previous method manages to generate adversarial samples while optimizing the L2 norm of r.
But it does not prevent the appearance of sawtooth. In order to obtain smoother perturbations, we
need to ensure a smoothness condition on r. This can be done by adding a fused lasso term to the
minimization. The equation can now be written as:

min{−µDKL(f(x), f(x+ r)) + α∥r∥2 + λ
T−1∑
i=1

∥ri − ri+1∥1} (8)

In equation 8, ∥.∥1 denotes the L1 norm. λ is a hyper-parameter that controls the penalty for the
smoothness condition. To minimize the latter equation, we will use gradient descent by computing
the gradient with respect to r (which will be initialized randomly).

4.3 Measuring the smoothness of a time series

In order to compare the smoothness between the original and perturbed time series, we need a
suitable metric. As we did not find such a metric in the literature, we used penalties used for spline
smoothing. Splines are functions defined by several pieces of polynomials. They are often used by
computer graphics drawing software or computer-aided design software. Some of those software use
as a smoothing penalty:
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∫ ′′
f(x)2dx (9)

In order to use this penalty for time series, we need to replace the integral by a sum and the
second derivative by the finite difference, as time series are not continuous in time.

g(x) =
T−1∑
t=1

(xt−1 − 2xt + xt+1)
2 (10)

To avoid having the result impacted by the length of the series, we can divide it by T . Finally, we
have:

s(x) =
1

T − 1

T−1∑
t=1

(xt−1 − 2xt + xt+1)
2 (11)

Theorem 1 We can use the functions g and s to compare the smoothness of two time series. For
two time series x and y, if s(x) < s(y), we can say that x is smoother than y.

Proof A differentiable function f is said to have an L-Lipschitz continuous gradient if for some
L > 0:

||∇f(a)−∇f(b)|| ≤ L||a− b|| (12)

Here L enforces a regularity on the function f . In the context of time series, this regularity can
be translated by smoothness.

Previously, in order to compare the smoothness between time series, we proposed to use the
function g:

g(x) =

T−1∑
t=1

(xt−1 − 2xt + xt+1)
2

=

T−1∑
t=1

((xt+1 − xt)− (xt − xt−1))
2

=

T−1∑
t=1

(
dxt+1 − dxt

)
=

T−1∑
t=1

||dxt+1 − dxt ||2

= ||dx1 − dx0 ||2 + ||dx2 − dx1 ||2 + . . .+ ||dxT−1 − dxT−2 ||
2

(13)

By introducing the Equation 12, we get:

g(x) ≤ L2||1− 0||2 + L2||2− 1||2 + . . .+ L2||(N − 1)− (N − 2)||2

≤ L ∗ (T − 1)

≤ L

(14)

We can therefore compare the smoothness of two time series, x and y, by using the function g.
If g(x) < g(y), we have Lx < Ly and we can conclude that the time series x is smoother than y.

In our GitHub repository, we provide some examples using several hand crafted time series.
We shows, when the time series is a straight line, that the function returns zero as expected. For
sinusoids, we showed that increasing either the amplitude or the number of periods also increases
the value.
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5 Experimental Setup

In this section, we present the data, models, and the parameters we used during our experiments.

5.1 Classifier and Datasets

As our work consists of fooling a deep learning model, we decided to use the InceptionTime [11]
classifier in all our experiments. InceptionTime is a TS classifier, that was the state-of-the-art model
on the UCR Archive[4], when published in 2019. During our preliminary work, we tested other deep
models like ResNet or FCN. We decided not to add them to the paper because we did not notice any
visual or quantitative difference from InceptionTime. As InceptionTime is still the state-of-the-art
model for deep learning TSC we decided to only focus on this model. All the weights used are the
InceptionTime defaults, as used and presented in its paper.

In order to demonstrate our results over several datasets, we used the well know TSC benchmark
UCR Archive. The 2018 version of this archive comprises 128 univariate time series datasets.

Each dataset of the UCR archive is split between the training and the test set. When generating
adversarial samples, we used the samples of the test set, as the model has only been trained on the
training set.

A single experiment is realized on the RTD dataset [1]. It was build upon a technique called air
writting. It consists of writting characters in the air, here digits, which are then recognized by a
computer or a mobile phone. This dataset is a collection of 20k trajectories made by various people.
A class is assigned for each one of the ten digits.

5.2 Reproductibility

The code used and all our results are publicly available in our companion repository1.
All experiments were done by leveraging the computation power of a remote GPU cluster

containing Nvidia GTX 1080 Ti graphic cards. Reproducing the results on a single graphic card
takes roughly 7 days of computing time.

5.3 Hyper-parameters

For BIM we set the number of iterations at 1000. For the noise clipping, we use the value ϵ = 0.1.
We use the same value of ϵ, when applying the noise clipping to the Gradient Method.

In the case of GM and SGM both µ and α parameters are always set to 1. In the case of SGM,
when nothing is specified, λ is also equal to 1.

Regarding the C&W method, we chose c = 1. c controls the the L2 regularization, like α for
SGM. Thus, we selected the same value.

5.4 Comparison Metrics

5.4.1 Average Success Rate

For evaluating the relative success of adversarial attacks, we used the Average Success Rate (ASR).
The ASR, corresponds to the rate of reclassified samples. In other words, it is equal to the percentage
of cases where the attack was able to alter the output of the network (f(x) ̸= f(xadv)).

1 https://github.com/Gpialla/SmoothPerturbationsTSAA
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5.4.2 L2 Norm

The L∞ norm is commonly used to quantify the noise for adversarial attacks. This is especially true
in the case of attacks on images. The L∞ norm of a time series is equal to ∥x∥∞ = maxt |xt|. As
explained earlier, our aim is to design smooth perturbations that are hard to detect by the naked
eye. Moreover attacks designed for images are easily detectable when adapted to time series. Thus,
we needed to evaluate the overall quantity of noise, not just its maximum value, and choose to use
the L2 norm over the L∞ norm.

5.5 Adversarial training

We will present an example of adversarial training using adversarial samples generated by SGM.
For each dataset, we doubled the size of the training set, by adding the corresponding adversarial
samples of the original training set. The validation is done with the original test set, without
additional adversarial samples. Finally, we will show how adversarial training is effective at reducing
a classifier’s susceptibility to adversarial attacks.

6 Results

In this section, we will first compare SGM with the other methods according to the two metrics
we selected: the ASR and the L2 norm. The benchmark between the others methods is available
in our companion repository. In a second study, we will vary the SGM’s λ parameter and see its
influence on the ASR. Finally, we will propose two counter measures against SGM. The first one
consists of improving the robustness of the classifier by using adversarial training. The second one
consists of identifying the adversarial samples using a deep classifier.

6.1 SGM benchmark
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Fig. 2: Win/Draw/Loss diagram. BIM vs SGM. On the left: average success rate, on the right: L2
norm of the perturbation

Figure 2 represents a Win/Draw/Loss diagram comparing BIM and SGM. Each blue dot rep-
resents a single dataset. If a dot lies above the median line in the upper left triangle, it means that
this dataset has an average value bigger for SGM than for BIM for the given metric.
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As we want to maximize ASR, in the corresponding plot, the most successful method is the
one with the most dots on its side of the median line. For the L2 norm, however, the reasoning is
reversed as we want to minimize the metric.

Given Figure 2, as the dots are evenly distributed, we conclude that SGM as an overall ASR
as good as BIM on the UCR archive. This also means that SGM manages to perturb datasets that
BIM can not and vice-versa. But for an equivalent efficiency, BIM introduces an higher quantity of
noise than SGM, in a majority of datasets.
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Fig. 3: Win/Draw/Loss diagram. C&W vs SGM. On the left: the average success rate, on the right:
the L2 norm of the perturbation

Figure 3 compares SGM with C&W. Regarding the ASR we notice that SGM is slightly better
than C&W. The same can be concluded for the L2 norm. But when looking at the distribution
of the scores, we can all SGM’s scores are below 2.5, where many C&W scores are bigger. This
suggests that the C&W attack produces more noise than SGM.
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Fig. 4: Win/Draw/Loss diagram. GM vs SGM. On the left: the average success rate, on the right:
the L2 norm of the perturbation

Figure 4 compares GM with SGM. We can see that for almost all datasets, GM has a better
ASR than SGM. Intuitively, we can assert that sawtooth and spikes are patterns that help to
successfully perturb a TSC. SGM, by design, can not produce such patterns. Thus, it is harder
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for SGM to achieve a high ASR. By enforcing the smoothness condition, we are doomed obtain a
decreased ASR. In addition, some datasets, such as those with truly distinct classes or with smooth
time series, are particularly difficult to be perturbed by the SGM method. In these specific cases,
smooth perturbations are not sufficient to fool the network.

6.2 Varying the λ parameter

According to our previous results, the best-case scenario would be an attack with GM’s ASR
and SGM’s smoothness. As the only difference between the two methods is the addition of the
smoothness condition, it is interesting to vary the λ parameter. If λ is equal to zero, the attack is
GM and if it’s equal to 1, we have SGM as we tested it previously.

Figure 5 shows the impact of varying the λ parameter over two datasets, Beef and Car. As
we could expect, the more we enforce the smoothness condition, the fewer samples the method
manages to perturb successfully.

This parameter should be tuned for each dataset in order to get the optimal trade-off between
smoothness and ASR.
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Fig. 5: Varying SGM’s λ parameter. For each value of λ is displayed the number of samples suc-
cessfully perturbed (blue) or not (orange).

6.3 Varying the α parameter

The α parameter controls the penalization of the L2 norm of r. We can see the impact of this
parameter in Figure 6. In both cases, the smaller the α value, the better are the results. Indeed, if
SGM is able to introduce more noise, it will perturb better the model. Once again, this parameter
can be tuned in order to obtain the optimal trade-off between L2 norm and ASR.

6.4 Visual Comparison

In order to remain undetectable by the naked eye, an attack performed on a time series must be
as smooth as possible. We propose a visual comparison between the four methods presented, on
the same test sample of the Beef dataset. To be fair, we picked a time series that is successfully
perturbed by all the attacks.

In this example, shown in Figure 7, we plotted in green the original time series, and for each
method, in blue the perturbed time series and in red the perturbation.
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Fig. 6: Varying SGM’s α parameter. For each value of α is displayed the number of samples suc-
cessfully perturbed (blue) or not (orange).

We plotted a second version of GM with a clipped perturbation in the same way as BIM. As
expected, for BIM and the GM methods, the perturbations are clearly visible, in particular the
parts containing sawtooth patterns that are circled in purple. The example of GM with clipping
shows that clipping the noise reduces indeed the amount of noise and the visual impact, but not
sufficiently enough. SGM is the only attack that produces an adversarial sample with a perturbation
that is not noticeable when judging with the naked eye.

The C&W attack is the one that produces the smallest noise. The magnitude of the noise is
significantly smaller than the other methods. Thus, the sawtooth patterns are less noticeable but
are still present.

Being closer to the eye doesn’t mean being closer when using the L2 metric. Indeed, SGM’s
perturbation has the biggest L2 norm. This shows that, although a method is better on average for
a given dataset, this is not necessarily true when we look at each sample independently.

6.5 Comparison of the smoothness

In the previous subsection, we did a visual comparison. Now, using the function 11, we can compute
the average for each dataset. We computed the average rank of smoothness for each attack on the
UCR archive. These results are represented in Figure 8.

Like the visual comparison, SGM appears as the method that produces the smoother samples
and BIM is the opposite. For GM, as expected, clipping the noise reduces its maximum amplitude,
thus making it smoother.

The C&W method ranks third below SGM and GM with clipped noise. Nevertheless, C&W
ranks first among the methods that do not enforce the smoothness of the perturbations.

6.6 Do adversarial attacks change the underlying class of the samples?

While in images human perception is a meaningful gold standard, in TSC most of the time it is
not. If we classify traffic signs into stop signs and other signs, humans can easily do that. The goal
of a machine is then to achieve human performance. The central argument of adversarial attacks
is that while to us humans it clearly still is a stop sign, i.e., the underlying class has not changed,
the algorithm now suddenly predicts it as something else.

Few time series datasets are easy to visualize and understand at a glance. RTD is one of them.
When perturbing this dataset with SGM, we got an ASR equal to 0.829. As most of the samples
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Fig. 7: Time series from the Beef dataset. All methods perturbed time series (blue) and generated
noise (red). The purple circles show the presence of sawtooth on the perturbed time series.
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Fig. 8: Ranking of the methods according to the smoothness.

were successfully perturbed we can observe in Figure 9 that the perturbed samples do not differ
visually from the originals.
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Fig. 9: Original and SGM perturbed samples of the RTD dataset.

But most time series datasets are not as easy to visualize as the RTD dataset. For those datasets,
we assume that by doing small perturbations the underlying class will not change. But in reality,
we cannot be certain that this is the case. So, the question is now what could be a good gold
standard to determine a time series’ underlying class? In this section, we propose to use 1 Nearest
Neighbor (1NN) to determine whether the underlying classes change or not. The 1NN classifier
assigns to a sample the class of its closest neighbor. Here we use 1NN combined with the Dynamic
Time Warping (DTW) distance.

We experimented on a subset of 22 datasets of the UCR Archive. All the results are available in
our GitHub repository. By observing the confusion matrix produced, we can identify 2 groups. The
first one is constituted by the datasets ArrowHead, BeetleFly, Car, Earthquake, FaceAll, FordB,
FreezerSmall, Ham, InerSkate, InsectWingbeatSound, Lightning7, MoteStrain, OliveOil, Proximal-
PhalanxTW, TwoPatterns, Wine, WordSynonyms and Yoga. The second one by the datasets
EOGVerticalSignal, GunPointOldVersusYoung, and MelbournePedestrian. In the first group, for
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a majority of samples, the 1NN classifier predicts the same class whether they are perturbed or
not. This shows that the underlying class did not change and that the adversarial attack was
conducted as expected.

For the second group of datasets, the results are different. For each one of these datasets, the
perturbed samples were all classified as belonging to a single class. In those cases, the underlying
classes did change. Two examples, one of each group, are shown in Figure 10.
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Fig. 10: Example of usage of a 1NN model to determine if the underlying class of a sample changed
after being perturbed. Results are presented as confusion matrices. The left example shows that
for most samples, the underlying class did not change after the attacks. On the right examples,
regarding the EOGVerticalSignal dataset, all the underlying classes have changed to class 0.

Through these examples, we have shown that, unlike computer vision, adversarial attacks on
time series can change the underlying class. Nevertheless, for 19 out of the 23 datasets we tested,
it is not the case. In addition, the RTD dataset is an example of a dataset that can be visualized
and successfully perturbed.

6.7 Discriminating adversarial samples

A simple way to protect a model against adversarial attacks is to filter the inputs before feeding
them to the network. One can do this by training a small classifier to discriminate perturbed
samples. If an example is classified as an attack, then it would not be fed to the second classifier.

In order to know if a classifier is indeed able to do so, we trained a small FCN model. For
each dataset, the samples have been split into a training and a test set. 80% of the samples in
the training set, and the remaining 20% in the test set. Then, the samples of each set have been
perturbed and added back to the set. Thus, we obtained, in the end, datasets balanced between
original and perturbed samples.

Table 1 shows the classification results of the five methods presented previously. With almost
62% of accuracy, classifying the samples perturbed by BIM is the easiest taks. The hardest one
is when using the samples perturbed by SGM. These results confirm that the patterns visible by
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Table 1: FCN accuracy when classifying original and perturbed samples.

Attack name Accuracy
BIM 61.99%
GM with clip 56.97%
GM 56.50%
CW 55.70%
SGM 54.53%

the naked eye are also easier to be discriminated using a deep model. We can note that the overall
accuracies are not very high, proving that classifying perturbed samples is not trivial. In order to
achieve better performances, we could have used a deeper model.

0.0 0.2 0.4 0.6 0.8 1.0
without adv.training

0.0

0.2

0.4

0.6

0.8

1.0

wi
th

 a
dv

. t
ra

in
in

g

ASR Adversarial Attack

Fig. 11: Adversarial training results.

6.8 Adversarial Training

Adversarial training aims to improve the robustness of a model but without the disadvantages of
the previous method. Figure 11 presents the results of adversarial training using SGM adversarial
samples. The scatter plot shows that adversarial training highly improves the robustness of the
model. For 122 datasets, the ASR is highly lower and for the remaining 6 datasets, the ASR is
the same. In fact, for 72 datasets, after adversarial training, the attack did not manage to perturb
any sample, leading to an ASR of zero. This shows the effectiveness of adversarial training against
SGM attacks.

We can explain that adversarial training is very effective against SGM attacks because the
strength of smoothed attacks is also their weakness. The adversarial samples generated by SGM
are close to the original samples. We even showed that a FCN classifier can almost not tell the
two apart. Once we improved the robustness of the classifier using adversarial training, it became
robust enough not to be affected by these smoothed perturbations.
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7 Conclusion

In this paper, we explained that adapting adversarial attacks from image classifiers to time series
classifiers is not trivial. The attacks are more likely to be detected on time series and thus need
smoother perturbations.

We introduced two novel adversarial attacks for time series classification. The Gradient Method
(GM) and a smooth version, called Smooth Gradient Method (SGM). We used the Basic Iterative
Method (BIM) and the Carlini&Wagner method (C&W), well-known adversarial attacks, as base-
lines to have a benchmark over the entire UCR archive. We showed that GM, has a higher success
rate on perturbing an InceptionTime classifier, followed by BIM, SGM and C&W.

Through examples, we illustrated that GM, like BIM and C&W produces perturbations that
have recognizable patterns like spikes and sawtooth. On the one hand, these patterns can help the
attack to fool the network, but on the other hand, they can be easily detected, even by the naked
eye.

Our second method SGM, is based on GM but has an added fuzed lasso regularization. It has
the effect of smoothing the generated perturbations.

We introduced a new function that helps measure the regularity i.e. the smoothness of time
series and therefore of adversarial attacks. It is inspired by penalties used for spline smoothing
in computer graphics. Using this function we showed that SGM produces a perturbation that is
smoother on average than GM and BIM.

Smoothing the noise makes it harder to differentiate between perturbed and original time series
by the naked eye. But smoothed adversarial samples are less effective for attacking the neural
network. This highlights the current trade-off between having a stealth attack and an effective one.

Finally, we proposed two methods to counter adversarial attacks. The first one leverages a FCN
classifier by training it to discriminate perturbed time series. We showed that the FCN model
is better at discriminating perturbed samples from BIM, GM, or C&W attacks than SGM. This
proves that generating smooth perturbations is not only better at fooling humans but also deep
classifiers.

Then, we showed that adversarial training is an effective way of countering SGM attacks. After
adversarial training, for 72 datasets out of the 128 datasets of the UCR archives, it becomes
impossible to successfully perturb InceptionTime.

The main limitation encountered while working on adversarial attacks is the possible change of
the underlying class. Although we have shown that this happens in a minority of cases, it remains an
unsolved issue. We think that tuning the hyper-parameters of the attacks or adding new constraints
can be helpful to prevent them. We will explore those options in future works.
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