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Satellite Image Time Series
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Two types of change

long-term changes (ex: urbanization)
cyclic changes (ex: agriculture)

→ need for automatic methods to map and
characterize these changes
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Bi-temporal methods

Principle
Methods using only 2 images.
Simple methods ; cannot capture complex changes.
Mostly used to map change areas.

Examples

Univariate Image Differencing [Bruzzone and Prieto, 2000]
Image ratioing [Todd, 1977]
Change vector analysis [Johnson and Kasischke, 1998]
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Multi-temporal methods

Principle
Methods using the whole image time series.
Able to capture complex changes.
Able and to map and characterize change areas.

Examples

Post-classification fusion [Foody, 2001]
Linear data transformation [Nielsen et al., 1998]
Frequency analysis [Andres et al., 1994]
Frequent pattern mining [Julea et al., 2008]
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Review

Bi-temporal methods
By definition, these methods do not use the whole dataset.
So they are unable to capture complex changes (long-term
changes, cyclic changes, time shifts, etc.)
Mostly used for the mapping of abrupt changes (earthquake,
etc.)

Multi-temporal methods
Have the possibility to capture complex changes.
But generally deal with time dimension as another, except for:

Fourrier analysis, which don’t tolerate irregular sampling.
Frequent pattern mining, which was only applied to the
search of majority behaviours in monoband (gray image).
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Aim of the paper

Objectives
Design a method with following characteristics:
→ multi-temporal
→ able to extract long-term or seasonal changes
→ (changes over small areas)
→ applicable to multi-band images
→ robust to meteorological noise (clouds)
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Mining Frequent Sequential Patterns

Frequent sequential Pattern Mining
Frequent sequential Pattern Mining consists in finding frequent
common subsequences.
This type of methods fits several characteristics:
X multitemporal by definition
X able to extract different kind of changes by finding

representing key states
X applicable to multi-band images by extracting sequence of

itemsets
X robust to meteorological noise by being able to “skip” values
× able to extract minority behaviours → critical growth of the

search space

Our approach is based on PSP [Masseglia et al., 1998]
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The pattern extraction algorithm

Pattern extraction algorithm
Composed of 2 steps:

1 Generate a set of candidate patterns (sequences).
2 Prune phase: discard from this set, sequences not satisfying

the minimum support.

Extracting minority behaviours

Problem: a lot (!) of non-evolution patterns (e.g. tree → tree)
Solution:

1 Add a maximum support (avoid hyper-frequent values)
2 Remove candidates with two consecutive identical values
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Satellite Image Time Series

Description
Satellite image database: Kalideos c© CNES 2010
(http://kalideos.cnes.fr)
Spot 1, Spot 2 & Spot 4
35 images over 20 years (1986 to 2006)
Total number of pixel values: 28 millions

· · · · · ·

1986-07-16 · · · 1994-01-29 · · · 2006-06-03
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Visualising frequent patterns

How to visualise extracted patterns?
Each sequence corresponds to a series of pixels’ values at
coordinates (x , y).
→ each sequence s corresponds to a unique couple (x , y)

Thus, all sequences supported by a pattern can be highlighted
on a map as white pixels.
→ a map can be drawn for each extracted pattern
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Presentation of three patterns
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Visualisation of three selected patterns
(one color per pattern)

< (IR, 1) (NDVI , 20) >
swamps

< (R, 17) (R, 18; NDVI , 3) >
urbanisation

< (NDVI , 2) (G , 20) (NDVI , 1) >
industrialisation
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Conclusion

Summary
Adaptation and validation of sequential patterns extraction to
remote sensing.
Extraction of minority behaviours.
Visualisation of sequential patterns.

Future work
Visualising a set of patterns.
Application to an other application domain (e.g. agronomical)
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Questions
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