

Use of knowledge in a classification process to extract urban objects

A. Puissant*, G. Forestier**

* Image & Ville – CNRS / ULP Strasbourg (FR)
 ** LSIIT – CNRS / ULP Strasbourg (FR)

JIGOT – 26&27 novembre 2007

Summary

- Context
- > Objective

'image'
> Use of the ontology in a classification process

Construction of an urban ontology oriented

=> matching procedure

Ontologies applied to images

- Experiments on VHR imagery
- Conclusions and perspectives

Context

- Needs of up-to-date and multiscale information
- Automatic acquisition is complex, difficult and timeconsuming
- High and very high resolution images are potential sources of information

Context

- Image interpretation
- Object-oriented method based on the used of domain-knowledge

Objective

- Major issue = domain knowledge formalization and exploitation
- > Construction of an urban ontology in 3 steps:
 - Step 1: Phase of specification
 - Step 2: Phase of conceptualisation
 - Step 3: Phase of formalisation
- Matching process between regions and concepts
- Experiments on VHR imagery

=> multi-scale mapping of urban area (from 1/100,000 to 1/10,000)

Ontologies applied to images

Definition (Gruber, 1993)

A 'simplified view of the world which is represented for specific purpose' a 'result of a consensus in an user community to clarify the communication' (Gruber, 1993)

Domain-dependent ontology

= landcover/use analysis in urban and peri-urban areas based on aerial or satellite images

From high to very high resolution images

1. Phase of specification

- Inventory of semantic objects used by experts in urban management for mapping urban area (from 1/100,000 to 1/10,000)
- Terminological analysis of existing typologies and nomenclatures (western cities)
- Range of products to map urban area from 1/100,000 to 1/25,000 but not at 1/10,000
- Utility of VHR images (1m) to propose a typology adapted to map urban area at 1/10,000
- ...based on urban objects in GIS platform and definition of the minimal spatial resolution of urban object identification

- 1. Phase of specification
- Extract of the nomenclature for mapping urban area (from 1/100,000 to 1/10,000)

Level 1	Level 2	Level 3	Level 4	Level 5
1/100,000	1/100,000 to 1/50,000	1/50,000 to 1/25,000	1/25,000	1/10,000
Artificial/ Mineral surfaces	Housing surfaces	Continuous Urban fabric	High density of continuous Urban fabric	High density ofc continuous Urban fabric
			Low density of continuous Urban fabric	Low density of continuous Urban fabric
		Discontinuous urban fabric		Low density of individual houses
			Individual houses	Medium density of individual houses
				High density of individual houses
			Collective building	Building with less than 4 floors
			concerve bunding	Building with more than 4 floors
			Mixed	Mixed (houses and building)
		Specific urban surfaces		Cemetry
				Surfaces with military buildings
			Specific urban surfaces	Surfaces with scholar buildings
				Surfaces with hospital buildings
				Others surfaces

- 2. Phase of conceptualisation
- From a lexicon of thematic classes to a taxonomy of concepts
- Definition of 'Image Objects' and 'built Objects'

- 2. Phase of conceptualisation
- > 'Image object' (IO) stored in a dictionary with:
 - Name and textual definition
 - Representation in a GIS database
 - Range of spatial resolution at which the object is identifiable
 - Type of IO (single, aggregate)
 - Thematic code

Satellites images

- Color code
- Radiometric measures (some objects)
- Graphic illustration (orthophoto)
- Low-level descriptors in images

Real world

2. Phase of conceptualisation

> Low-level descriptors

Descriptors	Comments		
Spectral reflectance	Range of observed values in 4 spectral bands: Blue (B) – Green (G) – Red (R) – near-infrared (NIR)		
Normalized Difference Vegetation Index (NDVI)	Range of observed values of NDVI		
Soil Brightness Index (BI)	Range of observed values of BI		
Shape properties	Range of observed values of area, perimeter, elongation, diameter, compactness (Miller index), and solidity		
Texture	Range of observed values of the homogeneity index and of the variance derived from the co-occurrence grey-level matrix (Haralick, 1973)		
Context (or relationships)	Adjacency, inclusion, composition, neighbourhood		

Example

A. Identif	: Pavilion fication de l'obje	t	C. Description de l'objet	dans l'image			
Type Nom de l'objet : Type d'objet élémentaire 1			C.1 Nature de l'objet	ingle identificate à TUDA			
0	2000		Objet physique – objet image s	Imple identifiable a THR1			
\smile	Pavillon	Batiment	C.2. Définition textuelle				
			L'obiet «pavillon » ou « maison	individuelle » est représenté graphiquement par un polygone dont	tlas		
Potygone	10		correspond à l'emprise au sol d	lu bâtiment			
B. Descri	iption de l'objet	dans le monde réel	C.3. Principales relations				
P 4 Dáfini	tion toxtualla		Adjacence	Objets de type « végétation »	Objets de type « végétation »		
b.1 Denni	uontextuene			Ubjets de type « autre route »			
l'objet « pr	aillon » au « maica	n individuelle « annatient à la catéro	Alignement				
Il désigne u	ine construction dura	ble destinée à abriter l'activité humaine	Distance entre barvcentre	Faible = appartenance à une cité ouvrière			
			= relation de voisinage	Moyenne			
La portée d	le cette définition est	restreinte par les critères suivants. En	4	Elevée			
 est situ 	ié dans un îlot physiq	ue (domaine privé) ;	inclusion	TU pavillonnaire HR1 et HR2			
Le pavillon	ou maison individuel	le est le plus souvent organisée en loti:	Signature spectrale	Mineral – types possibles Blanc Gris Orange B1 : [56,6–255] B1 : [19,3–60] B1 : [21,7–62,35 avec histogramme avec histogramme avec histogramm	5] ne		
B.2 Illustration graphique : THR			de 0 à 255 de 0 à 255 de 0 à 255 de 0 à 255 B2 : [58,6 – 255] B2 : [14,3 – 60] B2 : [19,4 – 80,19 B3 : [36,6 – 255] B3 : [17,6 – 67] B3 : [29,7 – 135,1	5] 1]			
		THR1 -QB MS (al	B4 : [20,5 - 254,8] B4 : [14 - 67,3] B4 : [34,8 - 139]	-		
- Pavillon	S		11	[IBS: [55 - 255]] [IBS: [11,6 - 56,3]] [IBS: [14,6 - 60,4]]	1]		
	1 × 1		Longueur ou diamétre (m)	NDVI:[10-05,25] NDVI:[28-99] NDVI:[50,2-10 12.564	83		
	and the second second		ameur (m)	7			
	10 Aug	AND A DECK OF A DECK	Périmétre	36 à 92			
	1.00		Surface (m")	82 à 437			
	and the second		Indiœ de Miller	0,55 à 0,78			
	100		Surface Poly Convex (Sc)	82 à 485			
			Surface/Sc	0,85 à 1			
			Elndice de Morton	10.51 50.63			
	1 m		Texture (variance)	bomogéne			
		dense moyen de		invite Series			
		Emprise d'un bâtiment sur une image s	8				

- 3. Phase of formalisation
- Modelling and implementing the knowledge in a computer-usable form
- > Extract of the ontology:

- > 91 concepts, 20 attributes, depth (6)
- For each concept = a label

'Orange_house' = individual houses with orange roof tiles

3. Phase of formalisation

> Example of the concept 'Orange_House' :

Class	Attribute name	Values
	spectral_signature_Blue	[21.7-62.3]
	spectral_signature_Green	[19.4-80.1]
spectral	spectral_signature_Red	[29.7-135.1]
spectral	spectral_signature_NearInfaRed	[34.8-139]
	spectral_signature_SBI	[14.6-60.1]
	spectral_signature_NDVI	[50.2-108]
	diameter(m)	[13-61]
	area (m ²)	[10-600]
snatial	perimeter (m)	[28-116]
spanar	elongation (m)	[1-3.1]
	Miller index	[0.5-0.8]
	Solidity index	[0.85-1]

Step 1: Matching score

- based on a similarity measure between the features of a region and the characteristics of a the concepts
- with a local component representing the inner properties of the concept and a global component evaluating the pertinence in the hierarchy of concepts

Degree of validity:

Let Valid(a, C, R) be the validity degree of an attribute 'a' between a region R and a concept C $Valid(a, C, R) = \begin{cases} 1 & if \ V'_{R}(a) \in [\min(V_{C}(a)); \max(V_{C}(a))] \\ \frac{V'_{R}(a)}{\min(V_{C}(a))} & if \ V'_{R}(a) < \min(V_{C}(a)) \\ \frac{\max(V_{C}(a))}{V'_{R}(a)} & if \ V'_{R}(a) > \max(V_{C}(a)) \end{cases}$

Example: Valid = 0.57 Valid = 1.0 Valid = 0.82Region's values : 51 114 216Accepted values : 0 89 178 255Concept Orange_House spectral_signature_blue

Step 1: Matching score

The local similarity measure compares the features of a region with the attributes of a concept

Local similarity:

Let be $Sim\alpha(R,C)$ the local similarity between a region R and a concept C using the attributes of each class in α .

$$Sim_{\alpha}(R,C) = \frac{\sum_{a \in F_{\alpha}(C)} \omega(a,C) Valid(a,C,R)}{\sum_{a \in F_{\alpha}(C)} \omega(a,C)}$$

The global score measure evaluates the pertinence of the matching in the hierarchy of concepts

Matching score:

Let $Score_{\alpha}(R,C)$ be the matching score between a region R and a concept C, and P(C) be the path starting from the root of the ontology and ending at the concept C.

$$Score_{\alpha}(R,C) = \frac{\sum_{C_{j} \in P(C)} \rho(C_{j}) Sim_{\alpha}(R,C_{j})}{\sum_{C_{j} \in P(C)} \rho(C_{j})}$$

ho is the depth of the concepts

Step 2: Navigation in the ontology

- Objective = navigate in the ontology to find the best concept(s) according to the score for a region
- Level-wise algorithm developed to navigate in the ontology using heuristics to reduce the search space

With two thresholds :

- *maxDepth* is the exploration maximal depth (e.g. the degree of detail)
- *minScore* is the minimal value of the matching score between a region and a concept to allocate the corresponding label to the region

Step 2: Navigation algorithm

Algorithm 1 Navigation algorithm of the ontology.

```
Input: a region R, an ontology (\Theta, \Phi, \mathcal{V}_C(a), \ldots), a set of
attribute classes (\alpha), maxDepth and minScore.
Output: the best label(s) and the matching score value.
depth = 1; scoreMax = minScore;
\mathcal{L}_{\alpha}(R) = \emptyset;
\mathcal{RC} = \{root\}; scoreDepth = 0; bestsDepth = \emptyset;
while (\mathcal{RC} \neq \emptyset \text{ and } depth \leq maxDepth) do
   scoreDepth = 0; Best = \emptyset;
   for all C \in \mathcal{RC} do
      s = Score_{\alpha}(R, C);
      if (s == scoreMax) then
          \mathcal{L}_{\alpha}(R) + = \{C\};
      end if
      if (s > scoreMax) then
          \mathcal{L}_{\alpha}(R) = \{C\}; \ scoreMax = s;
      end if
      if (s == scoreDepth) then
         bestsDepth + = \{C\};
      end if
      if (s > scoreDepth) then
         bestsDepth = \{C\}; scoreDepth = s;
      end if
   end for
   \mathcal{RC} = \emptyset:
   for all C_i \in bestsDepth do
      \mathcal{RC} = \mathcal{RC} \cup \{C_i | C_i \prec_{\Theta} C_i\};
   end for
   depth + +;
end while
return {\mathcal{L}_{\alpha}(R), score};
```


- Area of Strasbourg (France) urban fabric with individual houses
- Quickbird image (pan-sharpened image with 0.7m spatial resolution) with four spectral bands

> Test only with some concepts (vegetation, water, orange

house, road)

Experiments on VHR images

Step 1: Segmentation

> Importance of the algorithm of segmentation (research in progress by Sebastien Derivaux)

Step 2: Matching and results

Quickbird image

Segmented image

Recognized objects In white = unknown object

Experiments on VHR images

Step 3: Results assessment

Values of Precision, Recall and F-measure (on/in overall, all classes) for several minScore values

minScore	Precision	Recall	F-Measure
0.85	0.878	0.861	0.870
0.9	0.893	0.854	0.873
0.98	0.954	0.823	0.884
1	0.967	0.771	0.858

Compared results between minScore = 1 and minScore = 0.98.

classes	Precision		Recall	
	1	0.98	1	0.98
Orange_House	0.895	0.875	0.435	0.585
Vegetation	0.995	0.994	0.950	0.953
Road	0.980	0.947	0.712	0.762
Water	0.999	0.999	0.988	0.995

Experiments on VHR images

Step 3: Results assessment

Percentage of recognized objects according to the *minScore* value, and the percentage of the corresponding image (pixels of the recognized objects) according to the *minScore* value

Conclusion and perspectives

- Experiment results have shown effectiveness of the method, despite the fact that the results could be improved with more attention on the segmentation algorithms
- Automatic extraction of knowledge could be done by machine learning system to enrich the ontology
- Topological relations based on the RCC-8 (Region Connection Calculus) theory will also be integrated
- Incorporation in a multi-strategy classification approach in order to guide the process, to label the clusters, and to improve the final classification results

"FOuille de DOnnées MUlti-STratégie pour extraire et qualifier la végétation urbaine à partir d'une banque de données images"

http://lsiit.u-strasbg.fr/afd/sites/fodomust/fr-accueil.php

Thanks for your attention !