
Estimating Time Series Averages from Latent Space of

Multi-tasking Neural Networks

Tsegamlak Terefe1,2 · Maxime Devanne2 · Jonathan Weber2 · Dereje
Hailemariam 1 · Germain Forestier2,3

This is the author’s version of an article published in Knowledge and Information Systems. The final
authenticated version is available online at: https://doi.org/10.1007/s10115-023-01927-1.

Abstract Time series averages are one key input to temporal data mining techniques such as
classification, clustering, forecasting, etc. In practice, the optimality of estimated averages often
impacts the performance of such temporal data mining techniques. Practically, an estimated average
is presumed to be optimal if it minimizes the discrepancy between itself and members of an averaged
set while preserving descriptive shapes. However, estimating an average under such constraints is often
not trivial due to temporal shifts. To this end, all pioneering averaging techniques propose to align
averaged series before estimating an average. Practically, the alignment gets performed to transform
the averaged series, such that, after the transformation, they get registered to their arithmetic mean.
However, in practice, most proposed alignment techniques often introduce additional challenges. For
instance, Dynamic Time Warping (DTW) based alignment techniques make the average estimation
process non-smooth, non-convex, and computationally demanding. With such observation in mind,
we approach time series averaging as a generative problem. Thus, we propose to mimic the effects
of temporal alignment in the latent space of multi-tasking neural networks. We also propose to
estimate (augment) time domain averages from the latent space representations. With this approach,
we provide state-of-the-art latent space registration. Moreover, we provide time domain estimations
that are better than the estimates generated by some pioneering averaging techniques.

Keywords Latent Space · Multi-tasking · Time Series Averaging

1 Introduction

In today’s data-driven world, time series are one of the dominant datasets that get intensively
investigated. The possibility of defining the datasets from seemingly unrelated topics makes them
even more interesting for further investigation (Lines 2015, Chen et al. 2015). For instance, in (Lines
2015), time series were extracted from segmented images of chickens, by recording the movement
of earthworms, by taking the record of the power consumption of home appliances, from food
spectrograph, etc. In reality, the temporal datasets covered broad application domains that extended
from computer vision to behavioral genetics.

1School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa University,
Addis Ababa, Ethiopia
2IRIMAS, Université de Haute-Alsace, Mulhouse, France
3DSAI, Monash University, Melbourne, Australia

https://doi.org/10.1007/s10115-023-01927-1

2 Tsegamlak Terefe et al.

0 100 200 300 400 500Time

2

1

0

1

2

Am
pl

itu
de

Time series extracted from images of Beetles

(a) Time series representing Beetles

0 100 200 300 400 500Time

2

1

0

1

2

Am
pl

itu
de

Time series extracted from images of Flies

(b) Time series representing Flies

Fig. 1: Time series extracted from the images of Beetles and Flies

Mathematically, a time series gets defined by taking a set of ordered observations where
the ordering can be in space, time, frequency, etc (Wei 2006). Moreover, each observation could
be real numbers, symbols, boolean values, etc. However, in our context, we assume a univariate
time series X = {x1, x2, x3,, xN} ∈ RN is defined by taking individual observations (xi ∈ X)
from R. However, if a time series is multivariate, each observation gets taken from RK . Overall, for
both cases, the ordering of the individual observations get expected to form unique descriptive
shapes (features) that are utilized by most supervised, unsupervised, and semi-supervised temporal
data mining techniques (Bagnall et al. 2012, Lin & Li 2009, Lin et al. 2007, Fawaz et al. 2019). For
instance, in time series classification, algorithms or optimization setups mainly aim to identify (learn)
similar class-specific (per-class) features to identify class memberships (Bagnall et al. 2012, Fawaz
et al. 2019). However, in practice, temporal data mining techniques do not always rely on features
evident in individual time series. On the contrary, they sometimes could rely on series that
summarize shapes or patterns observed in groups of temporal datasets. For example, in (Shawel
et al. 2020), time series got defined by taking hourly traffic demands from 729 Base Transceiver
Stations (BTS). The series later got grouped into clusters representing traffic patterns observed
within different geographical areas. In this practical case, cluster centroids (averages) determined
how the temporal datasets (base stations) get grouped. Moreover, the centroids determined the
parameters of the forecasting models designed to capture future traffic demands of base stations
belonging to a given cluster. Practically, the need for time series which summarize a group of
temporal datasets is not limited to time series forecasting. On the contrary, we can also find such
demands in time series clustering, classification, signal processing, etc (Aghabozorgi et al. 2015,
Bagnall et al. 2012, Gupta et al. 1996). Overall, when such needs arise, a group of temporal datasets
is often summarized by taking averages (Gupta et al. 1996, Niennattrakul & Ratanamahatana 2009,
Petitjean & Gançarski 2012, Shapira Weber et al. 2019a, Bock 2008, Paparrizos & Gravano 2015,
Schultz & Jain 2018).

Even though summarizing temporal datasets through averaging proved useful, in reality,
such summarization is not trivial mainly due to temporal distortions (shifts along the time axis). In
practice, temporal distortions could be evident for various reasons (Gupta et al. 1996, Niennattrakul
& Ratanamahatana 2009, Petitjean & Gançarski 2012, Schultz & Jain 2018, Shapira Weber et al.
2019a, Terefe et al. 2020). To further elaborate on this, we can consider a group of time series
representing Beetles and Flies as an example. In Figure 1, we have plotted samples from both
categories taken from the University of California Univariate Time Series Repository (UCR) (Chen
et al. 2015). As evident from the plots, the series representing Beetles or Flies are not well aligned,
i.e., they are affected by temporal distortion. In this case, the temporal distortions originated from

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 3

0 100 200 300 400 500Time

2

1

0

1

2

Am
pl

itu
de

Arithimetic mean of the Beetles data sets
Arth. Mean

Examples of sub optimal estimations due to temporal shifts

(a) Beetles dataset arithmetic mean.

0 100 200 300 400 500Time

2

1

0

1

2

Am
pl

itu
de

Arithimetic mean of the Flies data set
Arth. Mean

Examples of sub optimal estimates due to temporal shifts

(b) Flies dataset arithmetic mean.

Fig. 2: Arithmetic mean of the UCR Beetles (a) and Flies (b) datasets.

the way the datasets got defined. In this regard, initially, colored images of Beetles and Flies were
taken. Following this, the images got segmented into binary (black and white) images using pixel
value thresholding. The segmentation introduced a demarcation (contour) between an image of a
Beetle (Fly) and its surrounding background. With such contours at hand, it was possible to take
euclidean distances between samples of contour points and a reference point within the boundaries
of the image of Beetle (Fly). Consequently, the distance measurements defined the amplitude
values of the temporal data sets, i.e., xi ∈ X. Moreover, since the distance measurements were
taken by taking samples at fixed angular steps, the sequence over which samples got taken defined
the ordering of the amplitude values (Lines 2015). To this end, the time series extracted from
the images of a Beetle (Fly) would get shifted along the time axis if an image gets rotated by a
certain angle. Additionally, imperfections in images and small variations in the shapes and sizes of
Beetles (Flies) would also contribute to the temporal distortions (Lines 2015). Overall, practically,
we often find time series getting affected by time shifts for various reasons. For instance, differences
in sampling rates, behaviors of observed entities, shapes, sizes, etc (Ye & Keogh 2009, Lines 2015,
Shawel et al. 2020). In reality, such sources of temporal shifts often become a challenge for most
temporal data mining techniques (Aghabozorgi et al. 2015, Xie et al. 2016, Bagnall et al. 2012,
Fawaz et al. 2019). In this aspect, temporal distortions often make arithmetic mean, i.e., the most
trivial average, to be a sub-optimal estimate in the context of preserving shapes (patterns) observed
within an averaged set (Gupta et al. 1996, Niennattrakul & Ratanamahatana 2009, Petitjean &
Gançarski 2012, Schultz & Jain 2018, Shapira Weber et al. 2019a). This is better demonstrated in
Figure 2 where we have plotted the arithmetic means of the series shown in Figures 1a and 1b. In
Figures 2a and 2b, we have marked some segments of the arithmetic means using red boxes in
order to emphasize on segments with significant shape distortions. In these segments, temporal
distortion misaligned peaks and troughs that give estimations close to zero. This simple example
demonstrates how a temporal data mining technique relying on arithmetic mean could easily
misinterpret underlying data due to temporal distortion.

In reality, temporal distortion affects the performances of a range of temporal data min-
ing techniques (Bagnall et al. 2012, Lin & Li 2009, Lin et al. 2007, Aghabozorgi et al. 2015). To this
end, in practice, different temporal data mining techniques often propose different heuristics to
overcome the challenge. For instance, in distance-based time series classification and clustering
tasks, earlier proposals suggest either domain transformation (Lin et al. 2007, Lin & Li 2009) or
the utilization of elastic distance functions (Bagnall et al. 2012, Petitjean et al. 2011, Bagnall
& Lines 2014). On the contrary, recent proposals suggest boosting classification accuracy by
using neural networks that extract dominant descriptive features through complex nonlinear

4 Tsegamlak Terefe et al.

transformations (Fawaz et al. 2019, Junyuan et al. 2016, Lafabregue et al. 2021a). In this aspect,
pioneering and recent time series averaging heuristics often propose to transform members of an
averaged set before estimating an average. Consequently, in most cases, they consider temporal
datasets as vectors in RN that gets transformed to vectors in Rτ , where τ ≥ N (Gupta et al.
1996, Niennattrakul & Ratanamahatana 2009, Petitjean & Gançarski 2012, Schultz & Jain 2018,
Paparrizos & Gravano 2015, Shapira Weber et al. 2019a). In practice, the transformation often
gets performed by aligning members of an averaged set either in a pairwise manner (Gupta et al.
1996, Niennattrakul & Ratanamahatana 2009) or as compared to a template (landmark) that is
iteratively updated (Petitjean et al. 2011, Shapira Weber et al. 2019a, Paparrizos & Gravano 2015).
In practice, if the latter approach gets utilized, the template is often initialized either randomly
or by using the values of one of the averaged series (Petitjean et al. 2011, Paparrizos & Gravano
2015). Moreover, as the averaging process progresses, the template often gets updated by taking
the arithmetic mean of the aligned series. In other words, we can see such averaging techniques as
performing registration of averaged series to their Rτ space arithmetic mean. Generally, we can
broadly group pioneering averaging techniques into two broad categories: i.e., those relying on elastic
and non-elastic alignment functions (Gupta et al. 1996, Niennattrakul & Ratanamahatana 2009,
Petitjean et al. 2011, Paparrizos & Gravano 2015) and those relying on different transformation
techniques found in functional data analysis (Shapira Weber et al. 2019a, Chen & Srivastava 2021,
Kowsar et al. 2022). Overall, to the best of our knowledge, most proposed averaging heuristics
approach time series averaging as a registration (alignment) problem. To this end, the quality and
the characteristics of the estimated means often get dependent on the type of underlying alignment
technique. For instance, in both broad categories, the quality of the estimated means is often
guaranteed in the transformed (registered) space. To this end, pioneering techniques often make
assumptions about how the estimates get utilized. For instance, most distance-based classification
and clustering tasks propose to utilize Dynamic Time Warping (DTW) distance while using averages
estimated in DTW space (Bagnall et al. 2012, Aghabozorgi et al. 2015, Fawaz et al. 2019, Bagnall
& Lines 2014, Petitjean et al. 2011). In reality, DTW distance transforms the estimated averages
to their registered space where their optimality is relatively guaranteed. Similarly, in velocity
field-based averaging heuristics, the heuristics rely on the capability of an alignment network to
transform any unseen data into a space where the averages get estimated (Shapira Weber et al.
2019a). However, in some practical cases, such underlying assumptions might not always be feasible.
For instance, in the case of (Shawel et al. 2020, Debella et al. 2022), we cannot directly utilize
DTW distance or alignment networks while fitting forecasting models.

With these observations in mind, in this paper, we deviate from the standard approach
and see time series averaging as an augmentation (generative) problem. This way, we further weaken
the link between the average estimation process and how the estimates get utilized in practical
situations. To meet this objective, we investigate the possibility of using latent features of neural
networks for time series averaging. In our investigations, we emphasize two factors that could
significantly impact the type and quality of latent space representations, i.e., objective functions
and network architecture. In reality, by investigating these key parameters, we try to address two
key questions. First, we ask ourselves, can we mimic multiple alignment (registration) through a
carefully guided latent space embedding? If we can do so, we then ask, how can we estimate time
domain averages from such latent space embedding? In general, by providing logical and sound
answers to these two key questions, we make the following two contributions:

– We provide a systematic investigation of the possibility of utilizing the latent space of neural
networks for time series averaging. Moreover, we provide a latent space registration that is

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 5

statistically better than the registrations obtained with all existing averaging heuristics.

– We provide a time domain estimate that is statistically better than a time domain arithmetic
mean. Moreover, we also show that our best-performing proposal could outperform estimations
obtained with some DTW-based averaging heuristics.

With this said, we organize the rest of this paper into five sections. In section 2, we present a brief
review of previous proposals and concepts fundamental to time series averaging. In section 3, we
present our proposals and the underlying argument behind them. We then give the experimental
setup we used to evaluate our proposal in section 4. Finally, we present our findings and conclusive
remarks in section 5 and 6.

2 Background and Previous Works

In practice, most pioneering time series averaging techniques highly rely on DTW to perform
temporal alignment (Schultz & Jain 2018, Gupta et al. 1996, Niennattrakul & Ratanamahatana
2009, Petitjean & Gançarski 2012). Consequently, all DTW based averaging technique’s incorporate
DTW distance to their objective function, i.e., the Fréchet function or (1) (Petitjean & Gançarski
2012, Schultz & Jain 2018):

F (µ) = min(
K∑
i=1

δpi(Xi, µ)), (1)

where, K, {Xi ∈ RM , µ ∈ RN : M ≤ N}, and δpi are: the size of the averaged set, members
of the averaged series, an estimated mean, and squared DTW distance under a warping path pi. In
reality, DTW distance is also dominantly used as a similarity measurement in most distance-based
temporal data mining techniques (Bagnall et al. 2012, Aghabozorgi et al. 2015, Petitjean et al. 2011).
Consequently, to better aid the reader, we will recap the algorithm before presenting averaging
techniques relying on it.

2.1 Dynamic Time Warping

The Dynamic Time Warping (DTW) got introduced as an alignment technique for voice recognition
systems (Sakoe & Chiba 1978, Itakura 1975). In practice, such systems get expected to identify
commands spoken with different styles, speeds, emphasis, etc. Consequently, it is relatively challenging
to correctly recognize spoken words using classical distance measurement techniques such as
the Euclidean distance. With this in mind, DTW assumes two voice samples are of the form
X = {x1, x2, ..., xM} and Y = {y1, y2,, yN}. To measure the similarity between the two temporal
datasets, it computes two (M ×N) cost values, i.e., local and global cost values. In general, DTW
computes local cost values by taking the distance (d(xi, yj)) between each and every coordinate
value of X and Y . In most cases, the distance function (d(xi, yj)) is set to the squared difference of
xi and yi. On the contrary, DTW computes global cost values using an (M ×N) matrix which will
end up containing a set of warping paths connecting (0,0) to (M, N). In DTW, a warping path gets
defined using a group of allowable global cost matrix cells that minimize (2), where GCi,j and LCi,j
are the global and local costs associated with cell (i,j). In practice, cells within a DTW warping
path get known as DTW-associated coordinates. Thus, in the end, DTW-associated coordinates

6 Tsegamlak Terefe et al.

formulate the coordinates (xi’s and yi’s) of the aligned series.

GCi,j =

LCi,j + min{GCi−1,j , GCi,j−1, GCi−1,j−1}, if {i,j} 6= 0,

LCi,j + min{GCi,j−1}, if i=0,

LCi,j + min{GCi−1,j}, if j=0

(2)

Even though DTW warping improved the performance of voice recognition systems, researchers
quickly identified some problems associated with its definition (Sakoe & Chiba 1978, Salvador
& Chan 2007, Cuturi & Blondel 2017). For instance, DTW gets expected to compute a (M ×
N) global cost matrix. Thus, the computational complexity of aligning a pair of series is at
least quadratic O(M × N) (Salvador & Chan 2007, Petitjean & Gançarski 2012). In reality,
the computational complexity could quickly become exponential as the number of warped series
increases (Petitjean & Gançarski 2012). Furthermore, DTW gives rise to a nonmetric distance that
fails to meet the properties of identity and triangular inequality (Ruiz et al. 1985). Moreover, DTW
uses a min operation while computing global cost values. To this end, DTW is known to give rise to
a nondifferentiable (nonsmooth) distance function (Cuturi & Blondel 2017). With these observations
in mind, after DTW’s introduction, a range of research got conducted to address a portion of the
challenges. For instance, the authors in (Cuturi & Blondel 2017) proposed to use soft minimums to
make DTW differentiable. Moreover, to make DTW run faster, some researchers have proposed to
compute the global cost matrix either for pre-selected cells (Sakoe & Chiba 1978, Itakura 1975)
or to systematically reduce the size of the global cost matrix (Salvador & Chan 2007). In general,
since such proposals often focus on addressing a specific problem, algorithms relying on DTW often
end up inheriting some of its undesired behaviors.

2.2 Dynamic Time Warping Based Time Series Averaging

The computation of an optimal time series average is studied for over three decades (Petitjean &
Gançarski 2012, Gupta et al. 1996, Niennattrakul & Ratanamahatana 2009, Schultz & Jain 2018,
J. Jain et al. 2019, Paparrizos & Gravano 2015, Shapira Weber et al. 2019a). Moreover, most of the
pioneering works propose to overcome the effects of temporal distortion using DTW (Gupta et al.
1996, Niennattrakul & Ratanamahatana 2009, Petitjean et al. 2011, Schultz & Jain 2018). However,
in practice, integrating DTW into the averaging problem proved tricky due to its definition. This is
because DTW gets mainly designed to align a pair of univariate temporal datasets. However, in
time series averaging, we often desire to simultaneously warp members of an averaged set to obtain
a relatively optimal estimate (Petitjean & Gançarski 2012, Shapira Weber et al. 2019a). However,
upgrading DTW in such a manner is known to be computationally intractable (NP-hard) (Petitjean
& Gançarski 2012, J. Jain et al. 2019). To this end, in practice, DTW-based techniques often
propose heuristics to overcome this limitation. Overall, depending on the proposed heuristics, we can
broadly categorize DTW-based averaging techniques into two, i.e., those relying on sequential and
template-based alignments. With this understanding, we next present a summary of DTW-based
averaging techniques falling within these two broad categories.

2.2.1 Sequential Approaches

After the introduction of DTW, a range of DTW-based time series averaging proposals approached
the averaging problem through sequential warping of the averaged series (Gupta et al. 1996,
Niennattrakul & Ratanamahatana 2009, Niennattrakul et al. 2012, Srisai & Ratanamahatana

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 7

2009, Ongwattanakul & Srisai 2009). Consequently, given a set of time series which might differ in
length, i.e, S = {X1, X2, X3, . . . , XN}, averaging techniques that are presumed to be sequential
first subdivide the averaged set into groups of pair. Following this, the paired series get warped
with DTW or its variant. The warping gets performed to generate intermediate estimates often
obtained by taking the arithmetic mean of the warped series (Gupta et al. 1996, Niennattrakul &
Ratanamahatana 2009). Finally, the intermediate estimates get paired, aligned, and averaged until
a single estimate remains.

Practically, sequential approaches appear natural since DTW is defined to handle a pair
of series at a time. However, in practice, such averaging techniques are often clouded by at least
two challenges. First, the quality of the estimates often depends on how pairs get selected. In
order to address this issue, some sequential approaches propose to cluster the averaged series in a
hierarchical manner (Niennattrakul & Ratanamahatana 2009, Ongwattanakul & Srisai 2009). Thus,
this way, the most similar series often get paired first. However, even if the hierarchical clustering
minimized the effect of pair selection, the length of the estimates often significantly increased since
sequential approaches take the arithmetic mean of DTW-associated coordinates. In reality, this
problem gets magnified as the size of the averaged set grows (Niennattrakul & Ratanamahatana
2009, Petitjean & Gançarski 2012, Petitjean et al. 2011). In practice, this becomes a challenge at
least in three aspects: interpretability, storage space, and computational time (Niennattrakul &
Ratanamahatana 2009, Petitjean & Gançarski 2012, Ongwattanakul & Srisai 2009). With this
understanding, alternative DTW-based averaging heuristics approach time series averaging as a
registration problem.

2.2.2 Template Based Approaches

To overcome the problems associated with sequential approaches, alternative proposals associated
time series averaging with the multiple alignment problem (Bulteau et al. n.d., Petitjean & Gançarski
2012). However, extending DTW in such a manner proved to be NP hard (Bulteau et al. n.d.,
Petitjean & Gançarski 2012, J. Jain et al. 2019). Consequently, nonsequential techniques often
propose to register members of an averaged set to a pre-selected reference (template) that gets
updated in an iterative manner (Petitjean et al. 2011, Petitjean & Gançarski 2012, Schultz & Jain
2018, J. Jain et al. 2019). In general, such techniques follow three basic steps. First, given a set of
series in X = {X1, X2, . . . , XN} : Xi ∈ RM , they often select a template in RM that gets initialized:
randomly, by taking one of the series (Xi), or by taking medoid of X (Schultz & Jain 2018, Petitjean
& Gançarski 2012). Following this, members of the averaged series get warped to the selected
template either one at a time (Schultz & Jain 2018) or in a batch (Petitjean et al. 2011). Finally, in
recent proposals, each coordinate value of the template gets updated either by taking the barycenter
of DTW associated coordinates (Petitjean et al. 2011, Petitjean & Gançarski 2012) or by using
warping and variance matrices (Schultz & Jain 2018). In reality, the outcome of template-based
approaches often depends on template initialization and the way the averaged series get warped,
i.e., compared to a template. In the context of the latter case, batch-based approaches often get
affected by the non-convexity of the averaging objective function, i.e., the Fréchet function (Petitjean
et al. 2011, Schultz & Jain 2018). On the contrary, a sequential template-based approach avoids the
non-convexity of the Fréchet function by optimizing for individual curvatures. In general, among
the two proposals, the sequential template-based approach gets argued to provide better results,
i.e., when the averaged set is composed of 50 or more samples (Schultz & Jain 2018). Moreover,
since it individually aligned the averaged series to a template, its computational complexity is
not related to the size of the averaged set. Consequently, it is comparatively faster than its batch-

8 Tsegamlak Terefe et al.

based counterparts. However, overall, both template-based approaches performed better than their
sequential counterparts (Petitjean et al. 2011, Petitjean & Gançarski 2012, Schultz & Jain 2018).
Moreover, in practice, estimates generated by template-based approaches at times get utilized as
an initialization step in alternative centroid estimation techniques. For instance, in (J. Jain &
Schultz 2018), researchers proposed to extend the Learning Vector Quantization (LVQ) to DTW
space, i.e., they proposed the Asymmetric Generalized Learning Vector Quantization (GALVQ).
In the proposal, they utilized estimates generated via DBA while initializing the algorithm. The
algorithm later updates the initial centroids using an update rule based on a Sigmoid function.
Practically, through the updating rule, GALVQ further refines the estimates of DBA such that they
become more suitable for one nearest centroid classification (1NCC). In reality, such use of averages
estimated via template-based approaches further asserts their use in a more practical sense.

2.3 Alternative Alignment Techniques in Time Series Averaging

In practice, time series averages are often key inputs to various temporal data mining tech-
niques (Bagnall et al. 2012, Bagnall & Lines 2014, Petitjean et al. 2011, Paparrizos & Gravano 2015,
Shapira Weber et al. 2019a, J. Jain & Schultz 2018). Consequently, there are cases where data
mining techniques could propose alignment (transformation) techniques that differ from DTW (Chen
& Srivastava 2021, Shapira Weber et al. 2019a, Paparrizos & Gravano 2015, Kowsar et al. 2022).
For instance, in (Paparrizos & Gravano 2015), the authors proposed to utilize correlation as a
means of similarity measurement. They formalized this proposal by defining a correlation-based
similarity measurement technique known as Shape Based Distance (SBD). Furthermore, the authors
showed that the performance of SBD is statistically indifferent to DTW, i.e., while it gets used
under a clustering setup named K-Shape. In this regard, the authors proposed to estimate cluster
centroids by aligning cluster members to a reference template such that the alignment maximized
their correlation (Paparrizos & Gravano 2015). Thus, in this case, cluster centroids (averages) were
estimated using an alignment technique different from DTW. In practice, K-Shape is not the only
technique that proposes estimating averages without using DTW. In practice, some alternatives
propose alignment or transformation techniques found in functional data analysis (Srivastava &
P. Klassen 2016, Kowsar et al. 2022, Chen & Srivastava 2021, Shapira Weber et al. 2019a). For
instance, (Kowsar et al. 2022) proposed to treat temporal datasets as points on the surface of a
sphere. Thus, this way, they defined the geometric shape of a time series which was later seen as
a feature space for the augmentation of averages. On the contrary, in (Chen & Srivastava 2021,
Shapira Weber et al. 2019a), authors proposed to morph temporal datasets using velocity fields. In
comparison, (Chen & Srivastava 2021) proposed to utilize Square Root Velocity (SRV) velocity
fields. On the contrary, (Shapira Weber et al. 2019a) proposed to utilize Continuous Piece-wise
Affine (CPA) velocity fields (Detlefsen et al. 2018). However, despite this difference, such approaches
can get summarized using three basic steps. First, they transform the time stamps of the averaged
series under the guidance of a selected velocity field. Following this, they define the amplitude values
for the newly generated time stamps via interpolation. Finally, if the transformation gets performed
in the context of averaging, they take the arithmetic mean of the morphed series as an estimate.
Consequently, velocity field based approaches end up registering the morphed series to their
arithmetic mean. However, due to the interpolation step, there is an inherent assumption that the
aligned datasets get defined from an underlying continuous function by taking samples (Srivastava
& P. Klassen 2016). Despite this assumption, one interesting point associated with these approaches
is that they often integrate their proposal into neural networks. For instance, (Shapira Weber et al.
2019a) proposed to intelligently learn the CPA velocity fields through a Temporal Transformer (TT)

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 9

layer defined under the framework of a Diffeomorphic Temporal Alignment Network (DTAN).
In reality, a TT layer is composed of three components: a localization layer, a parametric grid
generator, and a differentiable re-sampler (Shapira Weber et al. 2019b). The localization layer first
takes a time series U ∈ RN . It then utilizes convolutional layers to extract parameter θ ∈ RN for
the parametric velocity field νθ(U). This parameters is then used to generate an evenly spaced
grid in RN that is within the ranges of [−1, 1] or G = (pn)Nn=1 ⊂ [−1, 1]. Finally, DTAN uses a
differentiable re-sampler to generate the morphed series by re-defining the values of the newly
generated time stamps (Shapira Weber et al. 2019b). However, in reality, parametric re-sampling by
itself will not guarantee registration of the transformed series to their arithmetic means. To this
end, DTAN proposed to fine-tune its parametric interpolation by recursively minimizing a per class
WGSS loss, i.e., the Fréchet function (1) under euclidean distance.

Generally, the concept of utilizing neural networks for time series averaging is encouraged
for at least two main reasons. First, by using neural networks, it is possible to conduct complex
nonlinear transformations. These transformations, in turn, open the possibility of utilizing less
difficult and off-the-shelf objective functions. Secondly, DTW-based averaging heuristics often do
not have a memory of the averaging process (Gupta et al. 1996, Niennattrakul & Ratanamahatana
2009, Petitjean et al. 2011). In other words, the averaging process gets embedded into the estimates.
Thus, if a new time series becomes available, the quality of the previously estimated averages is
often guaranteed with a costly re-run (Petitjean et al. 2011, Petitjean & Gançarski 2012, Chen
& Srivastava 2021). Contrary to this, in practice, neural networks can generalize over a range of
unseen data sets. Hence, a neural network-based averaging heuristics could use transfer learning to
update its estimate. However, despite this advantage, to the best of our knowledge, proposed neural
network-based averaging techniques such as DTAN guarantee the quality of the generated estimates
in the morphed space (Shapira Weber et al. 2019a,b). Consequently, they propose transforming
unseen datasets into the morphed space before using the generated estimates. For instance, DTAN
uses a trained TT layer to morph unseen datasets. To this end, it is unclear how such approaches
perform in situations where the estimates are utilized in the time domain, for instance, as in the
case of (Shawel et al. 2020).

2.4 Deep Learning in Time Series Data Mining

Contrary to time series averaging, for other temporal data mining tasks, a range of neural
network-based solutions have been proposed (Fawaz et al. 2019, 2020, Iwana & Uchida 2021,
Lafabregue et al. 2021b, Xie et al. 2016, Shawel et al. 2020). For instance, in (Fawaz et al. 2019),
the authors intensively assessed the capability of various neural network architectures in extracting
class-specific descriptive features. The investigation included neural networks with fully connected,
convolutional, and recurrent layers. In the end, the authors have identified that the Residual
Network (ResNet) gives better classification accuracies. The ResNet got initially proposed for image
classification in (He et al. 2016). Motivated by this investigation, the authors in (Fawaz et al. 2020)
have proposed to search for the AlexNet of time series classification (Christian et al. 2015). Like its
ResNet counterpart, AlexNet is one of the most renown convolutional neural network architecture
proposed for image classification (Krizhevsky et al. 2012). In this investigation, the authors surpassed
the performance of an ensemble of distance-based classifiers proposed in (Bagnall et al. 2012). In
another domain, the authors in (Lafabregue et al. 2021b) assessed the possibility of clustering time
series with deep neural networks. In their investigation, the authors mainly focused on performing
clustering using the embedding (latent space features) obtained from autoencoders (Dong et al.

10 Tsegamlak Terefe et al.

2018) and Generative Adversarial Networks (GAN) (Goodfellow et al. 2014). In addition to
investigating the different architectures, the authors also investigated the impact of objective
functions (losses) on the quality of extracted embedding and the clusters. In general, the authors
identified that the ResNet architecture obtained the highest statistical ranking in terms of cluster
quality. However, the post-hypothesis test revealed no major statistical difference across different
architectures and objective functions (Lafabregue et al. 2021b). In reality, these examples cover the
broad category of supervised and unsupervised learning. However, in practice, the use of deep neural
networks is not only limited to these temporal data mining tasks. For instance, deep neural networks
got used in time series data augmentation (Iwana & Uchida 2021), regression (Shawel et al. 2020), etc.

With these observations in mind, in this paper, we propose to estimate time series aver-
ages using deep neural networks. In reality, we can think of the averaging problem as an optimization
problem. Thus, we believe it would be counter-intuitive to neglect the potential of deep neural
networks. Moreover, in practice, neural networks have been utilized in temporal data mining tasks
that have a close tie with averaging, for instance, we can take the works given in (Junyuan et al.
2016, Xie et al. 2016) as an example. Motivated by this fact, we propose to augment time series
averages from the latent space features (embedding) of neural networks. However, unlike DTAN,
we avoid basing or network architecture on specialized layers that could significantly increase the
deployment complexity. Consequently, in all of our proposals, we intend to customize and utilize
off-the-shelf objective functions and neural network architectures.

3 Methodology

Practically, time series averaging is predominantly approached as an alignment problem (Gupta
et al. 1996, Niennattrakul & Ratanamahatana 2009, Petitjean & Gançarski 2012, Petitjean et al.
2011, Schultz & Jain 2018, J. Jain et al. 2019, Shapira Weber et al. 2019a, Chen & Srivastava 2021,
Paparrizos & Gravano 2015). However, in some cases, averaging proposals suggests generating
estimates from a feature space (Kowsar et al. 2022, Terefe et al. 2020). However, such proposals are
limited in number. Moreover, to the best of our knowledge, investigations that aimed to estimate
averages from features provided by neural networks are scarce (Terefe et al. 2020). Contrary to this,
in practice, neural network features space (latent space) got intensively used in various temporal
data mining tasks. For instance, in augmentation (Iwana & Uchida 2021), clustering (Junyuan et al.
2016, Lafabregue et al. 2021a), classification (Gee et al. 2019), etc. With these in mind, we ask
ourselves, what kind of network architectures and objective functions provide suitable latent space
representations (embedding) for the augmentation of time series averages? To address this question,
we first assess what pioneering time series averaging proposals perform while generating estimates.

If we carefully observe most pioneering averaging techniques, we find them performing
three basic tasks. First, they transform (align) the averaged series using different warping
techniques, i.e., DTW, diffeomorphism, correlation, etc. The transformation aims to obtain a
RN to Rτ mapping, where τ ≥ N . Moreover, in Rτ , temporal distortion gets expected to
be minimized. Thus, after transformation, averaging heuristics can either choose to update a
reference template based on the values of the transformed series (Petitjean et al. 2011, Schultz
& Jain 2018) or they could propose to take the arithmetic mean previously considered as
sub-optimal (Shapira Weber et al. 2019a, Chen & Srivastava 2021, Paparrizos & Gravano 2015).
Finally, some heuristics could propose a re-transformation technique while others propose to work
in Rτ . For instance, DBA performs registration and estimation in DTW space. However, while

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 11

estimating averages, it takes the barycenter of DTW associated coordinates which re-transform
the series from Rτ to RN (Petitjean et al. 2011). On the contrary, DTAN performs RN to
RN transformation. Thus, it intends to register, estimate, and evaluate the quality of the
averages in the transformed space (Shapira Weber et al. 2019a). With these understandings,
we ask ourselves, can we mimic these transformations in the latent space of neural networks?
Moreover, we also ask ourselves, can we augment time-domain estimates from the latent embeddings?

To answer the first question, we observe what happens to the averaged series after per-
forming a transformation. In this regard, if we consider the averaged series as points in RN , after
transformation (warping) we expect the points to be compact (Shapira Weber et al. 2019a). This
is because, since all warping often gets conducted in reference to common landmark (template),
the transformation (warping) is expected to minimize the discrepancy among the averaged series.
Consequently, if we want to mimic this effect in the latent space of neural networks, we at least
need to have an architecture that identifies features shared among inputs. However, in addition to
compactness, we also desire the latent space to be interpretable so that it is possible to generate time
domain estimates. With these sets of requirements in mind, one network architecture we identified
to align with some of our objectives is an autoencoder (Dong et al. 2018). An autoencoder provides
an embedding that is re-transformable to the time domain. This is in line with our objective of
providing a time domain equivalent for the latent space estimations. However, we cannot solely
expect the reconstruction loss of an autoencoder to give a dense latent embedding. In this regard,
previous work has experimentally shown that a basic autoencoder could not achieve separable
and dense per class features while used to estimate averages for multi-class datasets (Terefe et al.
2020). With this understanding, we focus on one additional off-the-shelf objective function that
favors compact latent representations, i.e., multi-class classification. In practice, a neural network
classifier gets expected to extract class-specific latent features that guarantee high classification
accuracy (Fawaz et al. 2019, 2020). Thus, in such networks, it is intuitive to expect latent features
belonging to a given class to have dense latent representation. This intuition is in line with our
objective of registering the latent features to their arithmetic mean. Moreover, in practice, it is not
the first time that class (cluster) label information gets used while estimating averages (Shawel et al.
2020, Shapira Weber et al. 2019a, Paparrizos & Gravano 2015). For instance, in (Shapira Weber
et al. 2019a), DTAN used class labels while performing diffeomorphic transformation. Moreover,
in (Shawel et al. 2020), averages got estimated on a cluster basis. This fact is also evident
in (Paparrizos & Gravano 2015), where averages got estimated for individual clusters of time series.
With these observations in mind, given an averaged set with M members, we first propose to utilize
a multi-tasking autoencoder setup that minimizes (3), where Xi, Y i ∈ RN are an input time
series and its reconstructed version. Moreover, hci and pci are an embedding used to uniquely
identify a category and Softmax activation value associated with a category (c).

Lmulti(X,Y, h, p) =
1

M

M∑
i=1

1

N

N∑
j=1

(yij − xij)2 −
1

M

M∑
i=1

1

C

C∑
c=1

hci log pci (3)

In general, we utilize the first portion of (3) to guarantee the interpretability of the latent embedding.
Moreover, we use the classification portion of (3) to make the latent embedding dense. However, in
reality, (3) by itself does not guarantee that estimates preserve shapes observed within an averaged
set. Overall, we can consider the multi-tasking approach as an augmentation process. Consequently,
we expect the quality of augmented averages to get impacted by at least the following key factors:

– The architecture of the network: In practice, we do not expect two different architectures
optimizing similar objective functions to perform equally. Thus, different architectural

12 Tsegamlak Terefe et al.

configurations get expected to have implications on the quality of latent representations.

– The objective function: The objective functions optimized by a neural network are a sub-
factor that highly influences the type of extracted latent embedding. Even though we expect the
multi-tasking approach to perform better than a plain autoencoder, it also has a limitation of its
own. For instance, we aim to take the arithmetic mean of the latent space representations as a
latent space estimate. However, in (3), there is no way of minimizing the within group square
sum (WGSS) between the arithmetic mean and the per-class latent representations. Consequently,
we solely rely on the classifier to ensure registration of the latent embeddings to their arithmetic
means.

With these in mind, we next present the steps we followed in order to assess the implication of these
two key factors.

3.1 Evaluating the Impacts of Network Architectures

We propose to base our investigation on three off-the-shelf neural network architectures, i.e.,
the VGG16, Residual Network (ResNet), and Inception version two. We propose to utilize these
architectures by observing their ease of deployment and their success in other temporal data mining
tasks such as classification, clustering, etc (Fawaz et al. 2019, 2020, Xie et al. 2016, He et al.
2016, Christian et al. 2015). With this understanding, we first propose to further investigate the
performance of a multi-tasking autoencoder proposed in our previous work (Terefe et al. 2020).
To this end, we initially adopt the architecture shown in Figure 3. Based on this architecture, we
initially minimize the objective function given in (3). From this point onwards, we call this setup
the reduced VGG16 architecture. Following this, we make a slight modification on the layers of
the reduced VGG16 and evaluate it using the modified multi-tasking objective functions given in
(8)-(6). Hereafter, we call this setup the modified reduced VGG16. In addition to these VGG16
based architectures, we also propose two additional architectures shown in Figures 4 and Figure 5.
The encoder and decoder portion of these additional architectures are also a reduced version of
their original implementations, i.e, Inception version two (Christian et al. 2015) and Residual
Network (ResNet) (He et al. 2016). Consequently, afterward, we call these architectures the reduced
ResNet and the reduced Inception. In all network arrangements, we call our proposals reduced
versions for two main reasons. First, the original implementations of the networks were designed to
handle two-dimensional datasets (images). However, for our case, we customized the architectures
to process vectors (time series). Secondly, for our proposals, we significantly reduced the number of
trainable weights compared to their original implementations. In reality, we perform this parameter
reduction for two main reasons. First, we do not wish our approach to rely on relatively huge
networks to meet its desired objectives. Secondly, most evaluation datasets have a small number
of training samples, i.e., as low as 2 samples per class. Thus, if we directly utilize the original
implementations, we have a higher chance of overfitting. Consequently, we propose to keep the layer
arrangements used in the original proposals and reduce the number of trainable weights. With these
in mind, we present the layer arrangements used in the proposed network architectures.

3.1.1 Proposed Reduced VGG16 Architectures

The VGG16 got initially proposed by the Visual Geometry Group (VGG) (Simonyan & Zisserman
2015). In its original form, the VGG16 is composed of trainable layers ranging from 11 to 19.
However, in practice, the most utilized arrangement is constructed from 13 convolutional layers and

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 13

Depth

Time

Channel

1d Conv. 64 Filters 1d Conv. 128 Filters 1d Conv. 32 Filters

C

1

Fig. 3: The reduced VGG16 multi-tasking autoencoder (Terefe et al. 2020)

3 dense layers. Contrary to this, our proposed reduced VGG16 architecture contains 6 convolutional
blocks (stacks) that are equally divided among an encoder and a decoder. Consequently, an encoder
or a decoder will have a total of 9 convolutional layers, i.e., as shown in Figure 3. Generally, at the
encoder and decoder, a convolutional stack gets built from three convolutional layers. However,
the way we configured the stacks differs. In this regard, at the encoder, we have set the first
convolutional stack to output 128 channels with each convolutional layer. Following this stack, we
have two stacks that output 64 and 32 channels of features, i.e., for each convolutional layer within
a given stack. However, for all stacks, we have kept the kernel sizes of the convolutional layers to 3.
In addition to these convolutional layers, we have three one-dimensional MaxPooling layers with a
kernel size of 3. We placed the MaxPooling layers at the end of each encoder convolutional stack.
Finally, we terminate the encoder by a Flattening and a Dense layer that has a total of L

4 fully
connected neurons, where L is the length of the input series. On the contrary, at the decoder, the
three convolutional stacks respectively output 32, 64, and 128 channels of features, i.e., per each
convolutional layer found within the stacks. Similar to the arrangement at the encoder, we have
kept the kernel size of the convolutional layers to 3. However, instead of MaxPooling layers, we
have two UpSampling layers that have a kernel size of 3. We placed the UpSampling layers at the
end of the first two convolutional stacks. Finally, following the same pattern, the decoder is also
terminated by a Flattening and a dense layer. However, in this case, the dense layer has a total
of L fully connected neurons. Overall, all network layers except the encoder’s first convolutional
layer, the classifier’s last dense layer, and the decoder’s last dense layer get configured with ReLu
activation function. However, the encoder’s and decoder’s first and last layers use Linear activation.
Moreover, the classifier’s last dense layer uses SoftMax activation.

In contrary to the layer arrangement at the encoder and decoder, we have built the classi-
fier using only three fully connected Dense layers. The layers respectively have 90L

100 ,
80L
100 and C fully

connected neurons, where C is the number of category (classes) in the averaged set. In reality, we
reused this classifier architecture in all of our proposals. In general, the reduced VGG16 has 160,800
trainable convolutional layer weights. These weights are relatively small compared to the original

14 Tsegamlak Terefe et al.

implementation of VGG16 which has millions of trainable weights (Simonyan & Zisserman 2015).
However, we should also note that the fully connected dense layers at the encoder and decoder
contribute to an additional 32× L2

108 + L
4 and 1152× L2

4 ×+L trainable weights. Consequently, when
the length of the averaged series (L) increases, the two dense layers significantly contribute to the
number of trainable weights.

In reality, we have reused the reduced VGG16 architecture while assessing an alternative
multi-tasking objective function. However, in this case, we slightly adjust the architecture in two
aspects. First, due to the channel arrangement of the reduced VGG16, the trainable weights of
the decoder are slightly larger than the encoder. This gives rise to an asymmetric encoder and
decoder setup. However, in most practical cases, we expect an autoencoder to have a sense of
symmetry (Dong et al. 2018). Thus, we first change the channel arrangement used at the decoder’s
stacks from (32, 64, 128) to (128, 64, 32). Furthermore, we also change the stride of the the last
encoder’s MaxPooling layer from 2 to 1. Thus, this way, datasets with smaller lengths can get
processed without modifying the kernels of the encoder’s MaxPooling layers. Finally, we also change
the unintelligent UpSampling layers with transposed convolutional layers. We set the transposed
convolutional layers with a kernel and stride of 3 and 2. These changes of parameters reduce
the number of trainable weights at the encoder’s and decoder’s dense layers to 32 × L2

36 + L
4 and

288× L2

4 + L.

3.1.2 Proposed Reduced Inception Version Two Architecture

In this setup, we maintain the classifier architecture used in the reduced VGG16 setup and modify
the encoder and the decoder. In this regard, we first change the convolutional stacks with Inception
modules (Christian et al. 2015). In general, an Inception module is composed of four parallel
convolutional blocks. The four convolutional blocks are, in turn, built from convolutional layers that
have kernel sizes of 1, 2, 3, and 5. Moreover, within a convolutional block, convolutional layers with
kernel sizes different from 1 get their inputs through convolutional layers that have a kernel size of
1. On the contrary, a convolutional layer with a kernel size of 1 gets its input directly from either
a predecessor Inception module or the averaged set. Consequently, within an Inception module,
convolutional layers with a kernel size of 1 serve as a memory link. In the proposed reduced Inception
setup, we limit the maximum convolutional kernel size to five for two main reasons. First, we
want to make the Inception network light-weighted (reduced version). Secondly, in most temporal
datasets, class-specific features are often short-lived, i.e., class-specific features are often steep
edges, narrow peaks, and troughs (Fawaz et al. 2019). Thus, we strongly believe that large kernel
size (receptive fields) will extract undesired common features into the latent representations. Hence,
it will significantly impact the separability of the latent features. This, in turn, impacts the quality
of latent means and their time domain re-projection. With this understanding in mind, we terminate
an Inception module with a Concatenation layer. Additionally, we systematically concatenate the
outputs of each convolutional block within an Inception module. This is because we want the reduced
Inception setup to be weight-wise comparable to the reduced VGG16 arrangement. In this aspect,
for instance, we let each convolutional block of the first encoder’s Inception module to output 32
channels of features. Thus, when they get concatenated, they output 128 channels. Using the same
approach, we let the remaining two encoder’s Inception modules output concatenated channels of 64
and 32. Similarly, the decoder is composed of Inception modules that output concatenated channels
of 128, 64, and 32. However, at the decoder, we have transposed convolutional layers, i.e., between
Inception modules. We set the channel size of these layers to be equal to the concatenated channel
size of their preceding Inception module. Moreover, we set the kernel and stride size of these layers

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 15

1d conv. Kernel=1
Concat. layer

Max pooling

1d conv. Kernel=2

1d conv. Kernel=3 1d conv. Kernel=5

Max Pooling
stride=1

 1d Transp. Conv

Time
Depth

Channel

1

C

Fig. 4: Reduced Inception version two multi-tasking autoencoder.

to 3 and 2. However, we set the kernel and stride of the non-transposed convolutional layers to 3 and
1. Moreover, the kernel and stride size for the encoder’s MaxPooling layers get set to 3 and 2, i.e.,
except the last MaxPooling layer. For this layer, we kept the kernel size to 3 while setting its stride
to 1. Finally, we kept the activation function of the layers similar to the ones used in the reduced
VGG16 setup. Overall, with these configurations, there are 53,776 trainable convolutional layer
parameters. Moreover, the Dense layers in the encoder and the decoder account for 32× L2

36 + L
4

and 288× L2

4 + L trainable weights. This is equivalent to the weights found at the dense layer of
the modified reduced VGG16 architecture.

3.1.3 Proposed Reduced ResNet Architecture

The final architecture we propose to evaluate is the reduced ResNet multi-tasking autoencoder
shown in Figure 5. For this network, we re-utilize the convolutional stacks used in the modified
reduced VGG16 setup. However, in the ResNet, we have skip connections that mix the output of a
predecessor convolutional stack to the output of its immediate successor. These skip connections
serve as memory links as the network’s depth increases (He et al. 2016). Moreover, the ResNet
combines the outputs of skip connections with the outputs of convolutional stacks using a
one-dimensional Addition layer. To this end, unlike the reduced VGG16 setup, we built the
convolutional stacks of the reduced ResNet from four convolutional layers. We added the extra
convolutional layer to account for the dimensional mismatch between skip connections and the
outputs of the convolutional stacks. For instance, in the reduced ResNet, a skip connection
originating from the encoder’s first convolutional stack will have 128 channels. However, its successor
convolutional stack only has 64 channels. To account for such mismatches, within each convolutional
stack, we add a fourth convolution layer that output 32 channels of features. However, other than
this, we maintained most configurations similar to the modified reduced VGG16. Consequently, we

16 Tsegamlak Terefe et al.

Depth

Time

Channel

convolution with 128

filters

1x3 1D convolution with 64 filters

1x3 1D convolution with 32 filters

1D MaxPooling

Addition layer

1x3 1D Transposed convolution

Dense layer node

1x3 1D

Fig. 5: Reduced ResNet multi-tasking autoencoder

set the channels of the remaining three convolutional layers to 128, 64, or 32. Moreover, we kept the
kernel sizes of the MaxPooling, convolutional, and transposed convolutional layers to 3. Additionally,
we also kept the stride of the MaxPooling and transposed convolutional layers to 2. However, the
encoder’s last MaxPooling layer used a stride of 1. Finally, we have used ReLu, Linear, and Softmax
activation functions in a manner similar to the once used in the reduced VGG16 setup. In general,
the reduced ResNet architecture has 157,792 trainable convolutional layer weights. Moreover, we
kept the number of trainable weights for the encoders and decoders Dense to be similar to the ones
found in the Inception and modified VGG16 setups.

In conclusion, in all of our proposed network setups, we have used Linear and ReLu acti-
vation functions. In practice, these activation functions and neural networks, in general, are known
to be sensitive to weight initialization. In order to account for this factor, we respectively used He
normal and Glorot normal initialization for the Relu and Linear activation functions (Glorot &
Bengio 2010, Kaiming et al. 2015).

3.2 Improving the Multi-tasking Objective Function

Beside network architecture, another factor expected to impact the quality of latent features is
the objective (cost) function. In this regard, we have observed minor limitations on the generic
multi-tasking objective function given in (3). In reality, in the latent space, we have proposed to
take the arithmetic mean of the latent features as an estimate. We make this proposal with one
statistical implication in mind. In reality, an arithmetic mean is one optimal distribution parameter
in maximum likelihood estimation, i.e., given the distribution under consideration is multivariate
Gaussian. In other words, the parameters of a multivariate Gaussian distribution (G(µest, Covest))
that maximizes the likelihood of observing K multivariate random variables that are in Rτ gets

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 17

computed as: {
µest = 1

K

∑K
i=1 Zi

Covest = 1
K

∑K
i=1(Zi − µest)(Zi − µest)T

(4)

where Zi ∈ Rτ is a latent space representation of an input dataset. Thus, statistically, taking an
arithmetic mean corresponds to estimating the mean of a Gaussian distribution that maximizes the
likelihood of observing the latent embeddings. In practice, such Gaussian distribution assumptions get
commonly found in generative models such as VAE, GAN, Gaussian mixture models, etc (Diederik P.
& Max 2014, Goodfellow et al. 2014). However, even though latent arithmetic means have statistical
implications, (3) does not have a way to guarantee latent embeddings are registered to their arithmetic
means. On the contrary, we mainly relied on the classifier to register the latent embeddings to their
respective means. This is because we expect the classifier to induce the extraction of class-specific
features expected to be dense. However, in this case, we have no control over whether embeddings
get registered to their latent means or not. To address this issue, we propose to force the encoder to
also optimize for a per-class Within Group Suqred Sum (WGSS) loss, i.e., the third entry in (8).
The WGSS loss gets expected to increase the density of class-specific latent features. In addition
to this improvement, we also observed that (3) tries to minimize a reconstruction loss using Mean
Squared Error (MSE). However, in practice, MSE is known to be prone to outliers. This is because
the reconstruction errors for outliers significantly get magnified through the squaring operation.
Consequently, such outliers could significantly push gradient vectors in an undesired direction. In
practice, one possible way of mitigating this problem is using Mean Absolute Error (MAE). However,
as compared to MSE, the absolute function provides a relatively flatter objective function which, in
turn, could affect the speed of network convergence. Moreover, MAE has a very narrow optimal
point which could lead to an oscillation while computing gradients. In addition to these limitations,
MAE and MSE errors confine reconstruction to a median value. This is because, at the decoder,
MAE and MSE penalize over and under reconstructions equally. To this end, under such objective
functions, there is a higher probability that a decoder will re-project latent arithmetic mean into a
time domain arithmetic mean. Thus, we propose to change the reconstruction loss given in (3) with
a quantile regression loss given in (5), where λ ∈ [0, 1] and {X,Y } ∈ RN are an input time series
and its reconstruction.

Lreg(λ, X, Y) =
1

N

N∑
j=1

max{λ(yj − xj), (λ− 1)(yj − xj)} (5)

In quantile regression, we say over and underestimations have occurred when yi − xi > 0 and
yi − xi < 0. In reality, in quantile regression, we can have three kinds of estimations: over
estimation (λ < 0.5), under estimation (λ > 0.5), or median estimation (MAE) for λ = 0.5.
Consequently, we could systematically use λ values in order to control the behavior of a decoder.
In reality, we are mainly using the decoders of the proposed architectures to re-project latent
space estimates that have no time domain ground truth. Thus, it is intuitive to have a relaxed
reconstruction constraint that allows different time domain re-projection possibilities. In this aspect,
quantile regression allows us to control the location of a median reconstruction line with over,
under, or median regressions. However, in order to utilize this possibility, we propose to compute
quantile regression for a pair of λ values. The rationale behind this proposal is discussed in the
training setups section.

In reality, we also propose to utilize quantile regression in the latent space of the pro-
posed multi-tasking setups. In this regard, we propose to compute the quantile difference between

18 Tsegamlak Terefe et al.

the latent embedding of the input series and their regressed form, i.e., the second term of (7).
Practically, we propose to make this loss visible to only the decoder portion of the multi-tasking
setups. This is because we believe the introduction of this loss could further enhance the decoder’s
capability of interpreting latent space embeddings. In this aspect, in quantile regression, the decoder
tries to estimate the values of the input series as closely as possible. Consequently, if we select a λ
value that does not introduce major shape distortion, the decoder outputs regressed series that do
not exactly map to the input series. Thus, if we project these series back to the latent space, we
expect to get latent mappings that are near neighborhoods of the latent embeddings of the input
series. Hence, by computing latent space quantile loss, we expect to gain at least two advantages.
First, the decoder will now get feedback from the encoder on how well it is regressing the input
series. This in turn creates better harmony in the overall encoder-decoder arrangement. In addition
to this, the decoder will now be forced to learn regressions that take neighborhood embeddings
into account. This in turn will contribute positively to the re-projection of latent means which are
expected to be within the neighborhood of the averaged series latent embeddings.

With these technicalities in mind, given a group of temporal dataset St = {X1, X2, . . . , XM} :
Xi ∈ RN that have C categories, their latent space representation Sl = {Z1, Z2, . . . , ZM} :
Zi ∈ Rτ , and their regressed output Rt = {Y 1, Y 2, . . . , YM} : Y i ε RN ; the objective function
optimized by the encoder, decoder, and classifier becomes:

Lclassifier = − 1

M

M∑
i=1

1

C

C∑
c=1

hic log pic (6)

Ldecoder =
1

M

M∑
i=1

Lreg(λ, X
i
pred, X

i
true) +

1

M

M∑
i=1

Lreg(λ, Z
i
pred, Z

i
true) (7)

Lencoder = Lclassifier + Ldecoder +
1

C

C∑
c=1

(1

Kc

Kc∑
l=1

1

τ

τ∑
j=1

(zlj − µcj)2
)

(8)

In equations (6)-(8), µi ∈ Rτ , M and Kc correspond to: the latent mean of the cth class (category),
the total number of averaged series, and the number of series in the cth class. Moreover, Zipred
and Zitrue are the latent space embedding of a regressed and an input time series. With these
technicalities in mind, we proceed and present the experimental setups.

4 Experimental Setups

In practice, while evaluating a neural network-based optimization setup, we at least need to consider
two factors. First, it is often advised to evaluate proposed approaches using a range of datasets. In
practice, such evaluations will minimize the probability of reporting outcomes that could be data
biased. Moreover, with such rigorous tests, we avoid outcomes that could be random (mere chance).
Besides such rigorous evaluations, it is also advised to access the impact of hyper-parameters on
experimental outcomes. In this subsection, we present how we have addressed these suggestions.

4.1 Summary of Data Sets

In all experimental evaluations, we have utilized datasets obtained from the UCR archive. The
archive contains 128 multi-class datasets with train and test splits (Chen et al. 2015). However,

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 19

Table 1: The 114 UCR datasets categorized based on their source.

No. Data source Total data sets dimension ranges class ranges

1 Device measurements 8 90-2000 2-10

2 ECG measurements 6 96-750 2-42

3 EOG measurements 2 1250 12

4 EPG measurements 2 601 3

5 Hemodynamics measurements 3 2000 52

6 HRM-PCR measurements 1 201 18

7 Images 32 46-2709 2-60

8 Motions 17 150-1882 2-12

9 Power consumption 1 144 2

10 Sensor measurements 20 24-1639 2-39

11 Synthetic (simullated) 8 60-1024 2-8

12 spectrographs or chemical analysis 8 235-1751 2-5

13 SEMG measurements 4 1500-2844 2-6

14 Pedestrian Traffic count 2 24 2-10

11 datasets contain samples that are variable in length. The datasets found in this category are:
AllGestureWiimote {X, Y, Z}, GestureMidAir {D1, D2, D3}, GesturePebble {Z1, Z2}, PickupGes-
tureWiimoteZ, PLAID, and ShakeGestureWiimoteZ. In reality, most of these datasets correspond to
records of different gestures. In practice, different gestures take different duration to be completed,
i.e., depending on the type and the individuals committing them. To this end, the extracted tem-
poral datasets have different lengths. In addition to these 11 variable-length datasets, 3 datasets
contain missing values. The datasets falling in this category are: DodgerLoopDay, DodgerLoopGame,
DodgerLoopWeekend. These datasets correspond to the count of the number of vehicles on a freeway
located in Los Angeles. Overall we have avoided experimenting on these 14 data sets since they
require further processing. With these in mind, in Table 1, we have summarized the remaining 114
datasets into 14 different categories.

4.2 Training Setups

We have implemented our proposed architectures using Python’s Tensorflow version 2.4. Generally,
we have assessed our proposals using two training setups. First, we train the modified reduced
VGG16, reduced Inception, and reduced ResNet architectures for 1500 epochs, i.e., using 4 different
λ pair values, and once on each 84 UCR archive datasets. We use this training setup to identify the
better-performing architecture. Following this, we train the better performing architecture using: 25
repeated trials, 4 λ pair values, and 114 UCR archive datasets. In this training setup, the selected
network gets trained for 100 repeated trials on each UCR archive dataset. We use this training
setup to thoroughly assess the performance of our proposed approach as compared to currently
available averaging techniques. In addition to this intensive network training, we also evaluate
the implication of encouraging over and underestimations in quantile regression. To make this
assessment, we have trained the better-performing architecture using 6 λ pair values that favors the
encouragement of over (under) estimations. However, for the evaluation, we have only used 84 UCR
archive datasets. Moreover, we have trained the network once on each UCR archive dataset.

20 Tsegamlak Terefe et al.

In all evaluations, we consider λ values as hyper-parameters that get selected ran-
domly. In general, we propose to use two sets of λ pair values, i.e., λconf1 =
{(0.15, 0.85), (0.25, 0.75), (0.35, 0.65), (0.5, 0.5)} and λconf2 = {(0.85, 0.85), (0.75,
0.75), (0.65, 0.65), (0.15, 0.15), (0.25, 0.25), (0.35, 0.35)}. In reality, we propose λ to be a
pair of values to create scenarios where the quantile regression loss either encourages or discouraged
over (under) estimations. In this aspect, we consider λconf1 to be a configuration that discourages
over (under) estimations equally. On the contrary, we consider λconf2 to be a configuration that
encourages over (under) estimations. For instance, lets consider the λ pair values (0.25, 0.75) ,
i.e., from λconf1 , as an exmple. In this case, when we put λ = 0.25 in (5), overestimation is
penalized by 25% and underestimation is penalized by 75%. On the contrary, when we put λ = 0.75
overestimation is penalized by 75% and underestimation by 25%. However, if we take the maximum
of the two computations, we end up penalizing over (under) estimation by 75%. However, if we take
similar computational steps and take the λ pair values (0.85, 0.85), i.e., from λconf2, as an example,
we will end up encouraging underestimations since they only get penalized by 15%. However, had we
selected a λ pair with values lower than 0.5, we would end up encouraging overestimation. In order
to practically realize these scenarios, we compute the quantile regression losses given in (7) and (8)
using (9). In (9), λ1 and λ2 are the individual λ pair values within one of the λ configuration (λconf1
and λconf2). Moreover, U could be either a latent representation or an input series. On the contrary,
V could either be the latent embedding of a regressed series or a regressed input series.

Lquantile =
1

M
max

(M∑
i=1

Lreg(λ1, U
i, V i),

M∑
i=1

Lreg(λ2, U
i, V i)

)
(9)

With these technicalities in mind, We have trained all of our proposed networks using the training
datasets given in the UCR archive. Moreover, when the size of the training split is sufficient enough,
we used a mini-batch size of M

4 , where M is the size of a training set. We then used the trained
network to project the training set into the latent space. Following this, we estimated latent means
by taking the arithmetic mean of latent embeddings of each class. Moreover, we used the decoder
portion of the multi-tasking set up to project the latent means into the time domain. We also used
the trained network to project the UCR archive’s test datasets into the latent space. Finally, we
evaluate the representativeness of the estimated latent and time domain means using the evaluation
technique discussed in the following subsection. 1

4.3 Evaluation Technique

Evaluating the quality of time series averages is quite tricky. This is because, the different averaging
techniques estimate the means in different spaces. For instance, DTW based averaging techniques
estimate means in DTW space (Gupta et al. 1996, Niennattrakul & Ratanamahatana 2009, Petitjean
et al. 2011, Schultz & Jain 2018). On the contrary, DTAN estimates the mean after morphing the
averaged series with an affine transformation (Detlefsen et al. 2018, Shapira Weber et al. 2019a). In
practice, some pioneering proposals used DTW space WGSS (1) as an evaluation metric (Petitjean
et al. 2011, Schultz & Jain 2018). However, in such proposals, compared averaging techniques
are mostly DTW-based. To this end, they ended up comparing the performances of averaging
techniques that optimized the same objective function. Moreover, the WGSS got compared in DTW

1 The Python implementation of the proposed architectures, the training setup, and 1NCC
evaluation can be found at the following github repository: https://github.com/tsegaterefe/

Estimating-Time-Series-Averages-from-Latent-Space-of-Multi-tasking-Neural-Networks/tree/main

https://github.com/tsegaterefe/Estimating-Time-Series-Averages-from-Latent-Space-of-Multi-tasking-Neural-Networks/tree/main
https://github.com/tsegaterefe/Estimating-Time-Series-Averages-from-Latent-Space-of-Multi-tasking-Neural-Networks/tree/main

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 21

space which is a space where the estimated means got registered. Consequently, we can safely
such comparisons to be fair. However, in practice, averages do not always get estimated either in
DTW space or using DTW (Shapira Weber et al. 2019a, Paparrizos & Gravano 2015, Kowsar et al.
2022). When this is the case, researchers often propose to assess the representativeness of estimated
means using one nearest centroid (1NCC) classification (Shapira Weber et al. 2019a, Paparrizos &
Gravano 2015, Kowsar et al. 2022). However, in such cases, the distance function utilized for the
1NCC determines the neutrality of the comparisons. For instance, if DTW distance gets utilized,
the evaluation ends up favoring DTW-based estimates.

With these pros and cons in mind, we propose to evaluate the quality of our estimates us-
ing 1NCC. In reality, we selected 1NCC for two main reasons. First, the multi-tasking setup
is not directly minimizing a WGSS loss. Second, we found 1NCC to be meaningful in the
context of assessing the representativeness of a mean. In practice, we often estimate time series
averages with an underlying application in mind. For instance, classification (Bagnall et al. 2012),
clustering (Paparrizos & Gravano 2015, Petitjean et al. 2011), forecasting (Shawel et al. 2020), etc.
In this aspect, 1NCC gives more sense than WGSS since it assesses the quality of a mean, not
only, compared to the group it gets estimated from but also compared to other groups within an
averaged set. With this understanding in mind, for our proposals, we performed two kinds of 1NCC,
i.e., latent space and time domain. For the latent space 1NCC, we used: latent means estimated
from training sets, the latent space representation of test datasets, and euclidean distance. On
the contrary, for the time domain 1NCC, we used: the UCR archive’s test datasets, time domain
means estimated from a training set and DTW distance. To this end, in the time domain, estimates
generated with our proposals are disadvantaged compared to estimates generated with DTW. In
general, for the first training setup, we identified the best 1NCC accuracy obtained in the latent
spaces of the different architectures. We then identify its corresponding time domain accuracy.
Finally, we compare these accuracies with accuracies obtained with alternative techniques. However,
after identifying the best performing architecture and performing the 25 repeated training trials, we
define four types of latent space and time domain 1NCC accuracies that are obtained on the test
split: maximum, minimum, median, and mean. Thus, in the extended evaluation, we compare these
accuracies to the maximum 1NCC accuracies obtained with the alternative averaging techniques. In
addition to these evaluations, we have also reassessed the multi-tasking setup that is minimizing (3)
using: the reduced VGG16 architecture, 114 UCR datasets, and the training setup given in (Terefe
et al. 2020).

4.4 Evaluated Alternative Averaging Techniques

We have compared the performance of our estimates with estimates generated with seven dif-
ferent average estimation techniques, i.e., Arithmetic, DBA, SDBA, SSG, KShape, DTAN, and
AGLVQ (Petitjean et al. 2011, Cuturi & Blondel 2017, Schultz & Jain 2018, Paparrizos & Gravano
2015, Shapira Weber et al. 2019a, J. Jain & Schultz 2018). To generate the estimates of these
alternative averaging techniques, we have used Tslearn (Tavenard et al. 2020) implementation of
DBA, SDBA, SSG, KShape, and DTW. Moreover, we have computed SDBA using five different γ
values, i.e., for γ = 10e− 3, 10e− 2, 10e− 1, 1, 10. However, for AGLVQ, we have adopted its Java
implementation given in (J. Jain & Schultz 2018) without modifying most of the hyper-parameters
given in the implementation. In this regard, the only hyper-parameter we changed is the number
of estimated mean corresponding to a cluster (class), i.e., we set this parameter to one. Overall,
while evaluating alternative techniques, we selected and reported outcomes that gave the best 1NCC

22 Tsegamlak Terefe et al.

result on the test split. However, since there is no standardized implementation of DTAN, we have
used the outcomes reported in (Shapira Weber et al. 2019b). According to (Shapira Weber et al.
2019a,b), DTAN was trained on 84 UCR archive datasets for 2500 epochs. Moreover, to conduct the
training, DTAN utilized two regularization and smoothing setups. After training the transformer
network, the authors morphed the training datasets of the UCR archive and generated estimates in
the morphed space. Moreover, they also used the trained transformer network to morph test datasets
of the UCR archive. Following this, they conducted 1NCC accuracy using the estimates generated
from the training sets and the morphed representation of the test datasets. Finally, they reported
the best 1NCC accuracies obtained on the test split. To this end, in this paper, we present two
comparisons. First, we compare the best outcomes associated with our approaches, arithmetic mean,
DTAN, DBA, SDBA, KShape, GALVQ, and SSG. Following this, we exclude DTAN and compute
averages using arithmetic, DBA, SDBA, KShpae, and SSG on 30 additional UCR archive datasets.
We then compare the outcomes of our proposals and the six mentioned averaging techniques on
114 datasets. Overall, for all the alternative proposals, we estimated averages using the training
datasets. Moreover, since the UCR archive is a multi-class, we estimate the means using the training
samples of each class. Additionally, since KShape got proposed for clustering, we have configured it
to cluster each class individually, i.e., a cluster size of 1. Thus, in the end, we have taken the cluster
centroids as the estimates for each class. Finally, while conducting the 1NCC for DBA, SDBA, SSG,
and KShape, we utilized 25 repeated trials and DTW distance. However, the 1NCC for DTAN got
conducted using euclidean distance (Shapira Weber et al. 2019b). At this point, we like to mention
that KShape proposed to use SBD as a distance metric while identifying cluster members and
updating cluster centroids (Paparrizos & Gravano 2015). However, since we cannot find a separate
standardized implementation of SBD, i.e., in Python, we used DTW as a distance metric while
conducting the 1NCC. However, in (Paparrizos & Gravano 2015), SBD was found to be statistically
indifferent to constrained DTW (Sakoe & Chiba 1978). Consequently, we expect that DTW will not
significantly affect the assessment of KShape.

5 Results

In this section, we evaluate the representativeness of averages generated with different averaging
techniques using 1NCC. In general, we have divided our assessments into two major sections. In the
first section, we make a preliminary assessment to identify which of our proposals is performing
better. For the evaluation, we have trained our proposed architectures using λ pair values from
λconf1 and 84 UCR archive datasets. We then selected the best 1NCC accuracy despite the λ pair
values given in λconf1. Following this assessment, we thoroughly evaluate the better-performing
architecture using 114 UCR archive datasets, 25 repeated training trials, and maximum, minimum,
mean, and median 1NCC accuracies.

5.1 Preliminary Assessment of Proposed Approaches

We will start our assessment of the averaging techniques by observing wins, ties, and losses obtained
on 84 UCR archive datasets. In this analysis, we assume an averaging technique is winning if it
has a 1NCC accuracy that is better than its competitors. However, we consider a tie has occurred
if at least two averaging heuristics have the same classification accuracy. Finally, an averaging
technique is assumed to be losing if there is at least one technique performing better than it. With
this in mind, in Table 2, we have summarized the wins, ties, and losses associated with the different

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 23

Table 2: Summary of wins, loss and ties using 1NCC accuraciesobtained on 84 UCR archive datasets.
The 1NCC was performed using averages estimated form the UCR archive’s training sets.

Averaging techniques Wins losses ties

AGLV Q 4 75 5

Arithmetic 0 84 0

DBA 0 82 2

DTAN 7 75 2

SDBA 4 80 0

SSG 5 78 1

KShape 2 81 1

Inc Quant Lat 4 76 4

Inc Quant T ime 0 83 1

MT ENC LAT 4 79 1

MT ENC Time 1 82 1

Res Quant Lat 12 69 3

Res Qunat T ime 0 84 0

VGG OU Qunat Lat 16 62 6

V GG OU Qunat T ime 2 80 2

VGG Quant Lat 12 67 5

V GG Quant T ime 0 82 2

averaging techniques. In Table 2, MT ENC LAT (Time) represents the latent space (time domain)
1NCC outcomes obtained with the estimates of the reduced VGG16 architecture that minimized 3).
On the contrary, Res Quant Lat (Time), Inc Quant Lat (Time), and V GG Quant Lat (Time)
represent the latent space (Time domain) 1NCC accuracies obtained with the estimates of
the reduced multi-tasking: ResNet, Inception, and VGG16 architectures minimizing (8) to (6).
Moreover, when there is no OU within the abbreviations, the architectures have used λ pair val-
ues from λconf1. In other words, the architectures have discouraged over (under) estimations equally.

According to Table 2, in the latent space, the modified reduced VGG and ResNet(V GG Quant Lat
& Res Quant Lat) architecture appears to be winning on more datasets, i.e., when we consider
setups that discourage over (under) estimation equally. However, in terms of losses, the reduced
VGG(V GG Quant Lat) performed better than its Resnet counterpart. However, overall, the
modified reduced VGG16 performs better than all of its counterparts, i.e., while it encourages
over (under)estimations (V GG OU Quantile Lat). In other words, when the reduced modified
VGG16 gets trained using λ pair values from λconf2. However, in reality, Table 2 might be misleading
in a statistical sense. For instance, compared to V GG16 Quant Lat, the Res Quant Lat might be
losing on two additional datasets with a small accuracy margin. Moreover, it might obtain more wins
with comparatively smaller average and median accuracy. With these in mind, we further assess the
1NCC accuracies using two additional statistical evaluation techniques, i.e., a box whiskers plot and
a hypothesis test. In this regard, Figure 6 shows the box whisker plot associated with the 1NCC
accuracies. Moreover, Table 3 summarizes the statistics of the plot. In Figure 6, on one hand, the
lower and upper whiskers indicate the lowest and highest classification accuracies. On the other
hand, the start and end of a box demarcate the 25% and 50% quantiles of the 1NCC accuracies
obtained over 84 UCR datasets. With these technicalities in mind, Table 3 shows that the modified
reduced VGG16 (V GG Quant Lat) is better than its ResNet counterpart (Res Quant Lat). For

24 Tsegamlak Terefe et al.

AG
LV

Q

Ar
ith

im
et

ic

DB
A

DT
AN

In
c_

Qu
an

t_
La

t

In
c_

Qu
an

t_
Ti

m
e

Ks
ha

pe

M
T_

EN
C_

LA
T

M
T_

EN
C_

TI
M

E

Re
s_

Qu
an

t_
La

t

Re
s_

Qu
an

t_
Ti

m
e

SD
BA SS
G

VG
G_

OU
_Q

ua
nt

_L
at

VG
G_

OU
_Q

ua
nt

_T
im

e

VG
G_

Qu
an

t_
La

t

VG
G_

Qu
an

t_
Ti

m
e

Averaging techniques

0

20

40

60

80

100
Ac

cu
ra

cy

Fig. 6: Box whisker plot of the one nearest centroid classification accuracies of different averaging
technique on 84 datasets.

instance, V GG Quant Lat obtained a median accuracy of 78.54%. On the contrary, over the
84 datasets, the Res Quant Lat obtained a 75% median 1NCC accuracy. Moreover, ResNet ’s
lower quartile starts at 64.45%. In this regard, the modified reduced VGG16 ’s lower quantile
starts at 66.82%. Consequently, we have selected the modified reduced VGG16 architecture to
evaluate the impact of encouraging over and underestimation. The outcomes of this experiment is
denoted as V GG OU Quant Lat (Time) in Tables 2 and 3. In reality, the two tables show that
encouraging over (under) estimation gives better 1NCC results. In this aspect, the outcomes of
the V GG OU Quant Lat that could get considered as ”bad” (the first 25% quartile) are between
40− 68.18%. Furthermore, 50% of the classification accuracies are within 68.18− 89.27% and have
a 78.67% median accuracy. This performance gets closely followed by the latent space classification
results of V GG Quant Lat. In this case, the first 25% quartile ranges between 40.53% and 66.82%.
Moreover, 50% of its classification accuracies are within 66.82− 91.31% and have a 78.54% median
accuracy. These results indicate that the modified reduced version V GG16 architecture is a natural
choice for further investigation. However, for the VGG16, the difference between the statistics of
encouraging (discourage) over (under) estimations appear to be relatively close. Consequently, it is
quite unclear which of the two approaches we should pursue. In order to answer this question, in
the next subsection, we conduct hypothesis tests (Demšar 2006).

5.1.1 Hypothesis Test

The box whisker plot gives a broad statistical inference into the 1NCC accuracies. However, it
does not evaluate the degree of closeness among individual classification accuracies. Thus, we
cannot conclude if one averaging heuristic is either statistically different or similar using only a box
whisker plot. Consequently, we first propose to conduct a Friedman average rank test on the 1NCC
accuracies that are obtained with the different averaging techniques. Moreover, as a post hypothesis
test, we propose the Wilcoxon rank sum test. This test is used to evaluate if a pair of averaging
techniques are statistically different or not. A detailed explanation of these statistical hypothesis

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 25

Table 3: Statistical summary for the Box-whisker plot given in Figure 6. LQ, UQ, LW and UW are
respectively the lower quartile, upper quartile, lower, and upper whiskers.

Averaging Technique LQ (25%) UQ (75%) LW UW Median

AGLVQ 62.82 82.13 40.00 100 72.36

Arithmetic 33.87 67.14 3.27 96.43 51.72

DBA 54.05 79.84 18.25 100 65.04

DTAN 58.55 85.45 25.97 100 72.94

SDBA 57.41 81.22 25.27 99.05 69.02

SSG 57.07 78.83 29.14 100 68.02

KShape 51.61 72.14 21.64 98.09 63.01

Inc Quant Lat 62.18 90.80 28.73 100 71.10

Inc Quant T ime 43.17 72.39 2.64 100 58.86

MT ENC LAT 59.44 88.95 22.91 100 75.03

MT ENC TIME 42.85 71.92 2.43 100 53.40

Res Quant Lat 64.45 92.05 32.54 100 75.00

Res Quant T ime 44.75 71.28 5.96 99.05 58.17

V GG OU Quant Lat 68.18 89.27 40.00 100 78.67

V GG OU Quant T ime 46.80 73.40 7.23 100 58.86

V GG Quant Lat 66.82 91.31 40.53 100 78.54

V GG Quant T ime 45.43 73.03 18.18 100 58.86

(a) Hypothesis tests using registered space 1NCC ac-
curacies

(b) Hypothesis test including time domain 1NCC ac-
curacies

Fig. 7: Hypothesis test of various averaging techniques using 84 UCR datasets.

tests can be found in (Demšar 2006). Furthermore, the Python implementation of these tests was
adopted from (Fawaz et al. 2019). In overall, the Python implementation incorporates methods that
are useful for the visualization of the hypotheses tests. In practice, the outcomes of such hypothesis
evaluations are often shown using a critical difference (CD) diagram (Demšar 2006).

In CD diagrams, we indicate the average ranks of the Friedman test using 90° bent lines
that are extended from a horizontal scaled line. The scaled horizontal line indicates the Friedman
average ranks of the compared technique. On the contrary, the outcomes of post-hypothesis tests are
indicated using bold horizontal lines that connect two Friedman average rank lines. In general, two
Friedman average rank lines are connected if they are found to be statistically indifferent (Demšar
2006). With these understandings, for better clarity, we divided the hypothesis evaluations into two
categories. In the first category, i.e., Figure 7a, we compared 1NCC accuracies which we consider as
accuracies obtained in the registered space of the evaluated averaging techniques. In this aspect,
we consider DBA, DTAN, SDBA, SSG, KShape, and latent space of our proposals as registered
space outcomes. In general, for DBA, SDBA, SSG, and KShape the means are estimated either in

26 Tsegamlak Terefe et al.

DTW space or using a metric that is equivalent to DTW. Moreover, the 1NCC is conducted using
DTW distance. Consequently, we consider the 1NCC as a task performed in the registered space of
the averaging techniques. Similarly, for DTAN, the authors transformed the test sets before the
1NCC (Shapira Weber et al. 2019a). Consequently, we also take this 1NCC as a task performed
in a registered space. Finally, for our proposals, we consider the latent space to be the registered
space since we are mimicking multiple alignments in this space. On the contrary, in the second
category, we included arithmetic mean and the time domain estimates of our proposals into the
hypothesis tests, i.e., as sown in Figure 7b. With these said, Figures 7a and 7b shows that in the
latent space the modified reduced VGG16 architecture outperforms most of our proposals. However,
the post-hypothesis test indicates that there is no statistical difference between V GG Quant Lat
and Res Quant Lat. This in turn indicates that, over the 84 datasets, it is better to discourage
over (under) estimations equally. However, despite the post hypothesis equivalency, the modified
reduced VGG16 architecture obtained a better Friedman average rank. Consequently, we selected
the modified reduced VGG16 architecture which equally penalized over (under) estimations for
further investigation. In addition to these observations, the hypothesis test shows that most
of our proposals achieved better latent space registration, i.e., compared to the state-of-the-
art (DTAN). With this in mind, we place our focus on the performances of the time domain estimates.

According to Figure 7b, the time domain 1NCC accuracies obtained by our proposals are
below the outcomes of the DTW-based averaging techniques. However, we find this to be no
surprise for two reasons. First, DTW averaging techniques initially register their time domain
estimate in DTW space. Thus, it is logical to expect the DTW-based averaging techniques to
perform better in DTW space. Second, the assessment given in Figure 7b is based on a one-shot
experiment. Consequently, there is a higher likelihood that we are capturing the median or mean
performances of our proposed approaches. Contrary to this, the outcomes of the alternative
proposals correspond to the maximum 1NCC accuracies selected from repeated trials. However,
even under this difference, we obtained better estimations, i.e., compared to the arithmetic mean. In
this regard, V GG OU Quant T ime obtains time domain estimates that performed comparatively
close to DBA. This is in line with our argument of minimizing the constraint on the time domain
re-projection. However, it should also be noted that, according to the post hypothesis test,
Res Quant T ime and V GG OU Quant T ime are considered statistically similar. Such similarity
is also evident between Inc Quant T ime and MT ENC TIME. With these observations in mind,
before proceeding to the further evaluation of the modified reduced V GG16, we first assess if the
introduction of additional one-shot experiments could reveal changes in the hypothesis evaluations.

5.1.2 Hypothesis Test with Additional Data sets

In neural network-based approaches, it is advised to test proposals using a range of datasets. In
practice, such tests get expected to reduce the chances of making biased conclusive remarks. With
this in mind, in this subsection, we combine the experimental results of the 84 data sets with
1NCC accuracies associated with 30 additional datasets. Thus, we re-evaluate the null hypothesis
of ”every averaging technique is equal” on 114 data sets. However, in this evaluation, we exclude
DTAN since we do not have its standardized implementation and results corresponding to the
additional 30 datasets not reported in (Shapira Weber et al. 2019b). Nevertheless, for the rest of the
averaging techniques we follow the same approach and first compared the classification accuracy in
the registered spaces of the averaging techniques, i.e., Figure 8a. We then included the outcomes of
the time domain re-projection as shown in Figure 8b respectively.

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 27

(a) Hypothesis test using registered space 1NCC ac-
curacies

(b) Hypothesis test including time domain 1NCC ac-
curacies

Fig. 8: Hypothesis test of averaging techniques using 114 UCR datasets.

According to Figure 8a, the latent space of the modified reduced VGG architectures still
outperform all of the alternative averaging techniques in a statistically different manner. However,
in this case, there is no statistical difference between the performances of estimates generated while
the architecture encouraged or discouraged over (under) estimations. Furthermore, the Inception
setup obtained a better Friedman rank as compared to its ResNet counterpart. Additionally, in the
time domain, the new evaluation reveals that the reduced ResNet performs similarly to KShape.
We find this to be encouraging since the 1NCC accuracies associated with KShape correspond to
maximum 1NCC accuracies obtained from 25 repeated trials.

In general, the primary assessments reveal the performance of the modified reduced VGG
architecture optimizing for quantile regression and multi-class classification is our best performing
setup. However, in practice, the Inception and ResNet architectures are expected to give better
results as compared to the V GG architecture (Fawaz et al. 2019, 2020). In this regard, we identified
three reasons that could be contributing to the difference. First, we have not completely adopted
the original architectures of the Inception and ResNet networks. This customization, at times, has
helped us to avoid overfitting that could have clouded our judgment. For instance, in Figure 8a
and Figure 8b the Inception managed to improve its Friedman’s rank due to its smaller number of
trainable weight. Another contributing reason for the deviation from the expectation could be the
objective function that gets optimized. In practice, most works utilized the Inception and ResNet for
time series classification in contrary to the multi-tasking setup we proposed (Fawaz et al. 2019, 2020,
Lafabregue et al. 2021b). The final reason could be that, in the latent space, we desired to avoid the
impact of temporal distortion. However, the Inception and ResNet setups have skip connections
that leak the effects of temporal distortions. To this end, in most cases, the latent representations of
the Inception and ResNet appear to be less dense. For instance, we can consider Figure 9 which
shows the t-distributed Stochastic Neighbor Embedding (tSNE) (Der Maaten & Hinton 2008)
projection of the FacesUCR dataset (Chen et al. 2015) as an example. Even though tSNE loosely
defines cluster density, we can use it as a visual aid if the projection is over the same dataset and
if similar tSNE hyper-parameters are used (Der Maaten & Hinton 2008). In this aspect, for the
plots, we have used the test split of FacesUCR dataset and the trained networks of our proposals.
Moreover, we have configured t-SNE’s perplexity, learning rate, and the maximum iterations to 44,
10, and 5000. We selected a perplexity size of 44 since the minimum class size has 44 members.
Moreover, this value is within the ranges of 5 to 50, i.e., as suggested in (Der Maaten & Hinton 2008).

In general, in Figure 9, all the latent space projections of multi-tasking approaches have
obtained separable and compact latent embeddings. However, if we further zoom in and look at
the per class latent embeddings, we can see that the VGG16 ’s latent embeddings are relatively

28 Tsegamlak Terefe et al.

60 40 20 0 20 40 60
Dimension 1 (x)

0

20

40

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test time domain data set

-20

-40

-60

(a) Time domain.

40 20 0 20 40 60
Dimension 1 (x)

0

20

40

60

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test latent space using reduced VGG16 multitasking autoencoder

-20

-40

(b) MT ENC LAT .

40 20 0 20 40
Dimension 1 (x)

0

20

40

60

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test latent space using reduced VGG16 multitasking quantile regressor

-20

-40

-60

-80

(c) V GG Quant LAT

60 40 20 0 20 40Dimension 1 (x)

0

20

40

60

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test latent space using reduced VGG16 over/under multitasking quantile regressor

-20

-40

(d) V GG Quant OU LAT

40 20 0 20 40
Dimension 1 (x)

0

20

40

60

80

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test latent space using reduced Inception multitasking quantile regressor

-20

-40

-60

(e) Inc Quant LAT

40 20 0 20 40Dimension 1 (x)

0

20

40

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test latent space using reduced Resnet multitasking quantile regressor

-20

-40

(f) Res Quant LAT

Fig. 9: t-SNE projection of the UCR FacesUCR dataset. Time domain (9a) and latent spaces of our
proposals (9c- 9f)

(a) Based on maximum accuracies (b) Based on minimum accuracies

(c) Based on median accuracies (d) Based on mean accuracies

Fig. 10: Performance evaluation of λ pair values based on latent space 1NCC accuracies.

dense. We find this to be in line with our initial argument that the skip connections leak temporal
distortion into the latent space.

5.2 Extended Evaluation of The Modified Reduced VGG16 architecture

In neural networks, layer weight initialization is one major source of randomness. Moreover,
neural networks have hyper-parameters that contribute to variations in reported outcomes. For
instance, for the proposed quantile regression-based autoencoders, the λ pair values are one
key hyperparameter. However, evaluating all possible combinations of such hyperparameters
for all of the proposed architectural setups is computationally demanding. To this end, in this
subsection, we have selected the modified reduced VGG architecture and trained the network for
25 repeated trials in order to identify: which of the λ pair values gives better performance, to
test the stability of our proposals, and to better capture maximum obtainable performances. To
make these assessments, we have trained the selected architecture using the λ pair values given
in λconf1. With this at hand, we first assess which of λ pair values give a better performance.
We then assess the stability of the proposal by observing the standard deviation (σ) across the
1NCC accuracies obtained with the 25 repeated trials. Finally, we observe if the repeated trials
have better captured the maximum obtainable accuracies. In all of these evaluations, we use the term

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 29

(a) Based on maximum accuracies (b) Based on minimum accuracies

(c) Based on median accuracies (d) Based on mean accuracies

Fig. 11: Performance evaluation of λ pair values based on time domain 1NCC accuracies.

According to Figure 10a, in the latent space, the third λ pair values give the highest of
the maximum obtainable accuracies. However, on the post-hypothesis test, it is statistically
equivalent to the fourth λ pair values. Moreover, if we consider minimum, median, and average
latent space classification accuracies, the fourth λ pair values give better performance. However,
if we focus on the minimum and mean latent space accuracies, we can see that it is statistically
indifferent to the performances of the first λ pair values. On the contrary, on the median latent space
classification accuracies, the post hypothesis equivalency is between the fourth and third λ pair values.

In addition to these observations, Figure 11 shows the performance evaluation of the λ
pair values based on time domain classification accuracies. Contrary to the latent space, the first λ
pair values obtained the highest possible maximum 1NCC accuracies. However, according to the
post-hypothesis test, it is statistically indifferent to the performances of the fourth λ pair values.
Furthermore, if we focus on the median and mean classification accuracies, the fourth and first λ
pair values performed better. However, in both cases, they are found to be statistically equivalent
in the post-hypothesis test. Finally, when we focus on the minimum time domain classification
accuracies, the third λ pair values obtained the best worst-case results. However, according to the
post-hypothesis test, it is statistically equivalent to the fourth λ pair values. Overall, we found the
first λ pair values give better results.

Before making any conclusive remarks about the λ pair values, we will continue with our
assessment and evaluate the stability of the network. For this assessment, we can safely consider a
small σ as an indication for a narrow distribution curve over the 1NCC accuracies obtained with
the 25 repated trials. This, in turn, implies a higher likelihood of reproducible outcomes. With
these understandings in mind, in Table 4, we have summarized the average standard deviation (σ)
associated with 1NCC accuracies obtained with the different λ pair values. In general, on average,
the latent space and time domain accuracies have a standard deviation that is below 5%. In other
words, on each URC archive dataset, the average variation of 1NCC accuracies within one standard
deviation is below ±5%. This, in turn, indicates that, on each repeated trial, our proposal generates
comparatively similar estimates. Thus, we can safely assume that the modified reduced V GG16 is
stable for practical considerations.

With these in mind, we will finalize our re-evaluation with the hypothesis tests shown in
Figures 7 and 8. In this regard, we will first present the re-evaluation of the hypothesis tests on
84 datasets, i.e., including the reported outcomes of DTAN. Following this, we include the 1NCC
accuracies of 30 additional datasets and re-evaluate the averaging techniques without DTAN. With
this said, Figure 12 shows the hypothesis re-evaluation using 84 datasets. Conforming to our

30 Tsegamlak Terefe et al.

Table 4: Average standard deviation of accuracies for different λ pairs.

λ pairs Latent Space ±σ in % Time Domain ±σ in %

(0.15, 0.85) 2.757 3.903

(0.25, 0.75) 3.246 4.257

(0.35, 0.65) 2.946 4.234

(0.5, 0.5) 3.220 4.673

(a) Based on Max. latent space accuracies (b) Based on max. time domain accuracies

(c) Based on mean latent space accuracies. (d) Based on mean time domain accuracies.

(e) Based on median latent space accuracies. (f) Based on median time domain accuracies.

(g) Based on min. latent space accuracies.
(h) Based on min. time domain accuracies.

Fig. 12: Hypothesis tests for the modified reduced V GG16 with 84 datasets, maximum, minimum,
median, and average 1NCC accuracies.

previous argument, repeated training has better captured the maximum obtainable accuracies. To
this end, in Figure 12b, we can show that, in the time domain, our estimates could outperform
the estimates of DBA and KShape. This is very encouraging since our time domain re-projections
have no prior knowledge of the DTW space. Additionally, the repeated trials further validate
the better registration of the latent space embeddings to their arithmetic means. In overall, in
Figures 12a and 12b we have used maximum classification accuracies. However, in practice, we
often obtain such maximum accuracies after some repeated trials. Thus, such assessments could
not give us a better picture of the common performance of the proposed technique. To this end,
in Figures 12 we also have evaluated the performance of our selected proposal using minimum,
median, and mean accuracies. However, it should also get noted that for the alternative proposals

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 31

(a) Based on max. latent space accuracies. (b) Based on max. time domain accuracies.

(c) Based on mean latent space accuracies. (d) Based on mean time domain accuracies.

(e) Based on median latent space accuracies. (f) Based on median time domain accuracies.

(g) Based on min. latent space accuracies. (h) Based on min. time domain accuracies.

Fig. 13: Hypothesis tests for the modified reduced V GG16 with 114 datasets, maximum, minimum,
median, and average 1NCC accuracies.

we are still using maximum 1NCC accuracies. In this regard, Figure 12c and Figure 12e shows that
we are able to provide a registration space that is better than the one provided by DTAN. This is
encouraging since we compare maximum (outlier) accuracies with median and mean accuracies.
However, in the time domain, the mean and median accuracies performed lower than DBA but
better than a time domain arithmetic mean. However, our estimates are still performing at least
as best as the estimates of KShape. Finally, in the worst case scenario, some of our latent space
registrations are statistically equivalent to DTAN, i.e., as shown in Figure 12g and Figure 12h. How-
ever, in this case, the time domain re-projections performed poorly compared to the arithmetic mean.

We will conclude the hypothesis re-evaluation with the assessment based on 114 datasets.
According to Figure 13a, in the latent space, our proposed approach outperforms the best
of the DTW based approaches (AGLVQ). Moreover, in the time domain, our estimates still
outperforms estimates generated with KShape and as best as AGLVQ, i.e., as shown in Figure 13b.
Furthermore, in the latent space, we are able to obtain performances that are better than all of the
alternatives with median and mean classification accuracies, i.e., as shown in Figures 13c and 13e.
However, in these cases, the time domain re-projections are lower than DBA. However, time
domain re-projections are still performing as well as KShape. Finally, in the worst case scenario
or Figures 13g and 13h, some of the λ setups achieved latent space accuracies that are at least
statistically equivalent to SDBA. However, overall, the time domain re-projections performances are
lower than the time domain arithmetic mean.

32 Tsegamlak Terefe et al.

0 20 40 60 80

Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

ECG200 class one

(a) ECG200 class one

0 20 40 60 80

Time

2

1

0

1

2

3

4

Am
pl

itu
de

ECG200 class two

(b) ECG200 class two

0 20 40 60 80 100 120 140

Time

6

4

2

0

2

4

Am
pl

itu
de

ECGFiveDays class one

(c) ECGFiveDays class one

0 20 40 60 80 100 120 140

Time

6

4

2

0

2

4

Am
pl

itu
de

ECGFiveDays class two

(d) ECGFiveDays class two

Fig. 14: The UCR ECG200 and ECGFiveDays datasets.

In general, in terms of λ setups, λ = (0.15, 0.85) often provided better performances. However, we
suggest the deployment of λ = (0.35, 0.65), i.e., if estimates that give balanced performances in
either the time domain or latent space get desired. This is because according to (8), this λ setup
gives more room for the classifier. Consequently, the classifier has more say on what kind of latent
space embedding is selected. In this aspect, it utilizes a (0.65) 65% penalty factor as compared to
(0.85) 85%. Hence, when undesired features get encountered, the classifier and the WGSS loss will
have more say in (8). In general, since we are aiming to mimic registration in latent space and since
the classifier one contributor, λ = (0.35, 0.65) gives better latent space results. However, in the
time domain, it is relatively relaxed in the context of the decoder’s loss function (7). Consequently,
even though it provides better time domain estimates, i.e., as compared to most λ pair values, it
often does not outperform λ = (0.15, 0.85). In this aspect, the (0.85) 85% penalty provides a less
constrained re-projection space. Thus, it often can avoid significant shape distortion in regressed
estimates while leaving a small room for over (under) estimations compared to an MSE loss.

5.3 Visual Demonstration of Estimated Averages

We will conclude the results section by presenting a visual demonstration of the time domain
re-projections. For this demonstration, we will use time domain estimations associated with the
ECG200 and ECGFiveDays datasets. These datasets often get selected as demonstrative examples
in the reports of previous proposals (Petitjean & Gançarski 2012, Shapira Weber et al. 2019a).
With these in mind, in Figure 14, we have shown samples taken from the test split of these data
sets (Chen et al. 2015). In the figure, it is evident that the data sets present simple and short-lived
descriptive shapes. Moreover, there is a visible temporal distortion that misaligns members of the
averaged sets.

In general, Figure 15 depict how different averaging techniques estimated averages for the

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 33

Table 5: One nearest centroid classification accuracy for the ECG200 and ECGFiveDays datasets.

Averaging Techniques ECG200 accuracy in % ECGFiveDays accuracy in %

Arithmetic 67 52.96

AGLVQ 41.5 79.91

DBA 72 65.85

SDBA 73 67.02

SSG 77 69.80

KShape 72 67.18

MT ENC TIME 72 58.65

VGG Quant Time 73 59.69

VGG OU Quant Time 70 76.66

Res Quant T ime 70 68.06

Inc Quant T ime 68 64.58

two classes of the ECG200 and ECGFiveDays datasets. In reality, the averages got estimated
from the training split of the two datasets. Overall, if we compare the shapes of the estimated
averages, a time domain arithmetic mean shows a significant distortion compared to the shapes
observed in the original datasets. On the contrary, the two DTW-based averaging heuristics, i.e.,
DBA and SDBA, and KShape appear to be preserving shapes observed in the original datasets.
However, Figure 15b and Figure 15d shows minor shape distortion. One contributing reason behind
the distortion is that DTW often associates a single coordinate of a series with multiple coordinates
of its counterpart. In practice, this is commonly called pathological associations. When we focus on
the estimates of our proposals, the multi-tasking autoencoder appears to give relatively distorted
estimations. However, we find it capable of generating estimates shape-wise better than a time
domain arithmetic mean. On the contrary, the modified reduced VGG16 appears to provide an
estimate that resembles the estimates of SDBA. This visual equivalency is valid when it encourages
over and under estimations (V GG OU Quant T ime). This gets expected since our hypothesis
evaluations show the setup has a better average rank in the time domain. To make the visual
assessment full, we conclude this section by presenting the classification accuracies associated with
each estimation shown in Figure 15. According to Table 5, discouraging over and underestimations
with the VGG16 architectures (V GG Quant T ime) appears to give better results on the short-lived
features of the ECGFiveDays. On the contrary, encouraging over or underestimation worked
better for the slowly transitioning ECG200 datasets, i.e., with V GG OU Quant T ime.

6 Conclusion

In this paper, we proposed to approach time series averaging as a generative problem. To meet
this objective, we proposed to pair off-the-shelf objective functions with the appropriate neural
network architectures. In this regard, we proposed to utilize multi-tasking autoencoder setups
that minimized quantile regression, WGSS, and classification losses. With these proposals, we
showed that it is possible to learn latent embeddings which are registered to their arithmetic mean.
Moreover, based on these latent embeddings, we are able time domain estimations that are better
than the estimates generated by a previously proposed multi-tasking autoencoder minimizing
reconstruction and multi-class classification losses. With this result, we are able to empirically
support our initial argument that relaxing the reconstruction constraint gives better time domain

34 Tsegamlak Terefe et al.

re-projection. In addition to this encouraging latent space performances, we are able to show that
our time domain estimates could outperform estimates generated with some of the alternative
averaging techniques. However, we found the evaluation of the time domain estimates to be
relatively challenging. The challenge mainly arises from the unavailability of a ”neutral (unbiased)”
distance metric. For instance, in this paper, we paired the re-projected estimates with DTW
distance to conduct 1NCC. However, in reality, the utilization of DTW distance favors estimates
generated with DTW since they get estimated in DTW space. Overall, in the time domain, the
only comparison we consider fair is the comparisons made between the time domain arithmetic
mean and our re-projected estimates. This is because both estimation techniques do not have prior
information about DTW space. Overall, comparatively, our proposed approach outperforms time
domain arithmetic mean in a statistically significant manner, i.e., on both 84 and 114 univariate
time series. Moreover, some of our time domain estimates outperformed averages generated with
DBA and KShape, i.e., while we compare maximum 1NCC accuracies. We find this encouraging
since the two averaging techniques get favored by the underlying distance metrics.

In overall, in this paper, we have systematically assessed the possibility of utilizing latent
space representations for the estimation of time series averages. However, we also note that there is
room for further improvements. For instance, to make our assessments feasible, i.e., in the context
of computational resources, we have emphasized on using a supervised arrangement which we
found to be straightforward in the sense of mimicking multiple alignments. However, our proposed
approaches could easily be made unsupervised by combining them with concepts in deep clustering.
However, further investigations are needed to address unforeseen challenges. Additionally, in recent
times, task-specific neural network architectures are being proposed, for instance, the InceptionTime.
We strongly believe that utilizing such architectures could significantly improve the quality of latent
embedding that, in turn, improve the quality of time domain estimates. Finally, we would like to
place a great emphasis on defining (agreeing) on a space where the estimated averages could get
compared without bias. We also aim to direct our future effort in this regard.

Acknowledgements The authors would like to thank the creators and providers of the UCR datasets: Hoang
Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi,
Chotirat Ann Ratanamahatana, Eamonn Keogh and Mustafa Baydogan. Moreover, the authors would also
like to thank the university of Strasbourg for allowing us to use its HPC clusters (Mesocentrer). Last but not
least, we would also like to thank Ouloufa Dorani and Sophia Nicée, and Dr. Esayas Gebreyouhannes for
their roles in the continuation of the Ethio-France Ph.D. program under challenging circumstances. This
work got conducted under the support of the French embassy for the African Union and Ethiopia and the
former Ethiopian Ministry of Science and Higher Education (MOSHE).

References

Aghabozorgi, S., Shirkhorshidi, A. S. & Wah, T. Y. (2015), ‘Time-series clustering a decade review’,
Information Systems 53, 16–38.

Bagnall, A., Davis, L., Hills, J. & Lines, J. (2012), Transformation based ensembles for time series
classification, in ‘Proceedings of the 2012 SIAM international conference on data mining’, Society
for Industrial and Applied Mathematics, Anaheim,CA, USA, pp. 307–318.

Bagnall, A. & Lines, J. (2014), An experimental evaluation of nearest neighbour time series
classification, Technical report, University of East Angelina, http://uk.arxiv.org/abs/1406.
4757.

http://uk.arxiv.org/abs/1406.4757
http://uk.arxiv.org/abs/1406.4757

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 35

Bock, H.-H. (2008), ‘Origins and extensions of the -means algorithm in cluster analysis.’, Journal
lectronique d’Histoire des Probabilits et de la Statistique [electronic only] 4, 1–18.

Bulteau, L., Froese, V. & Niedermeier, R. (n.d.), ‘Tight hardness results for consensus problems on
circular strings and time series’, SIAM Journal on Discrete Mathematics 34(3), 1854–1883.

Chen, C. & Srivastava, A. (2021), Srvfregnet: Elastic function registration using deep neural networks,
in ‘Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops’, IEEE Computer Society, New Orleans, Louisiana, USA, pp. 4462–4471.

Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A. & Batista, G. (2015), ‘The ucr
time series classification archive’. www.cs.ucr.edu/~eamonn/time_series_data/.

Christian, S., Liu, W., Jia, Y., Pierre, S., Scott, R., Dragomir, A., Dumitru, E., Vincent, V. &
Andrew, R. (2015), Going deeper with convolutions, in ‘2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)’, IEEE Computer Society, Boston, MA, USA, pp. 1–9.

Cuturi, M. & Blondel, M. (2017), Soft-dtw: a differentiable loss function for time-series, in ‘Pro-
ceedings of the 34th International Conference on Machine Learning’, JMLR.org, Sydney, NSW,
Australia, pp. 894–903.

Debella, T. T., Shawel, B. S., Devanne, M., Weber, J., Woldegebreal, D. H., Pollin, S. & Forestier, G.
(2022), Deep representation learning for cluster-level time series forecasting, in ‘8th International
conference on Time Series and Forecasting (ITISE)’, MDPI, Gran Canaria, Spain, pp. 1–11.

Demšar, J. (2006), ‘Statistical comparisons of classifiers over multiple data sets’, Journal of Machine
learning research 7, 1–30.

Der Maaten, L. v. & Hinton, G. (2008), ‘Visualizing data using t-sne’, Journal of Machine Learning
Research 9, 2579–2605.

Detlefsen, N. S., Freifeld, O. & Hauberg, S. (2018), Deep diffeomorphic transformer networks, in
‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)’,
IEEE Computer Society, Lake City, UT,USA, pp. 4403–4412.

Diederik P., K. & Max, W. (2014), Auto-encoding variational bayes, in ‘2nd International Conference
on Learning Representations (ICLR 2014)’, ICLR, Banff, AB, Canada, pp. 1–14.

Dong, G., Liao, G., Liu, H. & Kuang, G. (2018), ‘A review of the autoencoder and its variants:
A comparative perspective from target recognition in synthetic-aperture radar images’, IEEE
Geoscience and Remote Sensing Magazine 6(3), 44–68.

Fawaz, H. I., Benjamin, L., Forestier, G., Charlotte, P., Schmidt, D. F., Weber, J., Webb, G. I.,
Idoumghar, L., Muller, P. A. & Petitjean, F. (2020), ‘Inceptiontime: Finding alexnet for time
series classification’, Data Mining and Knowledge Discovery 34, 19361962.

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L. & Alain-Muller, P. (2019), ‘Deep learning for
time series classification: a review’, Data Mining and Knowledge Discovery 33(4), 917–963.

Gee, A. H., Garcia-Olano, D., Ghosh, J. & Paydarfar, D. (2019), ‘Explaining deep classification of
time-series data with learned prototypes’, CEUR workshop proceedings 2429, 15–22.

Glorot, X. & Bengio, Y. (2010), Understanding the difficulty of training deep feedforward neural
networks, in ‘Proceedings of the 13th Conference on Artificial Intelligence and Statistics’, PMLR,
Chia Laguna Resort, Sardinia, Italy, pp. 249–256.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. &
Bengio, Y. (2014), ‘Generative adversarial networks’, pp. 1–9.

Gupta, L., Molfese, D., Tammana, R. & Simos, P. (1996), ‘Nonlinear alignment and averaging for
estimating the evoked potential’, IEEE transactions on biomedical engineering 43(4), 348–356.

He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep residual learning for image recognition, in
‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)’,
IEEE Computer Society, Las Vegas, NV, USA, pp. 770–778.

www.cs.ucr.edu/~eamonn/time_series_data/

36 Tsegamlak Terefe et al.

Itakura, F. (1975), ‘Minimum prediction residual principle applied to speech recognition’, IEEE
Transactions on Acoustics, Speech, and Signal Processing 23(1), 67–72.

Iwana, B. K. & Uchida, S. (2021), ‘An empirical survey of data augmentation for time series
classification with neural networks’, PLOS ONE 16(7), 1–32.

J. Jain, B., Froese, V. & Schultz, D. (2019), ‘An average-compress algorithm for the sample mean
problem under dynamic time warping’, CoRR abs/1909.13541, 1–15.
URL: http://arxiv.org/abs/1909.13541

J. Jain, B. & Schultz, D. (2018), ‘Asymmetric learning vector quantization for efficient nearest
neighbor classification in dynamic time warping spaces’, Pattern Recognition 76, 349–366.

Junyuan, X., Ross, G. & Ali, F. (2016), Unsupervised deep embedding for clustering analysis,
in ‘Proceedings of the 33rd International Conference on International Conference on Machine
Learning’, Vol. 48, p. 478487.

Kaiming, H., Xiangyu, Z., Shaoqing, R. & Jian, S. (2015), Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in ‘2015 IEEE International Conference on
Computer Vision (ICCV)’, IEEE Computer Society, Santiago, Chile, pp. 1026–1034.

Kowsar, Y., Moshtaghi, M., Velloso, E., Bezdek, J. C., Kulik, L. & Leckie, C. (2022), ‘Shape-sphere:
A metric space for analysing time series by their shape’, Information Sciences 582, 198–214.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), Imagenet classification with deep convolutional
neural networks, in ‘Advances in Neural Information Processing Systems’, Neural Information
Processing Systems Foundation, Inc. (NeurIPS), Lake Tahoe, Nevada, USA, pp. 1106–1114.

Lafabregue, B., Weber, J., Ganarski, P. & Forestier, G. (2021a), ‘End-to-end deep representation
learning for time series clustering: a comparative study’, Data Mining and Knowledge Discovery
pp. 1–53.

Lafabregue, B., Weber, J., Ganarski, P. & Forestier, G. (2021b), ‘End-to-end deep representation
learning for time series clustering: a comparative study’, Data Mining and Knowledge Discovery
36, 29–81.

Lin, J., Keogh, E., Wei, L. & Lonardi, S. (2007), ‘Experiencing sax: a novel symbolic representation
of time series’, Data Mining and knowledge discovery 15(2), 107–144.

Lin, J. & Li, Y. (2009), Finding structural similarity in time series data using bag-of-patterns
representation, in ‘International conference on scientific and statistical database management’,
Springer, New Orleans, LA, USA, pp. 461–477.

Lines, J. (2015), Time Series classification through transformation and ensembles, PhD thesis, School
of Electrical and Computer Engineering, University of East Anglia.

Niennattrakul, V. & Ratanamahatana, C. A. (2009), Shape averaging under time warping, in ‘2009
6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunica-
tions and Information Technology’, IEEE, Chonburi, Thailand, pp. 626–629.

Niennattrakul, V., Srisai, D. & Ratanamahatana, C. A. (2012), ‘Shape-based template matching for
time series data’, Knowledge-Based Systems 26, 1–8.

Ongwattanakul, S. & Srisai, D. (2009), Contrast enhanced dynamic time warping distance for
time series shape averaging classification, in ‘Proceedings of the 2nd International Conference on
Interaction Sciences: Information Technology, Culture and Human’, Association for Computing
Machinery, p. 976981.

Paparrizos, J. & Gravano, L. (2015), K-shape: Efficient and accurate clustering of time series, in
‘Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data’,
Association for Computing Machinery, Melbourne, Victoria, Australia, p. 18551870.

Petitjean, F. & Gançarski, P. (2012), ‘Summarizing a set of time series by averaging: From steiner
sequence to compact multiple alignment’, Theoretical Computer Science 414(1), 76–91.

Estimating Time Series Averages from Latent Space of Multi-tasking Neural Networks 37

Petitjean, F., Ketterlin, A. & Gançarski, P. (2011), ‘A global averaging method for dynamic time
warping, with applications to clustering’, Pattern Recognition 44(3), 678–693.

Ruiz, E. V., Casacuberta Nolla, F. & Segovia, H. R. (1985), ‘Is the dtw distance really a metric?
an algorithm reducing the number of dtw comparisons in isolated word recognition’, Speech
Communication 4(4), 333–344.

Sakoe, H. & Chiba, S. (1978), ‘Dynamic programming algorithm optimization for spoken word
recognition’, IEEE transactions on acoustics, speech, and signal processing 26(1), 43–49.

Salvador, S. & Chan, P. (2007), ‘Toward accurate dynamic time warping in linear time and space.’,
Intelligent Data Analysis 11(5), 561–580.

Schultz, D. & Jain, B. (2018), ‘Nonsmooth analysis and subgradient methods for averaging in
dynamic time warping spaces’, Pattern Recognition 74, 340–358.

Shapira Weber, R. A., Eyal, M., Skafte, N., Shriki, O. & Freifeld, O. (2019a), Diffeomorphic temporal
alignment nets, in ‘Advances in Neural Information Processing Systems 32 (NeurIPS 2019)’, Neural
Information Processing Systems Foundation, Inc. (NeurIPS), Vancouver,Canada, pp. 6574–6585.
URL: http://papers.nips.cc/paper/8884-diffeomorphic-temporal-alignment-nets.pdf

Shapira Weber, R. A., Eyal, M., Skafte, N., Shriki, O. & Freifeld, O. (2019b), Diffeomorphic
temporal alignment nets: Supplementary material, in ‘Advances in Neural Information Processing
Systems 32 (NeurIPS 2019)’, Neural Information Processing Systems Foundation, Inc. (NeurIPS),
Vancouver,Canada, pp. 6574–6585.

Shawel, B. S., Debella, T. T., Tesfaye, G., Tefera, Y. Y. & Woldegebreal, D. H. (2020), Hybrid
prediction model for mobile data traffic: A cluster-level approach, in ‘2020 International Joint
Conference on Neural Networks (IJCNN)’, IEEE, Glasgow,UK, pp. 1–8.

Simonyan, K. & Zisserman, A. (2015), Very deep convolutional networks for large-scale image
recognition, in ‘3rd International Conference on Learning Representations (ICLR)’, ICLR, San
Diego, CA, USA, pp. 1–14.

Srisai, D. & Ratanamahatana, C. A. (2009), Efficient time series classification under template
matching using time warping alignment, in ‘2009 Fourth International Conference on Computer
Sciences and Convergence Information Technology’, IEEE, Seoul, Korea, pp. 685–690.

Srivastava, A. & P. Klassen, E. (2016), Functional and Shape Data Analysis, Vol. 1, Springer, NY.
Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R.,

Rußwurm, M., Kolar, K. & Woods, E. (2020), ‘Tslearn, a machine learning toolkit for time series
data’, Journal of Machine Learning Research 21(118), 1–6.

Terefe, T., Devanne, M., Weber, J., Hailemariam, D. & Forestier, G. (2020), Time series averaging
using multi-tasking autoencoder, in ‘2020 IEEE 32nd International Conference on Tools with
Artificial Intelligence (ICTAI)’, IEEE Computer Society, Baltimore, MD, USA, pp. 1065–1072.

Wei, W. (2006), Time Series Analysis: Univariate and Multivariate Methods, 2nd edn, Pearson
Addison Wesley, NY,USA.

Xie, J., Girshick, R. & Farhadi, A. (2016), Unsupervised deep embedding for clustering analysis,
in ‘Proceedings of the 33rd International Conference on International Conference on Machine
Learning (ICML’16)’, ICML, NY, USA, p. 478487.

Ye, L. & Keogh, E. (2009), Time series shapelets: A new primitive for data mining, in ‘Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining’,
Association for Computing Machinery, Paris,France, p. 947956.

38 Tsegamlak Terefe et al.

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with Arthimetic average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(b) DBA’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(c) SDBA’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with SSG

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with SSG

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with SSG

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with SSG

(d) SSG’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with KShape

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with KShape

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with KShape

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with KShape

(e) Kshape’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one MT_ENC_TIME
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with MT_ENC_TIME
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with MT_ENC_TIME
Average

(f) MT ENC TIME’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with VGG_Quant_Time average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with VGG_Quant_Time average
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with VGG_Quant_Time average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with VGG_Quant_Time average
Average

(g) V GG Quant T ime’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with VGG_OU_Quant_Time average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with VGG_OU_Quant_Time average
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with VGG_Quant_OU_Time average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with VGG_Quant_OU_Time average
Average

(h) V GG OU Quant T ime’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with Inc_Quant_Time average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Inc_Quant_Time average
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Inc_Quant_Time average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Inc_Quant_Time average
Average

(g) Inc Quant T ime’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with Res_Quant_Time average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Res_Quant_Time average
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Res_Quant_Time average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Res_Quant_Time average
Average

(h) Res Quant T ime’s estimates

Fig. 15: Visual comparisons of estimated averages for the UCR archive’s ECG200 and ECGFiveDays
datasets.

	Introduction
	Background and Previous Works
	Methodology
	Experimental Setups
	Results
	Conclusion

