Context	State of the art	Motivations	Method	Data	Results
00	00	00	00	00	00

Analysing Satellite Image Time Series by means of Pattern Mining JIGOT 2010 – Montpellier

F. Petitjean P. Gançarski F. Masseglia G. Forestier

Image Sciences, Computer Sciences and Remote Sensing Laboratory (LSIIT) French National Institute for Research in Computer Science and Control (INRIA) **Funding:** French Space Agency (CNES) and Thales Alenia Space

October, 6 - 7, 2010

Context	State of the art	Motivations	Method	Data	Results
00		00	00	00	00
Outline					

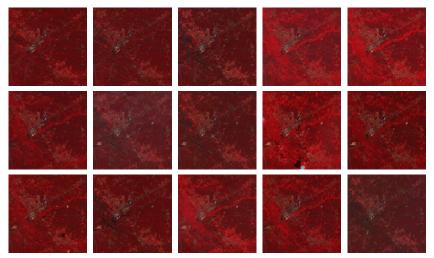
3 Motivations

Context	State of the art	Motivations	Method	Data	Results
00		00	00	00	00
Outline					

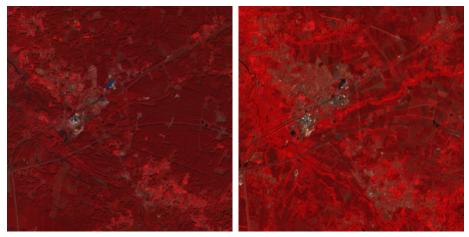
1 Context

- Satellite Image Time Series
- Different changes

2 State of the art


3 Motivations

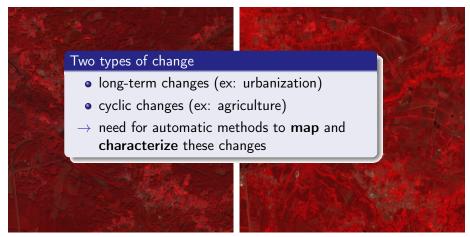
4 Method


Context ●○	State of the art	Motivations	Method 00	Data 00	Results 00

Satellite Image Time Series

©2010 Spot Image

Context ○●	State of the art	Motivations	Method 00	Data 00	Results
Which o	hange ?				



1986

2006

©2010 Spot Image

Context ○●	State of the art	Motivations 00	Method 00	Data 00	Results
Which c	hango?				

Context	State of the art	Motivations	Method	Data	Results
00		00	00	00	00
Outline					

1 Context

2 State of the art

- Bi-temporal methods
- Multi-temporal methods

3 Motivations

4 Method

Context	State of the art	Motivations	Method	Data	Results
00	●○	00	00	00	00
Bi-tem	ooral methods				

Principle

- Methods using only 2 images.
- Simple methods ; cannot capture complex changes.
- Mostly used to map change areas.

Examples

- Univariate Image Differencing [Bruzzone and Prieto, 2000]
- Image ratioing [Todd, 1977]
- Change vector analysis [Johnson and Kasischke, 1998]

Context	State of the art	Motivations	Method	Data	Results
00	○●	00	00	00	00
Multi-t	emporal metho	ods			

Principle

- Methods using the whole image time series.
- Able to capture complex changes.
- Able and to map and characterize change areas.

Examples

- Post-classification fusion [Foody, 2001]
- Linear data transformation [Nielsen et al., 1998]
- Frequency analysis [Andres et al., 1994]
- Frequent pattern mining [Julea et al., 2008]

Context 00	State of the art	Motivations	Method 00	Data 00	Results 00
Outline					

1 Context

2 State of the art

3 Motivations

- Review
- Aim of the paper

4 Method

Context	State of the art	Motivations	Method	Data	Results
00		●○	00	00	00
Review					

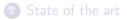
Bi-temporal methods

- By definition, these methods do not use the whole dataset.
- So they are unable to capture complex changes (long-term changes, cyclic changes, time shifts, etc.)
- Mostly used for the mapping of abrupt changes (earthquake, etc.)

Multi-temporal methods

- Have the possibility to capture complex changes.
- But generally deal with time dimension as another, except for:
 - Fourrier analysis, which don't tolerate irregular sampling.
 - Frequent pattern mining, which was only applied to the search of majority behaviours in monoband (gray image).

Context	State of the art	Motivations	Method	Data	Results
00		○●	00	00	00
Aim of t	the namer				


Objectives

Design a method with following characteristics:

- \rightarrow multi-temporal
- $\rightarrow\,$ able to extract long-term or seasonal changes
- \rightarrow (changes over small areas)
- $\rightarrow\,$ applicable to multi-band images
- \rightarrow robust to meteorological noise (clouds)

Context 00	State of the art	Motivations 00	Method oo	Data 00	Results
Outline					

3 Motivations

4 Method

- Mining Frequent Sequential Patterns
- The pattern extraction algorithm

Context 00	State of the art	Motivations	Method ●○	Data 00	Results 00
Mining	Frequent Sequ	iential Patter	rns		

Frequent sequential Pattern Mining

- Frequent sequential Pattern Mining consists in finding frequent common subsequences.
- This type of methods fits several characteristics:
 - ✓ multitemporal by definition
 - $\checkmark\,$ able to extract different kind of changes by finding representing key states
 - $\checkmark\,$ applicable to multi-band images by extracting sequence of itemsets
 - $\checkmark\,$ robust to meteorological noise by being able to "skip" values
 - $\times\,$ able to extract minority behaviours \rightarrow critical growth of the search space
- Our approach is based on PSP [Masseglia et al., 1998]

Context	State of the art	Motivations	Method	Data	Results
00		00	○●	00	00
The pa	ttern extractio	n algorithm			

Pattern extraction algorithm

Composed of 2 steps:

- Generate a set of candidate patterns (sequences).
- Prune phase: discard from this set, sequences not satisfying the minimum support.

Extracting minority behaviours

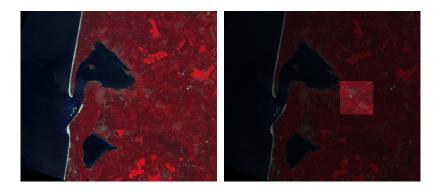
- \bullet Problem: a lot (!) of non-evolution patterns (e.g. tree \rightarrow tree)
- Solution:
 - Add a maximum support (avoid hyper-frequent values)
 - 2 Remove candidates with two consecutive identical values

Context	State of the art	Motivations	Method	Data	Results
00	00	00	00	00	
Outline					

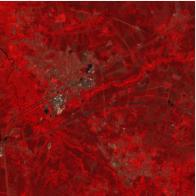
- 2 State of the art
- 3 Motivations

- Area of study
- Satellite Image Time Series

Context	State of the art	Motivations	Method	Data	Results
00	00		00	●○	00
Area of	f study				


Context	State of the art	Motivations	Method	Data	Results
00	00	00	00	●○	00
Area of	studv				

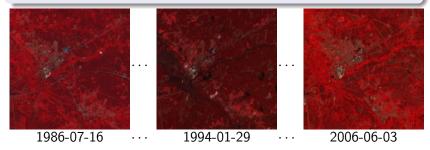
Context 00	State of the art 00	Motivations	Method 00	Data ●○	Results
Area of	study				



Context	State of the art	Motivations	Method	Data	Results
00	00	00	00	●○	00
Area of	study				

Context 00	State of the art	Motivations	Method 00	Data ●○	Results 00
Area of	study				

Context	State of the art	Motivations	Method	Data	Results
00	00		00	●○	00
Area of	f study				



Context	State of the art	Motivations	Method	Data	Results
00	00	00	00	○●	00

Satellite Image Time Series

Description

- Satellite image database: Kalideos © CNES 2010 (http://kalideos.cnes.fr)
- Spot 1, Spot 2 & Spot 4
- 35 images over 20 years (1986 to 2006)
- Total number of pixel values: 28 millions

Context	State of the art	Motivations	Method	Data	Results
00	00	00	00	00	
Outline					

1 Context

2 State of the art

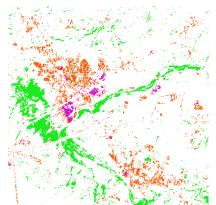
3 Motivations

4 Method

- Visualising frequent patterns
- Presentation of three patterns

Context 00	State of the art	Motivations	Method 00	Data 00	Results ●○

Visualising frequent patterns


How to visualise extracted patterns?

- Each sequence corresponds to a series of pixels' values at coordinates (x, y).
 - \rightarrow each sequence s corresponds to a unique couple (x, y)
- Thus, all sequences supported by a pattern can be highlighted on a map as white pixels.

 $\rightarrow\,$ a map can be drawn for each extracted pattern

Context 00	State of the art	Motivations	Method 00	Data 00	Results ○●

Presentation of three patterns

<(IR, 1)(NDVI, 20)>swamps

< (*R*, 17) (*R*, 18; *NDVI*, 3) > urbanisation

Visualisation of three selected patterns (one color per pattern)

< (NDVI, 2) (G, 20) (NDVI, 1) > industrialisation

Context	State of the art	Motivations	Method	Data	Results
00	00	00	00	00	
Conclusi	on				

Summary

- Adaptation and validation of sequential patterns extraction to remote sensing.
- Extraction of minority behaviours.
- Visualisation of sequential patterns.

Future work

- Visualising a set of patterns.
- Application to an other application domain (e.g. agronomical)

Context	State of the art	Motivations	Method	Data	Results
00	00		00	00	00

Questions

Context 00	State of the art	Motivations	Method 00	Data 00	Results 00

Andres, L., Salas, W., and Skole, D. (1994). Fourier analysis of multi-temporal AVHRR data applied to a land cover classification.

International Journal of Remote Sensing, 15(5):1115–1121.

- Bruzzone, L. and Prieto, D. (2000).
 Automatic analysis of the difference image for unsupervised change detection.
 IEEE Transactions on Geoscience and Remote Sensing, 38(3):1171–1182.
- Foody, G. (2001).

Monitoring the magnitude of land-cover change around the southern limits of the Sahara.

Photogrammetric Engineering and Remote Sensing, 67(7):841–848.

Context	State of the art	Motivations	Method	Data	Results
00	00		00	00	00

Johnson, R. and Kasischke, E. (1998). Change vector analysis: a technique for the multispectral monitoring of land cover and condition. International Journal of Remote Sensing, 19(16):411-426. Julea, A., Méger, N., Trouvé, E., and Bolon, P. (2008). On extracting evolutions from satellite image time series. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS), volume 5, pages 228–231. Masseglia, F., Cathala, F., and Poncelet, P. (1998). The PSP Approach for Mining Sequential Patterns. In Proceedings of the 2nd European Symposium on Principles

of Data Mining and Knowledge Discovery.

Context	State of the art	Motivations	Method	Data	Results
00	00		00	00	00

Nielsen, A., Conradsen, K., and Simpson, J. (1998).
 Multivariate Alteration Detection (MAD) and MAF
 Postprocessing in Multispectral, Bitemporal Image Data: New
 Approaches to Change Detection Studies.
 Remote Sensing of Environment, 64(1):1–19.

Todd, W. (1977).

Urban and regional land use change detected by using Landsat data.

Journal of Research by the US Geological Survey, 5:527–534.