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A B S T R A C T

When overpopulated cities face frequent crowded events like strikes, demonstrations, parades or other sorts
of people gatherings, they are confronted to multiple security issues. To mitigate these issues, security forces
are often involved to monitor the gatherings and to ensure the security of their participants. However, when
access to technology is limited, the security forces can quickly become overwhelmed. Fortunately, more and
more important smart cities are adopting the concept of intelligent surveillance systems. In these situations,
intelligent surveillance systems require the most advanced techniques of crowd analysis to monitor crowd
events properly. In this review, we explore various studies related to crowd analysis. Crowd analysis is
commonly broken down into two major branches: crowd statistics and crowd behavior analysis. When crowd
statistics determines the Level Of Service (LoS) of a crowded scene, crowd behavior analysis describes the
motion patterns and the activities that are observed in a scene. One of the hottest topics of crowd analysis is
anomaly detection. Although a unanimous definition of anomaly has not yet been met, each of crowd analysis
subtopics can be subjected to abnormality. The purpose of our review is to find subareas, in crowd analysis,
that are still unexplored or that seem to be rarely addressed through the prism of Deep Learning.
. Introduction

Nowadays, the world overpopulation leads to multiple crowded sit-
ations in plenty of cities. These crowded situations stem from parades,
tations’ exits and entrances, political demonstrations, strikes. These
ituations imply a multiplication of security issues (Krausz & Bauck-
age, 2012). At the same time, more and more cities are setting up
urveillance systems based on video-protection cameras (Porikli et al.,
013). For some while, these surveillance systems were monitored by
uman agents. But this solution quickly turned out to be inefficient,
rror-prone, and overwhelming.

In the last decades, we have witnessed the emergence of smart cities.
smart city implies the use of technology to enhance the well-being

f urban citizens. The rise of this concept is on par with the use of in-
elligent surveillance systems that substitutes the massive intervention
f human agents with algorithms. These algorithms are part of crowd
nalysis. Within the field of computer vision, crowd analysis is gaining
ore and more interest. Understanding the crowd mechanisms, that

xplain what could endanger massive gatherings is of utmost concern
or security forces. Many studies have been conducted to understand
uman and crowd behavior within a crowded scene (Walia & Kapoor,
016). According to many surveys (Grant & Flynn, 2017; Lamba &
ain, 2017; Zhan et al., 2008), crowd analysis is subdivided into
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two research axes: crowd statistics and crowd behavior analysis. The
purpose of crowd statistics is to estimate crowd density by the means
of crowd counting methods. The most suitable metric used to evaluate
crowd density is a metric taken from vehicular traffic flow domain: the
Level of Service (LOS) of a crowd (Grant & Flynn, 2017). The purpose
of crowd behavior analysis is to study the behavior of a crowd. This
field is commonly subdivided into two main sub-fields: crowd tracking
and activity analysis (Grant & Flynn, 2017; Lamba & Nain, 2017).

Recent works seized the importance of shifting the interest from
crowd behavior analysis to crowd motion and behavior detection and
forecasting (Li, Chang, Wang, Ni, & Hong, 2015; Thida, Yong, Climent-
Pérez, Eng, & Remagnino, 2013). Hence, dividing crowd behavior
analysis into two subtopics: trajectory analysis, and crowd action recog-
nition. With the recent upsurge in the use of Deep Learning methods in
computer vision and natural language processing, we have witnessed
the prediction capabilities that are offered by this category of Machine
Learning methods. Before delving into the presentation of the different
categories of methods developed in the field of crowd analysis, we are
going to establish a comparative study of some previous reviews on
crowd analysis.

In Section 4, we mention mostly recent works in crowd analysis,
that were published in these last 4 years. Furthermore, we focus on the
following subjects:
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Fig. 1. Taxonomies guessed from Zhan, Monekosso, Remagnino, Velastin, and Xu (2008)’s review.
Fig. 2. Taxonomies proposed by Grant and Flynn (2017).
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• The use of deep neural networks in crowd analysis, without
ignoring some very recent works that still rely on the extraction
of hand-crafted features and do not use deep learning methods;

• As Deep Learning is ubiquitous in computer vision, we do not
dedicate a section to feature engineering, but we talk about the
detection of frequent important scene elements like pedestrians
and groups;

• We point out the subtopics of crowd analysis that lack attention
in the literature;

• Exploration of multiple sources of data: may they be from live
video-surveillance or from private/public datasets;

• And finally, the use of annotators. Their contribution is required
to enrich existing datasets and to create new ones. Many subareas
of crowd analysis are still at their genesis due to data scarcity.
 L

2

The remainder of this paper is organized as follows: Section 2
athers previous reviews on crowd analysis. Many of them adopt
particular taxonomy to describe the research axis. Some reviews

o not present crowd analysis as a whole but analyze one of its
ubtopics. Hence, we divided the section into subsections according to
he topic/subtopic that is presented. Section 3 is dedicated to pedes-
rian and group detection. We did not include these studies within
rowd analysis (Section 4), because we consider pedestrian and group
etection as essential tools for crowd analysis but not a subtopic itself.
ection 4 presents the part of the recent literature of crowd analysis.
he section is broken down into two major subtopics: crowd statistics
nd crowd behavior analysis. Many of the mentioned studies are Deep
earning-based. Section 5 presents all the sources of data we came
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Fig. 3. Taxonomies proposed and guessed from Lamba and Nain (2017)’s review.
cross. Some of these datasets are used for pedestrian and group
etection. Section 6 is dedicated to the description of some annotators.

. Previous reviews on crowd analysis

Since the last decade, many surveys have been written on crowd
nalysis. Some of them study the research axis as a whole, and others
ocus on one of its subtopics. In this section, we present the most
nfluential reviews we came across and those which attracted our
ttention. To establish a solid bedrock for our future work, we have
tudied a dozen of them and organized them into subsections. Each
f the following surveys adopts from the beginning a taxonomy to
ategorize their reviewed studies. Some taxonomies are redundant, and
thers are unique.

.1. Crowd analysis as a whole

The reviews we mention in this subsection aim to present a panora-
ic view of the crowd analysis domain.

Zhan et al. (2008)’s survey on crowd analysis offers an interesting
verview of the shape of the literature by the end of 2008. The survey
rovides a general idea of what was done in crowd analysis ranging
rom crowd statistics to crowd behavior analysis. It starts by providing
n idea about feature engineering for each of crowd density measure-
ent, crowd counting, action recognition and tracking. After that, it

ives an insight about three different taxonomies adopted in crowd
nalysis: the dichotomy between crowd statistics and crowd behavior
nalysis, the division into macroscopic, microscopic and mesoscopic
tudies (proposed by the Federal Highway Administration, in the first
lace (FHWA, 2004), and the division into computer vision-based stud-
es, physics-based, sociology-inspired and biology-based approaches. A
isualization of these taxonomies is proposed in Fig. 1. Zhan et al.
2008)’s survey does not mention the datasets that were used for crowd
nalysis.

Grant and Flynn (2017) study crowd analysis and divide it into
wo broad categories: crowd counting and crowd behavior analysis.

visualization of the taxonomy, that they propose, can be observed
n Fig. 2. The authors show that former studies on human activity
ecognition focused on individual scenes. The interest for group actions
r actions within a crowd came later. For crowd behavior analysis, the
3

review mentions works on group analysis, the detection of abnormal
events, and crowd motion. For crowd statistics, the authors evoke the
use of a measure used in traffic flow (TRB, 2000), to estimate crowd’s
density, the Level of Service (LoS). As highlighted by the authors, the
reviewed works do not tackle many challenging problems, for example:

• they focus mainly on small crowds;
• the images on which they work are easy to process;
• the studies do not tackle demographics-related issues;
• and, these studies do not intend to tackle activity or behavior-

related questions.

One finding of this review is that few research is held on identifying
dangerous crowd environments because of data scarcity. A mention
is given to some popular datasets used for crowd analysis. However,
as stressed by Tripathi, Singh, and Vishwakarma (2018), despite the
ubiquity of Deep Learning, few of the mentioned studies are Deep
Learning-based.

Lamba and Nain (2017) start by highlighting the inability of hand-
crafted methods to model crowd dynamics because of occlusion and
cluttered scenes. They evoke in their review the features that are
used for crowded scene analysis and categorized them in flow-based,
local spatio-temporal features, and trajectory/tracklets. They classified
the reviewed studies in crowd counting, people tracking and crowd
behavior analysis. We can visualize the categories of the studies that
were discussed in this review in Fig. 3.

Tripathi et al. (2018) regret that recent reviews in crowd analysis
have neglected Deep Learning-based works despite their ubiquity in
every computer vision sub-domain. The review includes an analysis
on over one hundred studies involving Convolutional Neural Networks
(CNNs). They split these studies into four categories:

1. Works relying on the variation of the number of layers and the
input fed to the Neural Network;

2. Works relying on cascading a variety of CNNs and the fusion of
the classification decisions;

3. Works using CNNs for feature extraction and applying state-of-
the-art classifiers;

4. Works using CNNs incorporated with other deep learning archi-
tectures in order to increase the overall performance.

Following the shape of previous taxonomies, the authors split the
literature of crowd analysis into four subareas, as we can observe from
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Fig. 4. Taxonomy proposed by Tripathi et al. (2018).

ig. 4. The authors highlight the challenges that are still faced by
eep Learning-based methods. Among these challenges are the lack
f labeled data and the need for powerful Graphics Processing Units
GPUs) to train models. As a workaround to this issue, they suggest
he use of transfer learning. However, the authors did not mention any
erspective on how the literature should evolve.

In this subsection, we have seen four reviews that tackle crowd
nalysis while evoking other sub-parts of the field. Contrary to Zhan
t al. (2008), the other reviews were written very recently and after
hat Deep Learning had been used in many fields of computer vision,
ncluding crowd analysis. However, only Tripathi et al. (2018) focused
ts review on the application of Deep Learning to crowd analysis.
ontrary to others, Tripathi et al. do not propose many taxonomies.
or instance, Zhan et al. propose three taxonomies to categorize each
ork connected with crowd analysis which allow us to observe the field

rom several points of view. Moreover, while Grant and Flynn (2017)
ropose a taxonomy for crowd analysis and for its datasets, Lamba et al.
ropose a taxonomy for crowd analysis and feature extraction.

.2. Crowd behavior analysis

In this subsection, the reviews analyze the part of the literature
edicated to crowd behavior analysis, a sub-domain of crowd analysis.

Contrary to one of Zhan et al. (2008)’s taxonomies, Thida et al.
2013) split the literature into two broad categories: microscopic and
acroscopic approaches. The authors show how the crowd is observed

hrough these two points of view.

• From a microscopic point of view, bottom-up approaches are
privileged. We start by pedestrian detection, continue with track-
ing, and finish with activity analysis. The difficulties it faces
are: occlusions, events’ complexity due to the multiplication of
interactions, etc.

• From a macroscopic point of view, top-down approaches are
privileged. These latter consider a crowd as a single entity. Top-
down approaches can often face obstacles when the crowd is
unstructured, which means that people move anarchically. In this
context, it is difficult to find regular patterns.

he authors point out that a big part of the studies carried out in crowd
ehavior analysis is intended for events detection, and especially ab-
ormal events detection. However, the definition of abnormality is not
nanimous, sometimes associated to rarity, some definitions link it to
nobserved events. Macroscopic approaches rely on the holistic proper-
ies of a scene. Macroscopic modeling either uses optical flow features
r spatio-temporal features. Conversely, microscopic approaches, are
ommonly agent-based, and analyze moving entities in a scene. The
uthors mention several tracking bottom-up approaches linked with
he Particle Filter framework. This framework is mostly based on color
ues, but the authors mention several studies where it is paired with
ther cues. They evoke the possibility to enhance the quality of track-
ng using crowd-level cues such as contextual information and social
nteractions. As a solution to occlusion, the authors propose the use of
ultiple cameras. We can visualize the taxonomy proposed for crowd

ehavior analysis in Fig. 5. The review ends on a section dedicated to
4

Fig. 5. Taxonomies found in Thida et al. (2013)’s review.

event detection in crowded scenes, where anomaly detection is briefly
evoked. However, we regret that this section was not included in the
proposed taxonomy.

Li et al. (2015) start by summarizing the basic concepts of crowd
behavior analysis. They show how the crowd is perceived by Crowd
Dynamics and how it is by Computer Vision. While Crowd Dynam-
ics consider a crowd as either a fluid by proposing continuum-based
approaches inspired from statistical mechanics and thermodynamics,
or as a set of individuals satisfying agent-based approaches like the
Social Force Model (SFM) (Helbing & Molnar, 1995), Computer Vision
adopts the macroscopic and microscopic scales to observe a crowd.
Some mesoscopic approaches rely on the features provided by the two
scales to yield a better analysis. The authors highlight the importance of
feature engineering to model crowd dynamics. They rank the features
into three levels based on their degree of expressiveness: 1. low-level
flow-based features, 2. mid-level local spatio-temporal features, and,
3. high-level trajectory/tracklet features. As observed from Fig. 6, the
reviewed studies are split into three categories: motion pattern segmen-
tation, behavior recognition, and anomaly detection. This review does
not evoke pedestrian and group detection, and does not tackle group
analysis.

2.3. Abnormal behavior analysis

Abnormal behavior analysis is a bubbling subtopic in crowd analy-
sis.

Chong and Tay (2015) highly recommend the use of Deep Learning
to find anomalies in videos. Anomaly detection in videos is an arduous
task. The difficulties of this task come from the video’s resolution and
from the variety of changes that can happen within the video ranging
from human movements to environmental variations.

Traditionally, handcrafted methods for anomaly detection are pipel-
ines that include several steps: video pre-processing, feature engi-
neering, context modeling, and finally classification/clustering. The
engineered features are flow-based or trajectory-based. The engineered
features of these handcrafted methods need to be manually tuned each
time the environment changes. Deep Learning methods alleviate this
need, especially when it is possible to use transfer learning. The authors
highlight the fact that videos cannot be directly fed to a classifier be-
cause of action pattern variations, environmental variations and clutter.
Due to these inconveniences, the authors discuss how to model a good
representation for videos. They start by providing an overview about
conventional feature descriptors before talking about Deep Learning-
based features extractors. They classify these features extractors into
three groups: 1. Conditional restricted Boltzmann machine and Space–
time deep belief network, 2. Independent component analysis and its
variants, and 3. Deeply learned slow feature analysis and gated models.

The authors mention the works of Taylor et al. and Chen to intro-
duce respectively Convolutional Restricted Boltzmann machine (CRBM)
and Space–Time Deep Belief Network (ST-DBN). Restricted Boltzmann
machine (RBM), from which the CRBM are derived, are used to model

multivariate time-series data. ST-DBN comprises multiple stacks of two
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Fig. 6. Taxonomies found and guessed from Li et al. (2015)’s review.
ayers of CRBMs: a layer of spatial CRBMs and a layer of temporal
RBMs. Both of these networks are resilient to spatial transformations
nd thus achieve good invariance. ST-DBN has also the particularity
o fill in missing video data. Because of the necessity to determine
he number of latent features representing a video and the fact that
uch a task can sometimes become burdensome, authors highlighted
he advantages of using ICA-like methods (ICA stands for Independent
omponent Analysis), such as the one illustrated in Chatzis and Kos-
opoulos (2015)’s work and which proposes a convolutional model
sing ICA as building blocks.

Last but not least, the authors highlight the similar performances of
eeply Learned Slow Feature Analysis (DL-SFA) (Sun et al., 2014) and
ierarchical Independent Subspace Analysis (ISA) (Le, Zou, Yeung, &
g, 2011). They found a slight superiority for ISA, however amortized
ecause this latter leverages dense sampling. They mention the gated
odels such as Gated-Restricted Boltzmann machine (GRBM) (Taylor,

ergus, LeCun, & Bregler, 2010), that are good for capturing image
ransformation and spatial information. When they compare the meth-
ds on KTH and Hollywood2 datasets, the authors used as baseline
andcrafted methods: HOG3D (Histogram of Oriented Gradients 3D)
nd HOG/HOF (Histogram of Oriented Gradients/Histogram of Optical
low). It is worth mentioning that HOG/HOF+Mining and dense trajec-
ories are state-of-the-art feature extractors for both datasets. We can
isualize the categories of feature engineering and feature extraction
xplored in this review in Fig. 7.

Apart from KTH and Hollywood2, the review does not propose a set
f datasets that can be used for anomaly detection in videos of crowded
cenes.

By putting forth the fact that anomaly detection is a challenging
omain within the unsupervised learning research area, Kiran, Thomas,
nd Parakkal (2018) talk mostly about anomaly detection and evoke
5

Fig. 7. Taxonomies proposed by Chong and Tay (2015).

anomaly prediction. They highlight the issue arising from the paucity
of annotated data despite the availability of raw video data. They define
anomaly as the detection of unseen objects and infrequent events.
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The survey mentions six datasets among the frequently uses ones:
UCSD Anomaly detection, CUHK Crowd, and UMN Social Force that
we describe later in the datasets Section 5.2. It introduces less used
datasets, that we do not speak about later, like the Subway entry and
exit datasets, The Train dataset, The Queen Mary University of London
U-turn, and a newly introduced dataset, the lv dataset, by Leyva,
Sanchez, and Li (2017). Starting from the premise that normality is
defined by a static background, normal crowd appearance, no change
in trajectory, etc., the mentioned datasets comprise videos where the
background is still.

The survey reviews deep learning methods used for unsupervised
and semi-supervised anomaly detection in videos. It classifies them
in terms of the model’s type and detection criteria. More precisely,
it explores three types of statistical models: reconstruction models,
predictive models, and deep generative models.

• Reconstruction models comprise Principal Component Analysis
(PCA), Autoencoders, Convolutional AutoEncoders, Contractive
Autoencoders and other deep models like SDAEs (Stacked De-
noising AutoEncoders) and DBNs (Deep Belief Nets).

• Predictive models comprise composite LSTM model that performs
reconstruction and prediction, convolutional LSTM which is also
a composite LSTM, 3D-AutoEncoder and Predictor, Slow Feature
Analysis (SFA) that is calculated using batch PCA iterated twice.

• Deep generative models comprise Variational AutoEncoders
(VAEs), Generative Adversarial Networks (GANs), Adversarial
AutoEncoders (AAEs).

We depict the categories of the statistical models explored by this
review in Fig. 8.

The authors discuss the experiments they undertook on CUHK
Crowd and UCSD datasets to compare the models. The performance
metrics used are Precision–Recall (PR) and Receiver-Operator-Charact-
eristics (ROC) curves. We regret that the chosen datasets are not
intended for anomaly detection in massively crowded scenes.

2.4. Motion tracking

Motion tracking is a subtopic of crowd behavior analysis. In this
subsection, we mention the comprehensive review of Walia and Kapoor
(2016).

Walia et al. sheds light on the drawbacks of single cue tracking
methods. These methods are not suited for real-world applications.
Their alternatives are multi-cue tracking methods. The review classifies
these latter in compliance with the source of their cues: single-modal
sensors, or multi-modal sensors. A visualization of this classification can
be observed in Fig. 9.

For single-modal multi-cue object tracking methods, there are vision
and InfraRed/thermal-based methods. Vision and IR/thermal sensors
are a rich source of information that can yield complementary cues.
Among the cues that can result from these two sources are shape,
texture, color, intensity, position, motion and orientation. However,
most of the studies reviewed are vision-based. Part of them are deter-
ministic, and the other part is about stochastic methods. Despite the
adaptability of Thermal/IR sensors for night vision applications, they
frequently need completion from other sensors, especially when they
cannot distinguish targets with similar thermal profile. Moreover, data
from Thermal/IR sensors do not often come from video-surveillance
cameras.

For multi-modal multi-cue object tracking methods, one of the
widespread combinations that the authors highlight is vision camera
with an additional sensor. The following is a list of possible combina-
tions:

• Vision sensor paired with Thermal/IR sensor. This combination is
required when tracking is done during nighttime. However data

fusion and multi-sensors’ calibration are still challenging.

6

• Combination of vision and audio sensors. This combination usu-
ally happens during lectures and meetings. However, most of the
reviewed studies are limited to coherent audio sources. Chen
et al. (2014) showed the negative impact of non coherent au-
dio sources on image features, and consequently recommend
evaluating both types of audio sources in real world tracking
situations.

• Combination of vision and laser sensors. The use of this kind of
combination is found in tracking for video-surveillance applica-
tions. The use of laser scanner is motivated by the advantages
it offers such as low computational requirement, insensitivity
to environmental changes and the easy laser data projection to
rectangular coordinates. However, according to Cui, Zha, Zhao,
and Shibasaki (2008)’s and Song et al. (2013)’s works, laser
scanner suffers from some drawbacks due to clutter and occlusion.

• The combination of radio and vision sensors. Low cost radar
are more and more available, and radial information provides
accurate object identification.

• Stereo vision was also investigated for its ability to capture object
gesture and its resilience to illumination changes.

As for single modal methods, the authors have pointed out the necessity
to enhance the quality of information fusion and sensors and cues
calibration. In the study, the authors presented a series of datasets that
match with the previously introduced works.

The authors discuss the performance measures used to measure the
robustness and efficiency of several trackers. They mention two cases:
the presence of Ground Truth (GT) data and its absence and how to
deal with it. Measuring the tracker’s performance while GT is missing is
not a cakewalk, but the authors mention several workarounds previous
studies had used to overcome this obstacle. They evoke two ways to
deal with the absence of GT data: 1. the detection of abnormality
raising from normality (Chau, Bremond, & Thonnat, 2009; Spampinato,
Palazzo, & Giordano, 2012), 2. or by using prior knowledge about
an object trajectory (Wu, Sankaranarayanan, & Chellappa, 2010). Al-
though these measures are easy to compute in real time, they are errors’
prone and their reliability decreases when it faces context-dependent
features. In parallel, performance measures using GT data benefit from
the advent of PETS workshops.

The authors mention both qualitative and quantitative measures
proposed from several previous works. These measures show good
precision and are independent from the used tracker. However, despite
the widespread use of Deep Learning (DL) methods for multi-object
tracking, Walia et al. do not mention any DL-related work.

2.5. Group behavior analysis

Group behavior analysis is a subtopic of crowd behavior analysis.
We highlight the recent trends in group behavior analysis through the
review of Borja-Borja, Saval-Calvo, and Azorin-Lopez (2017).

Borja et al. associate the nature of a human action to the num-
ber of individuals that perform it. They mention the classification
used in other works (Azorin-Lopez, Saval-Calvo, Fuster-Guillo, Garcia-
Rodriguez, & Orts-Escolano, 2015; Chaaraoui, Climent-Pérez, & Flórez-
Revuelta, 2012) that identify and classify human actions in function of
their duration. Both of these classifications are depicted into two level
pyramids in Fig. 10.

• The first classification breaks down the behaviors into four levels
depending on their duration and the number of persons involved
in them: gestures, actions, interaction, and group activity.

• The second classification divides the behaviors into four levels
depending on their duration only: Motion, Action, Activity and

Behavior.
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Fig. 8. Taxonomy guessed from Kiran et al. (2018)’s review.
Fig. 9. Illustration of the taxonomy of Multicue Object Tracking proposed by Walia and Kapoor (2016) and taken from its review paper.
n the second part of the review, the authors describe datasets used
or group activity recognition such as: BEHAVE, CAVIAR, CVBASE,
TISEO, ETH, UHD, HMDB, SportsVU, PETS, ViF. Using the Group
ctivity Descriptor Vector (GADV), proposed by Azorin-Lopez et al.

2016), the authors classify the group behaviors by taking into account
he number of individuals involved in each of them. This descriptor
s obtained after extracting features from trajectories using Neural
etworks. Afterwards, the authors present the features used for sev-
ral group behavior recognition tasks: anomaly detection when this
nomaly is caused by a small group within a crowd; the distinction
etween a normal and an abnormal behavior based on the assump-
ion that normal behaviors last longer; group’s characteristics such as
he distance between its members, and the velocity of each member.
lthough the review offers a general view of what is done for group
ehavior analysis, no mention is given to group detection tasks.

.6. Conclusion and discussion

To sum up the taxonomies proposed in the previous reviews, we
ame up with a synthesized taxonomy illustrated in Fig. 11. Through
his diagram, that is mainly inspired from the conclusions of the previ-
us reviews, we describe our perception of the shape of the literature.
s stated before, crowd statistics is divided into crowd counting and
ensity estimation. Even if these two subjects are intertwined, density
stimation is frequently related to crowd management and can be used
y security forces to guess when a place is overcrowded and may
epresent a danger for its population, while crowd counting may be
seful for entities that need to measure their audience for statistical
urposes. Crowd behavior analysis can be divided into three broad
ubtopics:

• Crowd behavior recognition/classification, a topic that is slightly
linked with Action Recognition in individual scenes, as we will
see subsequently in Section 4.2.1;

• Motion analysis, that includes trajectory analysis and prediction;
• and Group behavior analysis, that often require group detection

and is related to action recognition for groups within a crowded
scene.

n our taxonomy, we do not mention straightforwardly the division
nto microscopic (Lagrangian)-mesoscopic-macroscopic (Eulerian) ap-
roaches evoked by the literature (Allain, Courty, & Corpetti, 2012;
7

Fig. 10. Taxonomies about levels of Human Behavior found in Borja-Borja et al.
(2017)’s review. First upper taxonomy taken from Vishwakarma and Agrawal (2013)’s
survey, and second lower taxonomy taken from Chaaraoui et al. (2012)’s review.

Thida et al., 2013; Wang, Cheng, & Wang, 2018; Zhan et al., 2008),
because on one hand this division maps the branches of the taxonomy
we propose of crowded scenes analysis:

• Motion Analysis is frequently associated to object-based micro-
scopic approaches,

• while Crowd Behavior Recognition stems from a holistic analysis
of a crowd.

• Group Behavior Analysis covers the in-between mesoscopic ap-
proaches.
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On an other hand, we observe that crowd statistics can obey to the
dichotomy Micro/Macro. If we consider crowd counting as a micro-
scopic approach for crowd statistics, because it is object-based, we can
consider density estimation as a macroscopic approach, because it sees
the crowd as a whole.

In the taxonomy we propose, we prefer to avoid considering
anomaly detection as a sub-branch of crowd analysis, because each
sub-field of crowd analysis, that is included in our taxonomy, can cover
works related to anomaly detection.

Since 2012, following the prowess of Deep Learning and more pre-
cisely Convolutional Neural Networks in Image Classification, with the
development of the AlexNet model (Krizhevsky, Sutskever, & Hinton,
2012), the use of Deep Learning in computer vision has skyrocketed.
Hence, more and more approaches are adopting Deep Learning in
crowd analysis. The unique review which stated the need to focus
solely on reviewing Deep Learning methods for crowd analysis is
the recent Tripathi et al. (2018)’s review. However, because of the
lack of datasets, especially for group behavior analysis and crowd
behavior analysis from massively crowded scenes, literature in these
sub-domains still needs generic models generated from recent Deep
Learning architectures.

3. Pedestrian and group detection

Before analyzing crowd motion or behavior, it is often necessary to
detect the components of a crowd. Those components are pedestrians,
and groups formed by those pedestrians.

Before the advent of Deep-Learning based methods in crowd analy-
sis, a lot of works used hand-crafted methods to extract features and fed
those features to Machine-Learning approaches to detect pedestrians
and group. In this section, we start by mentioning a less recent, still
very well cited, work that uses hand-crafted methods for pedestrian and
group detection. After that, we review and compare the works that have
been done more recently in these two fields.

Ge et al. (2012) propose a bottom-up agglomerative hierarchical
clustering approach to detect small groups of individuals. They handle
two types of video-recorded crowded scenes. Scenes recorded from an
elevated camera where individuals appear tiny, and scenes recorded
from a video-surveillance camera level with a higher resolution, where
individuals can be clearly identified.

To detect pedestrians from elevated cameras, the authors use the
Reversible Jump Markov Chain Monte Carlo (RJMCMC) method. For
higher resolution videos, they use a modified version of the HoG
detector (Dalal & Triggs, 2005). After the detection process, they get
tracklets using the Sampling Importance Resampling (SIR) particle
Filter (Doucet & Johansen, 2009). The tracklets are assembled in sets of
tracklets. Sliding window is used to find tracklets that overlap and that
constitutes potential candidates for longer trajectories, which allows
the authors to yield sets of trajectories. New tracklets are assigned
to the right trajectory using the Hungarian Algorithm (Kuhn, 1955).
If in a trajectory the authors face missed locations, they infer them
through linear interpolation. From a set of trajectories, they combine
the sliding window strategy to hierarchical clustering to find small
groups of people. After that, to measure the proximity between small
groups, they use the symmetric Hausdorff distance (a distance already
used for trajectory analysis (Wang, Tieu, & Grimson, 2006). The authors
undertook their experiments on a self-made dataset of 5 video se-
quences: SU1, SU2, Artefest, Stadium1, Stadium2. In their experiments,
they outperform, in terms of groups detection accuracy, the methods of
Corner Clustering (Rabaud & Belongie, 2006), and another category of
methods: (Brostow & Cipolla, 2006; Sugimura, Kitani, Okabe, Sato, &
Sugimoto, 2009).
8

3.1. Pedestrian detection

In real world situations frequently observed by video-surveillance
applications, pedestrian detection is not a simple task. The scenes are
often cluttered and detectors face several types of occlusions. While
the hand-crafted methods often fail to detect pedestrians in challenging
situations, Deep Learning models achieve frequently impressive results.
When we develop a pedestrian detector, the utmost purpose is to create
a highly accurate and quick detector that can run on systems with
affordable computing power (Angelova et al., 2015).

Li, Wu et al. (2016) train a Region proposal multi-layered Convolu-
tional Neural Network (RCNN), on Pedestrian Detection. Instead of the
classic sliding window, the authors use the Edge Boxes algorithm (Zit-
nick & Dollár, 2014) for region proposals. After that, they use a Support
Vector Machine (SVM) to classify the obtained features to identify
pedestrians. The RCNN is trained and tested on the INRIA pedestrian
dataset. During the training procedure, they fine-tuned the AlexNet
model (Krizhevsky et al., 2012) that was trained on the ILSVRC2012
datasets. To avoid over-fitting, the authors expanded the INRIA dataset
with comparable pedestrian data from Wang, Shi, Song, and Shen
(2007)’s work. During the testing phase, they evaluated a model trained
on the non-extended INRIA dataset, and a model relying on the Selec-
tive Search (Uijlings, Van De Sande, Gevers, & Smeulders, 2013). The
authors’ model outperforms both of them. Moreover, it realizes better
results than the Histogram of Diagrams (HOG) features and Viola Jones
methods. In other words, the model achieves a performance of 10% of
false detection rate and 23% of missing rate, which is 23% higher than
the HOG features method. The developed method and its variants were
compared to handcrafted methods. However, despite the ubiquity of
Deep Learning methods in this field, we do not see a comparison of the
authors’ method with other Deep Learning models.

Tian et al. (2015) propose DeepParts, a part-based pedestrian de-
tector that is presented as an occlusion handler. The core idea of
the algorithm is the extensive part pool that contains several scales
and positions of pedestrians’ body parts, and the data-driven parts
selection for occlusion handling. The following properties characterize
the algorithm: ability to be trained on weakly labeled data; handles low
Intersection over Union (IoU) positive proposals that shift away from
ground truth; each part detector can detect a pedestrian by visualizing
only a part of a proposal. Training and testing were held on the Caltech
dataset. During experiments held on the same dataset, an overall model
of DeepParts reached a miss rate score of 11.89%. It was also tested on
KITTI dataset, despite being trained on Caltech, and it achieved an Av-
erage Precision (AP) score of 58.67%, on a moderate subset, but seems
outperformed by Regionlets. As a perspective, the authors propose to
treat DeepParts as a cascade stack over other detectors to increase
performance. They also suggest model compression, by including all
part detectors within a unique Convolutional Neural Network (CNN).

Inspired by the successes brought by the development of Deep
Learning-based accurate detectors (Luo, Tian, Wang, & Tang, 2014) and
by the remarkable high speed of very fast cascades (Benenson, Mathias,
Timofte, & Van Gool, 2012) when processing image patches, Angelova
et al. (2015) built DeepCascade, a combination of very fast cascades
with deep neural networks. Specifically, they did not completely copy
Benenson’s cascades, but modified their constitution to keep only 10%
of their stages. To obtain a good model they used a pretrained Deep
Neural Network (DNN) on ImageNet dataset. Besides, they used data
augmentation. Moreover, to select the best model, they trained their al-
gorithm on three datasets producing three different models: the Caltech
Pedestrian dataset, an independently collected dataset, and an extra
dataset containing Caltech, ETH and Daimler. The most well perform-
ing model resulted from the training on the extra dataset. Tested on
Nvidia Tesla K20 GPU, the runtime of their cascade is of 15 Frames per
econd (FPS) on 640 × 480 pixels images. Furthermore, it achieved
ery good results regarding accuracy; they reached the average miss
ate score of 26.2% on the Caltech Dataset. To improve their model,



M. Bendali-Braham, J. Weber, G. Forestier et al. Machine Learning with Applications 4 (2021) 100023
Fig. 11. Proposed taxonomy for Crowd Analysis.
Table 1
Summarized presentation of studies in pedestrian detection and group detection. ‘‘?DL’’ column: DL stands for Deep Learning, this column means if the paper
used Deep Learning approaches (DL) or not (¬DL).
Reference Date Research axis Used datasets ?DL Source code

Ge, Collins, and Ruback (2012) 2012 Pedestrian & Group detection Self-made ¬DL Unavailable
Li, Wu, and Zhang (2016) 2016 Pedestrian detection INRIA Person DL Unavailable
Tian, Luo, Wang, and Tang (2015) 2015 Pedestrian detection Caltech, KITTI DL Unavailable
Angelova, Krizhevsky, Vanhoucke, Ogale, and Ferguson (2015) 2015 Pedestrian detection Caltech DL Available
Shao, Dong, and Zhao (2018) 2018 Group detection Student003, GVEII, MPT-20X100 ¬DL Unavailable
Wang et al. (2018) 2018 Group detection CUHK Crowd ¬DL Unavailable
Voon, Mustapha, Affendey, and Khalid (2019) 2019 Group detection CUHK Crowd ¬DL Unavailable
they encourage future research to include motion information from
images and increase the depth of DeepCascade by adding small deep
nets and investigating efficiency–accuracy compromises.

We saw recently that although Faster RCNN reached excellent per-
formances for object detection (Ren, He, Girshick, & Sun, 2015), it is
not a perfect pedestrian detector (Zhang, Lin, Liang, & He, 2016). When
we choose a pedestrian detector, we have to make a difficult trade-off
between speed and accuracy. Some tried to reduce the side-effects of
this compromise to the extreme extent (Liu et al., 2016).

3.2. Group detection

Two kinds of approaches can be found in the literature of group
detection: top-down approaches, which start from a crowded scene,
and then segment it into small groups (Chen, Wang, & Li, 2017a,
2017b; Li, Chen, Nie, & Wang, 2017; Wang et al., 2018). Bottom-
up approaches, which start by detecting pedestrians and then create
clusters of them (Shao et al., 2018; Vascon & Bazzani, 2017; Yuan, Lu,
& Wang, 2017).

Shao et al. (2018) propose a real-time bottom-up approach for
small group detection that performs well on low and medium den-
sity crowded scenes. The key point of their method is the combi-
nation between the Social Force Model (SFM) (Helbing & Molnar,
1995) for goal prediction with a goal-based coherent filtering algorithm
for group detection. They start by extracting trajectories based on
two methods (Dollár, Appel, Belongie, & Perona, 2014; Milan, Roth,
& Schindler, 2014). After that, they construct a SFM-based collision
avoidance model (Karamouzas, Heil, Van Beek, & Overmars, 2009).
Then, they apply the K Nearest Neighbors algorithm to find the K
neighbors of a pedestrian. Finally, they use the goal-based coherent fil-
tering to cluster pedestrians sharing the same goal. They compare their
method to that of Solera, Calderara, and Cucchiara (2016), and they
achieve, most of the time, a better precision with frequently comparable
recall scores in a reduced computation time. They tested their method
on the following datasets: student003, GVEII, and MPT-20X100.

Wang et al. (2018) propose a top-down approach to detect groups
of pedestrians. It consists in crowd segmentation. The method is bro-
ken down into two steps: detection of feature points using Tomasi
and Kanade (1991)’s method and the computation of their attribute
value, and then, the segmentation of the crowd into many groups
using the computed attribute values. The authors tested their method
on the CUHK Crowd dataset on various situations: such as struc-

tured/unstructured dense/less dense crowds. The authors compare

9

their method to that of Shao, Change Loy, and Wang (2014), where
they beat them in computation time. However, they did not compare
their method to other detectors on CUHK Crowd.

Voon et al. (2019) propose Collective Interaction Filtering (CIF), a
top-down clustering approach based on the Expectation–Maximization
algorithm that uses trajectories to detect groups. First, they start by
extracting pedestrians’ tracklets using the Kanade–Lucas–Tomasi (KLT)
tracker (Tomasi & Kanade, 1991). Tracklets are used as inputs to CIF to
find tracklets’ clusters. Within a cluster, they select the pedestrian that
has the longest duration and whose trajectory has a small variance to
be the key person. Second, they compute the degree of connectivity
of each person with the key persons. To do so, distances like Distance
Connectivity (DC), Occurrence connectivity (OC), Speed correlation
(SC), are computed, from the first frame to the last frame, between the
key person and the other persons and are stored within an adjacency
matrix. After that, they use the EM algorithm to find the persons that
are close to the key persons. Finally, they use a group refinement
threshold to handle crowds with various densities, structures, and
degrees of occlusion. The method is evaluated on the CUHK Crowd
dataset. Compared to Collective Transition (Shao, Loy, & Wang, 2017)
and Coherent Filtering (Zhou, Tang, & Wang, 2012), their method
obtains better results in terms of the Normalized Mutual Information
(NMI) and the Rand Index (RI).

Although there is a considerable quantity of works dedicated to
group detection, the topic is still neglected in the crowd analysis
research area. Besides, we have not witnessed any recent work using
Deep Learning in any stage of group detection. The lack of these studies
may be due to data scarcity. All the explored studies from this section
are briefly presented in Table 1.

4. Crowd analysis

Like it is portrayed by the tree structure in Fig. 11, the literature
commonly divides crowd analysis into two major branches: crowd
statistics and crowd behavior analysis (Grant & Flynn, 2017; Lamba
& Nain, 2017; Zhan et al., 2008). In this section, we explore studies
published in each of these two major branches. All the explored works
from this section are briefly presented in Table 2.

Public areas covered by video-surveillance cameras can be the
theater of various levels of people gatherings: different degrees of LoS
(Level of Service). Those gatherings may be structured or unstructured.
As pointed out by Thida et al. (2013), it is very easy to identify
abnormal events within structured crowds. However, the task becomes
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r not (¬DL).
?DL Source code

¬DL Unavailable
¬DL Unavailable

ion ¬DL Unavailable
¬DL Available

DL Unavailable
¬DL Unavailable
¬DL Available
¬DL Unavailable
¬DL Unavailable

DL Unavailable
DL Available
DL Available
DL Available
DL Unavailable

¬DL Available
DL Available
DL Unavailable
DL Unavailable

¬DL Unavailable
DL Unavailable
DL Unavailable
DL Unavailable

in Station ¬DL Unavailable
DL Unavailable

¬DL Unavailable
DL Unavailable

ing, UCF QNRF, Venice dataset DL Unavailable
DL Unavailable

rand Theft Auto 5 dataset DL available
¬DL Unavailable
¬DL Unavailable
¬DL available

DL available
DL Unavailable

¬DL Unavailable
DL Unavailable

set DL Unavailable
¬DL Unavailable
¬DL Unavailable

DL Unavailable
¬DL Unavailable

10
Table 2
Summarized presentation of studies in crowd analysis. ‘‘?DL’’ column: DL stands for Deep Learning, this column means if the paper used Deep Learning approaches (DL) o
Reference Date Research axis Used datasets

Chan, Liang, and Vasconcelos (2008) 2008 Crowd statistics, crowd counting UCSD Anomaly Detection
Shao et al. (2014) 2014 Group behavior analysis, group detection CUHK Crowd
Ali and Shah (2008) 2008 Motion tracking and prediction Marathon-1, Marathon-1, Marathon-1, Train Stat
Ali and Shah (2007) 2007 Motion analysis, anomaly detection Self-made and Inside Mecca documentary
Baccouche, Mamalet, Wolf, Garcia, and Baskurt (2011) 2011 Action recognition KTH dataset
Siva and Xiang (2010) 2010 Action detection CMU and i-LIDS datasets
Hassner, Itcher, and Kliper-Gross (2012) 2012 Anomaly detection Violent Flows (ViF)
Mehran, Oyama, and Shah (2009) 2009 Anomaly detection UMN and Web datasets
Mahadevan, Li, Bhalodia, and Vasconcelos (2010) 2010 Anomaly detection UCSD anomaly dataset
Marsden, McGuinness, Little, and O’Connor (2017) 2017 Crowd statistics, anomaly detection UMN, UCF CC 50, WWW Crowd
Sindagi and Patel (2017) 2017 Crowd counting UCF CC 50, ShanghaiTech
Tran et al. (2018) 2018 Individual-scene action recognition Sports-1 m, Kinetics, HMDB-51, UCF-101
Carreira and Zisserman (2017) 2017 Individual-scene action recognition HMDB-51, UCF-101
You and Jiang (2018) 2018 Crowded-scene action recognition Self-made
Bewley, Ge, Ott, Ramos, and Upcroft (2016) 2016 Pedestrian tracking MOT Challenge 2015
Wojke, Bewley, and Paulus (2017) 2017 Pedestrian tracking, re-identification MOT Challenge 2016
Singh, Patil, and Omkar (2018) 2018 Abnormal behavior detection Aerial Violent Individual (AVI) ‘‘Self-made’’
Ravanbakhsh, Nabi, Mousavi, Sangineto, and Sebe (2016) 2016 Abnormal behavior detection UCSD, UMN
Ramos, Nedjah, de Macedo Mourelle, and Gupta (2017) 2017 Abnormal behavior detection UMN
Vahora and Chauhan (2018) 2018 Group behavior analysis Collective activity
Shu, Todorovic, and Zhu (2017) 2017 Group behavior analysis Collective activity, Volleyball
Wei et al. (2020) 2020 Crowd action recognition CUHK Crowd, normal–abnormal crowd
Wang and O’Sullivan (2016) 2016 Crowd action recognition, Motion analysis Synthetic, Edinburgh (Forum), MIT Carpark, Tra
Yan, Zhu, and Yu (2019) 2019 Crowd action recognition WorldExpo’10
Ullah, Ullah, Conci, and De Natale (2016) 2016 Crowd action recognition WorldExpo’10
Ullah, Khan, Ullah, Cheikh, and Uzair (2019) 2019 Crowd action recognition CUHK Crowd
Liu, Salzmann, and Fua (2019) 2019 Crowd statistics ShanghaiTech, WorldExpo’10, UCF Crowd Count
Wan and Chan (2019) 2019 Crowd statistics ShanghaiTech A/B, WorldExpo’10, UCF QNRF
Wang, Gao, Lin, and Yuan (2019) 2019 Crowd statistics ShanghaiTech A/B, WorldExpo’10, UCF QNRF, G
Lamba and Nain (2019) 2019 Motion analysis UCF Crowd, Collective motion, Violent Flows
Li, Liu, Zheng, Han, and Li (2019) 2019 Motion analysis Self-made (canteen scene)
Wu et al. (2017) 2017 Motion analysis UCF Crowd, CUHK Crowd
Alahi et al. (2016) 2016 Motion prediction UCY and ETH
Bartoli, Lisanti, Seidenari, and Del Bimbo (2017) 2017 Motion prediction UCY and Museum dataset
Zitouni, Sluzek, and Bhaskar (2020) 2020 Group behavior analysis PETS dataset, Parking Lot, Town Center
Bisagno, Zhang, and Conci (2018) 2018 Group behavior analysis UCY and ETH
Singh et al. (2020) 2020 Abnormal behavior detection UCSD Ped 1, UCSD Ped 2, and the Avenue data
Qasim and Bhatti (2019) 2019 Abnormal behavior detection UMN
Hao, Xu, Liu, Wang, and Fan (2019) 2019 Abnormal behavior detection UMN
Lin, Yang, Tang, Shi, and Chen (2019) 2019 Abnormal behavior detection UCF Crime dataset
Xie, Zhang, and Cai (2019) 2019 Abnormal behavior detection Self-made
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Website

https://trafficcameras.uk/roads/
https://www.earthcam.com/
https://makkahlive.net/tv.aspx?r=14
https://www.youtube.com/watch?v=q5wc5aIpjk4
http://www.idelec.ch/webcam/monthey/cam1 (cam2)
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Table 3
Summarized presentation of live video-surveillance streams. FPS means number of frames per second. ∼ symbol used to mean at around.
Live video-surveillance Quality Camera recording Can be used for

UK road traffic Good resolution, 1 frame/minute Static, 50 views Vehicle detection/tracking
Earthcam Good resolution, realtime frame rate Static All types of crowd analysis
Live Mecca 720p Static/dynamic Massive crowded scene analysis
Live Vatican 480p Static, 1 view Few situations of crowd scene analysis
Monthey Place Centrale Medium resolution, ∼5 FPS Static, 2 views Pedestrian/vehicle detection/tracking

https://trafficcameras.uk/roads/
https://www.earthcam.com/
https://makkahlive.net/tv.aspx?r=14
https://www.youtube.com/watch?v=q5wc5aIpjk4
http://www.idelec.ch/webcam/monthey/cam1
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cisions: MonoCam/MultiCam are contractions of
s’’ column precisions: ped is an abbreviation of

means approximately or at average. OF stands

ies

nt actions, 10863 ped’s, 2–10 ped’s/frame
e, 71500 labeled head locations
d regions
tains ∼200 frames
per picture, 63705 GT

al events and 12 for normal ones

nt/non-violent crowds, 0 to +150 ped’s/img
o different simulations
wded scenes
rding
. GT for 1 scenario.
rding depicting 101 classes of actions
51 classes of actions
GT

vid’s for each action, ∼10s duration each
ance of ∼2300 ped’s, 350,000 GT BBxs
on each
duration, 487 action classes, 1K–3K vid’s/class
m, 26 vid’s from MultiCam
∼125 ped’s, 83545 GT
, 3–16 ped’s involved

vid’s lasting for 60 min
of detectable objects, 200K GT

, all clips labeled
; classes: 5 motions, 6 emotions; GT provided
f crimes, GT provided
s normal/abnormal, GT provided
tories GT provided
provided
vided, very diverse scenes
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Table 4
Summarized presentation of datasets (Part 1). ‘‘Type’’ column precisions: Vid/Img are abbreviations of respectively Video and Image. ‘‘Sensor’’ column pre
respectively mono-camera and multi-camera setups. Several means that there are several types of sensors involved in the recording. ‘‘Representative quantitie
pedestrian. GT are the initials of Ground Truth, and can refer to annotations. BBxs are the initials of Bounding-Boxes. 1 m means 1 million. 1K means 1000. ∼
for Optical Flow.
Dataset Release date Type Sensor Representative quantit

Aerial Violent Individual (AVI) 2018 Img Drone 2000 Img’s, 5124 viole
Town Center 2009 Vid MonoCam 1 Vid, ∼16 ped’s/fram
I-Lids AVSS 2007 (Task 1) 2007 Vid MonoCam 3 Vid’s, 9718 annotate
UCSD Anomaly Detection (Updated 2013) Vid MonoCam 98 Vid’s, each vid con
UCF Crowd 50 2013 Img MultiCam 50 Img’s, ∼1280 ped’s
UMN SocialForce 2009 Vid MonoCam 11 Vid’s on 3 scenes.
Web Dataset 2009 Vid MonoCam 20 Vid’s, 8 for abnorm
MOT Challenge 2014 (Updated 2016) Vid MonoCam 14 Vid’s
Multi Task Crowd 2017 Img MonoCam 100 Img’s, 50/50 viole
Agoraset (Simulated) 2012 Vid MonoCam 7 scenarios subjected t
CUHK Crowd (Updated 2014) Vid MonoCam 474 videos on 215 cro
KITTI 2013 Vid MonoCam 180 GB data. 6 h reco
Toulouse Campus Surveillance 2018 Vid MultiCam 50 vid’s of 2 scenarios
UCF-101 2012 Vid MonoCam 13320 vid’s, 27 h reco
HMDB-51 2011 Vid MonoCam 6766 annotated vid’s,
PathTrack MOT 2017 Vid MonoCam 720 sequences, 16,287
INRIA Person 2005 Img MonoCam 1805 Img’s
Kinetics 2017 Vid Several 400 actions, 400–1150
Caltech Pedestrian 2009 (Updated 2018) Vid MonoCam 10 h recording, appear
Violent Flows (ViF) 2012 Vid MonoCam 246 vid’s, ∼3.6s durati
Sports-1m 2014 Vid MonoCam 1 m vid’s, ∼5min 36s
Caviar 2003 (Updated 2004) Vid Several 28 vid’s from MonoCa
Behave 2010 Vid MultiCam 4 vid’s, 76800 frames,
The Friends Meet (FM) 2012 Vid MonoCam 53 vid’s, 16286 frames
MuseumVisitors 2015 Vid MultiCam 2 scenarios
SALSA 2016 Vid MonoCam 2 scenarios, 18 ped’s,
COCO 2015 Img MonoCam 330K img’s, 80 classes
Crowd-11 2017 Vid MonoCam 6,272 clips, 11 classes
Motion Emotion 2016 Vid MonoCam 31 vids; 44.000 frames
UCF Crime 2018 Vid MonoCam 1900 vids, 13 classes o
CCTV Fights 2019 Vid MonoCam 1000 vids, the 2 classe
Crowd-Flow 2018 Vid MonoCam 10 vids, OF and trajec
UCF crowd tracking 2008 Vid MonoCam 3 vids, trajectories GT
GTA5 Crowd Counting (GCC) 2019 Images MonoCam 15,212 images, GT pro
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ability Reference

te Singh et al. (2018)
c Benfold and Reid (2011)
c AVSS (2007)
c UCSD (2013)
c Idrees, Saleemi, Seibert, and

Shah (2013)
c Mehran et al. (2009)
c Mehran et al. (2009)
c Milan, Leal-Taixé, Reid, Roth,

and Schindler (2016)
te Marsden et al. (2017)
c Allain et al. (2012)
ailable Shao et al. (2014)
c Geiger, Lenz, Stiller, and

Urtasun (2013)
c Malon et al. (2018)
c Soomro, Zamir, and Shah

(2012)
c Kuehne, Jhuang, Garrote,

Poggio, and Serre (2011)
c Manen, Gygli, Dai, and

Van Gool (2017)
c Dalal and Triggs (2005)
c Kay et al. (2017)
c Dollar, Wojek, Schiele, and

Perona (2012)
c Hassner et al. (2012)
c Karpathy et al. (2014)
c ED (2003)
c Blunsden and Fisher (2010)
c Bazzani, Cristani, and Murino

(2012)
c Bartoli, Lisanti, Seidenari,

Karaman, and Del Bimbo
(2015)

c Alameda-Pineda et al. (2016)
c Lin et al. (2014)
y Dupont, Tobías, and Luvison

(2017)
c Rabiee, Haddadnia, Mousavi,

Kalantarzadeh et al. (2016),
Rabiee, Haddadnia, Mousavi,
Nabi et al. (2016)

c Sultani, Chen, and Shah
(2018)

c Perez, Kot, and Rocha (2019)
c Schröder, Senst, Bochinski,

and Sikora (2018)
c Ali and Shah (2008)
c Wang et al. (2019)
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Table 5
Summarized presentation of datasets (Part 2). ‘‘Quality’’ column precisions: px is the abbreviation of pixels. FPS means the number of frames per second.
Dataset Quality Used for Avail

Aerial Violent Individual (AVI) Not mentioned Violent group behavior detection/recognition Priva
Town Center 1920 × 1080 px, 25 FPS Pedestrian detection and tracking Publi
I-Lids AVSS 2007 (Task 1) 720 × 576 px, 25 Hz Pedestrian detection/tracking, anomaly detection Publi
UCSD Anomaly Detection Not mentioned Anomaly detection Publi
UCF Crowd 50 Not mentioned Crowd statistics Publi

UMN SocialForce Not mentioned Abnormal behavior detection/recognition Publi
Web Dataset Not mentioned Abnormal behavior detection/recognition Publi
MOT Challenge Not mentioned Group/Pedestrian detection and tracking Publi

Multi Task Crowd Not mentioned Abnormal behavior recognition/Crowd Statistics Priva
Agoraset (Simulated) Not mentioned Group/Pedestrian detection/tracking/behavior analysis Publi
CUHK Crowd Not mentioned Group/anomaly detection Unav
KITTI 8-bit PNG frames Object detection/tracking Publi

Toulouse Campus Surveillance 1920 × 1080 px Object detection/tracking Publi
UCF-101 320 × 240 px, 25 FPS Action detection and recognition Publi

HMDB-51 240 px height, 30 FPS Action detection and recognition Publi

PathTrack MOT Not mentioned Pedestrian detection and tracking Publi

INRIA Person 64 × 128 px Pedestrian detection, re-identification Publi
Kinetics Not mentioned Action detection and recognition Publi
Caltech Pedestrian 640 × 480 px Pedestrian detection and tracking Publi

Violent Flows (ViF) 320 × 240 px Violent action recognition Publi
Sports-1m Not mentioned Sports action detection/recognition Publi
Caviar Not mentioned Group behavior/anomaly recognition Publi
Behave 640 × 480 px, 25 FPS Group behavior/anomaly recognition Publi
The Friends Meet (FM) Not mentioned Joint pedestrian/group tracking Publi

MuseumVisitors 1280 × 800 px, 5 FPS Joint pedestrian/group tracking, behavior analysis Publi

SALSA Not mentioned Group detection/activity recognition Publi
COCO Not mentioned Object and keypoint detection, and image segmentation Publi
Crowd-11 220 × 400 to 700 × 1250, variable FPS Crowded scenes classification and anomaly detection Partl

Motion Emotion 554 × 235, 30 FPS Crowded scenes classification and anomaly detection Publi

UCF Crime 240 × 320, 30 FPS Anomaly detection and classification Publi

CCTV Fights Variable resolution and FPS Anomaly detection Publi
Crowd-Flow HD resolution, 300–450 frames/vid Crowd tracking Publi

UCF crowd tracking Low resolution, 333–492 frames Crowd tracking Publi
GTA5 Crowd Counting (GCC) 1080 × 1920 resolution Crowd statistics Publi



M. Bendali-Braham, J. Weber, G. Forestier et al. Machine Learning with Applications 4 (2021) 100023
tiresome with unstructured crowds. This statement lays out the idea
that each of the subtopics of crowd analysis can be subjected to
anomaly detection. Hence, anomaly detection and/or forecasting can
be done for each of crowd statistics and crowd behavior analysis.

4.1. Crowd statistics

Crowd Statistics consists in determining the quantity of people
present in a scene. This can be done either by computing the density
of the scene through what is commonly known as crowd density, or by
calculating the number of pedestrians appearing in a scene following
the application of a pedestrian detection method. Sindagi and Patel
(2018)’s review shows that many works, involving Deep Learning
methods, have been dedicated to crowd statistics.

In this section, we start by mentioning a work that employs hand-
crafted methods from the pre-Deep Learning era. After that, we mostly
present works that employ the joint learning of crowd counting and
density estimation.

Chan et al. (2008) develops a top-down crowd counting approach
that does not rely on pedestrian detection and tracking but leverages
holistic features. The authors’ purpose is to estimate the size of inho-
mogeneous crowds. The authors segment the crowd using the Dynamic
Textures Mixture (DTM) (Doretto, Chiuso, Wu, & Soatto, 2003) They
extract the following holistic features from the segmented regions:
segment features, internal edge features (via the Canny edge detec-
tor (Canny, 1986), texture features via the Gray-level Co-occurrence
Matrix (GLCM) (Haralick, Shanmugam, & Dinstein, 1973). After that,
the Gaussian process regression is used to find the number of pedestri-
ans in each crowd segment.

The authors validate their approach on the UCSD Anomaly dataset,
which they created. The Receiver Operating Characteristic (ROC) curve
had been used to validate the segmentation process of the DTM. During
the experiments, the DTM outperforms the NCuts method (Shi & Malik,
1998). The Mean Squared Error (MSE) and the absolute error was used
to test the Gaussian process that estimates the pedestrians count. In
the UCSD Anomaly detection context, the authors show the superiority
of their method and the features they extracted over those chosen
by Davies, Yin, and Velastin (1995) and Kong, Gray, and Tao (2005).

Marsden et al. (2017) propose ResnetCrowd, a Residual Network
(ResNet) architecture to learn many tasks related to crowd analysis.
The architecture is intended for Multi Task Learning purposes: learn-
ing simultaneously crowd counting and crowd density estimation as
well as violent behavior classification. The architecture is based on
ResNet18 (He, Zhang, Ren, & Sun, 2016), which is originally pre-
trained on the ImageNet dataset. Globally, the architecture is the
same. Still, the authors modified it slightly to get accurate task-specific
outcomes. The architecture is trained, validated and tested on the self-
developed dataset, Multi Task Crowd dataset, that we present later on
in this review in Section 5.2. The computations were undertaken using
the Nvidia Gefore GTX 970 GPU. The architecture was tested, in terms
of Mean Absolute Error (MAE), Mean Squared Error (MSE), and Area
Under the Curve (AUC), and compared to state-of-the-art methods on
other datasets, such as UCF Crowd 50, WWW Crowd test set (Shao,
Kang, Change Loy, & Wang, 2015) and the UMN Anomaly dataset.
Their experiments show that architectures that are trained to perform
many close-related tasks, yield better results for violence recognition
and density estimation than those trained solely on a single task.
However, single task trained architectures outperform ResnetCrowd on
crowd counting. It is worth noting that the authors’ method is massively
outperformed by Zhang, Zhou, Chen, Gao, and Ma (2016)’s and Mars-
den, McGuinness, Little, and O’Connor (2016a)’s in crowd counting
on the UCF Crowd 50, slightly by Shao et al. (2015)’s in violence
identification on the WWW Crowd test set, and slightly in anomaly
detection by Li, Mahadevan, and Vasconcelos (2014)’s and Marsden,

McGuinness, Little, and O’Connor (2016b)’s on the UMN dataset.
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In the same line, Sindagi and Patel (2017) propose a Cascade of
CNNs to jointly learn end-to-end crowd counting and density estima-
tion. The purpose of this work is to yield models that are resilient to
scale and appearance variations, and that can classify crowd counts
based on the density estimation of the scene. To do so, the network
learns relevant discriminative global features to estimate density maps.
The architecture of their model consists into two stages. It contains
shared convolutional layers, and a high-level prior stage. Training
and evaluation were performed on Nvidia GTX TITAN-X GPU, on two
publicly available datasets: ShanghaiTech (Zhang, Zhou et al., 2016)
and UCF Crowd 50 (Idrees et al., 2013). Compared to other methods
on these datasets, the method outperforms state-of-the-art methods in
terms of the Mean Squared Error (MSE) and the Mean Absolute Error
(MAE) on ShanghaiTech. However, it is outperformed by Onoro-Rubio
and López-Sastre (2016)’s and Walach and Wolf (2016)’s in terms of
MSE, on UCF CROWD 50.

Liu et al. (2019) propose an end-to-end multi-scale trainable deep
architecture which relies on density estimation for crowd counting.
Their method extracts features from different unit areas on the image
using various receptive field sizes depending on the image perspective
to take into account scale variations. Based on the context, they do
not predefine image patches suiting every scale, but rather weight
each extracted feature to anticipate scale variations, and then fuse
the multi-scale information. Their method works well on uncalibrated
cameras, but leverages the presence of calibration information. They
use a pretrained VGG-16 network to extract features. They obtain scale-
aware features using Spatial Pyramid Pooling (He, Zhang, Ren, & Sun,
2015) by taking into consideration 4 different scales. The extracted
features from the different scales are then concatenated. The perfor-
mance of the network is reinforced when the calibration information
is available. To leverage the existence of the calibration information,
the authors use a supplementary branch, which consists in a truncated
VGG network, dedicated to extract features from a perspective map that
encodes the number of pixels per meter. They held their experiments
on the following datasets: ShanghaiTech,1 WorldExpo’10, UCF Crowd
Counting 50, UCF QNRF,2 and the ad hoc Venice dataset. To evaluate
their methods, they use the mean absolute error (MAE) and the root
mean squared error (RMSE). Compared to state-of-the-art methods,
they found that their method perform well on densely crowded scenes
but has comparable results and is sometimes outperformed in less dense
scenes.

Wang et al. (2019) propose a data collector and labeler that gen-
erates crowded scenes and automatically annotates them. This helps
them to create a synthetic dataset named GTA 5 Crowd Counting
(GCC). Second, they propose a crowd counting network, named Spatial
Fully Convolutional Network (SFCN), which they pretrain on the GCC
dataset and then finetune it on real data. They obtain their best results
using the ResNet101 backbone for the crowd counter on UCF-QNRF,
ShanghaiTech A and B, UCF Crowd Counting 50. Finally, they propose
a domain adaptive crowd counter to convert the synthetic data to
real data adapted for each target real dataset. After that, they train
the SFCN on the converted data and test it on the real data. The
converter they use is SSIM Embedding Cycle Generative Adversarial
Network, SE Cycle GAN. It is equipped with the Structural Similarity
Index (SSIM) loss. This loss measures the similarity between two images
by comparing their local patterns. They evaluated their method using
the Mean Squared Error (MSE), Mean Absolute Error (MAE), SSIM
measure, and the Peak Signal to Noise Ratio (PSNR) measure on the
following datasets: UCF-QNRF, UCF_CC_50, ShanghaiTech A/B, and on
WorldExpo’10. Their method outperforms Cycle GAN (Zhu, Park, Isola,
& Efros, 2017) and SFCN (without domain adaptation) in every dataset.

Wan and Chan (2019) jointly learn in an end-to-end framework
a counter (density map generator) and a density map refiner. Their

1 ShanghaiTech: https://www.kaggle.com/tthien/shanghaitech.
2 UCF QNRF: https://www.crcv.ucf.edu/research/data-sets/ucf-qnrf/.
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framework is made up of a refinement network and a counting network.
The counter network generates a density map from a crowded scene.
The refiner receives as input a ground-truth dot map which consists in
annotations of individuals within a crowded scene. The refiner yields
a better version of the density map and compares it to the ground
truth. The refinement network applies a preliminary convolution that
passes the dot map through various Gaussian kernels. This step yields
blurred density maps that are masked using a self-attention module.
These masked density maps are fused to yield a final density map. The
produced density map is used as the ground truth to train the counter.
They use compare different existing counter networks: MCNN (Zhang,
Zhou et al., 2016), FCN-7c (Kang & Chan, 2018), SFCN (Wang et al.,
2019) and CSRNet (Li, Zhang, & Chen, 2018). A combined loss for
refinement and counting is computed during the training process to
jointly train the counter and the refiner. Experiments were undertaken
on the following datasets: ShanghaiTech A and B, WorldExpo’10, UCF-
QNRF, and the methods were evaluated using the Mean Absolute Error
(MAE) and the Root Mean Squared Error (RMSE).

As we can see from the above-mentioned works (Marsden et al.,
2017; Sindagi & Patel, 2017), Multi Task Learning is a good idea
for learning/fine-tuning simultaneously several tasks of crowd statis-
tics. However, the training should be undertaken on various types of
datasets to yield a good-performing model. We observe that recent
works on Crowd Statistics tend to associate Crowd Counting with
Density estimation. More precisely, density estimation is undertaken
in order to perform crowd counting. Competition in this field is very
harsh. However, a lot of work still needs to be done. One of the chal-
lenges of Crowd statistics is to accurately identify the heads positions
in a crowded scene as illustrated in Sam, Peri, Sundararaman, Kamath,
and Babu (2019). Recently, Wan, Kumar, and Chan (2020) counted the
number of persons performing a certain action in a crowded scene.
It is worth noting that we have not come across such works. Wan
et al.’s work reduces the gap between crowd statistics and behavior
recognition.

4.2. Crowded scene analysis

Crowded scene analysis should be seen as a different task from
human behavior analysis. Contrary to the former, this latter focuses
on a unique subject (Marsden et al., 2017). Throughout the last years,
crowded scene analysis have gained a certain interest within the com-
puter vision community. Consequently, many methods have been de-
veloped. According to recent reviews (Chong & Tay, 2015; Tripathi
et al., 2018), we can categorize crowded scene analysis methods into
two main classes: conventional methods pertaining to the pre-Deep
Learning era, and Deep Learning-based methods. However, as we do
not intend to perform a comparative study of Deep Learning methods
used in crowd behavior analysis, we will not adopt this categoriza-
tion to structure this subsection. We will rather follow the taxonomy
illustrated in Fig. 11.

4.2.1. Action recognition
Hassner et al. (2012) propose a taxonomy for individual-scene

Human Action Recognition methods, and they categorize them can
as either local, interest-point based, frame-based, or global. Studying
individual-scene Human Action Recognition/Detection is not in the
scope of this review, but we will mention some works that might be
of interest for action detection and recognition in crowded scenes.

Siva and Xiang (2010) use 3D sliding-window fashion to capture
actions within 3D cuboids in a video-recorded crowded scene. The
authors extract salient points and track them using the scale-invariant
feature transform (SIFT) descriptor and describe motion using the
Trajectory Transition descriptor (TTD). These descriptors are then used
to construct the Bag of Words (BoW) representation for each action.
They split the video into 24 channels for each descriptor (which sums
up to 48 for both of them). They use the channel selection routine
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(comparable to that of (Laptev, Marszalek, Schmid, & Rozenfeld, 2008)
to elect 5 clip centers from the 48 channels by relying on cross val-
idation on the training data. An action cuboid is represented by the
multi-channel BoW. The 3D cuboid is sled through space and time (3D
Sliding-window fashion), and Support Vector Machine (SVM) are used
to learn each 3D action cuboid on an annotated sequence. The authors
posit the action detection problem using Multiple Instance Learning
(MIL) by considering clips containing a specific action as positive bags
and clips not containing it as negative bags. They annotate only one
positive clip with an action cuboid. They solve the MIL problem by
using a greedy K Nearest Neighbor (KNN) approach. Their method is
validated on the CMU (Ke, Sukthankar, & Hebert, 2007) and the i-
LIDS (Branch, 2006) datasets. The evaluation metrics they work with
are the precision–recall curve and the mean average precision (MAP).

In their pioneering work, Baccouche et al. (2011) propose one of
the first uses of 3D CNNs in the classification of video clips for human
action recognition. They learn spatio-temporal features from action
clips using 3D Convolutional Neural Networks (CNN), after extending
the 2D convolutions to 3D. After that, they use Recurrent Neural
Networks (RNN) with Long-short-term memory (LSTM) units to classify
each clip by making use of the temporal evolution of its features.
The features extraction architecture (3D CNNs) contains 10 layers
alternating convolutions, rectification, and sub-sampling in 8 layers and
ending by 2 fully connected network. The architecture contains 17,169
trainable parameters. It is trained by online Backpropagation with mo-
mentum (LeCun, Bottou, Bengio, & Haffner, 1998) ‘‘adapted to weight
sharing’’. The classifier architecture (RNN) contains 50 LSTM units.
It contains 25,000 trainable parameters and is trained using online
Backpropagation through time with momentum (Gers, Schraudolph,
& Schmidhuber, 2002). The approach had been tested on the KTH
dataset (Schuldt, Laptev, & Caputo, 2004) which contains 6 classes of
video clips and on which they obtain good results compared to existing
methods. They follow the evaluation protocol proposed by Gao, Chen,
Hauptmann, and Cai (2010) and relied on cross-validation with 5 runs.

Tran et al. (2018) use a factorized version of 3D Residual Nets
(ResNets) to model separately spatial and temporal components of a
video clip. They use R(2+1)D blocks, which are convolutional spatio-
temporal blocks, trained from scratch on two popular datasets intended
for individual-scene action recognition: Sports-1 m and Kinetics. After
that, they fine-tuned their blocks on two other well-known datasets:
UCF-101 and HMDB-51. Amongst other models, the authors compared
their model variants to several I3D variants (Carreira & Zisserman,
2017). The best authors’ model outperforms, in terms of accuracy,
all the methods, except one, the I3D two-stream. This latter slightly
outperforms R(2+1)D two-stream on UCF-101 and HMBD-51.

The conclusions of the precedent work bring us to Carreira et al.’s
work on I3D, or namely Inflated 3D ConvNet (Carreira & Zisserman,
2017). Their model relies on 2D ConvNet inflations. When tested on
UCF-101 and HMDB-51, they outperformed, in terms of accuracy, all
the recent models they evaluated. Their Two-Streams I3D, that was pre-
trained on Kinetics, reached 80.9% of accuracy, and the Two-Streams
I3D, pre-trained on both of ImageNet and Kinetics, reached 98% of
accuracy.

Both of the previous works are about action detection/recognition
in individual scenes. In crowd analysis, we are more interested in
detecting and recognizing actions in crowded environments. You and
Jiang (2018) propose Action4D to detect actions in crowded scenes.
They start by detecting and tracking each person in the scene and then
use their Action4D-Net to recognize the action he/she is performing.
They trained their model on a self-made 4D Action dataset depicting a
scene viewed from multiple angles. Although their method can be used
in real-time in a multi-cameras setup, the use of RGBD cameras is not
enough widespread to make their algorithm applicable in every situa-
tion. They tested their method in terms of accuracy, revised accuracy
(RAcc), and the confusion matrix.

Wei et al. (2020) support that the crowd type stems from the

crowd mood and the crowd behavior. Because of this, they propose
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a model representation of a crowd, summarized into the following
triad : Behavior–Mood-Organized (BMO). They perceive three crowd
types, each with a number of characteristics to which they associate a
rule-based alert system: 1. heterogeneous crowds which originate for
ordinary reasons in common crowded places such as railway stations
and supermarkerts, should not be continuously controlled, 2. homoge-
neous crowds which rise from demonstrations, urban parades or during
sports events, should be under control but with a certain restraint, 3.
violent crowds which are an exacerbation of a political or a social
demonstration must be controlled. To learn this model representation
they propose the Crowd Type Recognition Network (CTRN). The CTRN
is a two stream network architecture. Each stream is a Visual Geometry
Group network of 5 convolutional layers (VGG16) that was pretrained
on the ImageNet dataset. The first stream is fed with a static red–green–
blue (RGB) image of a scene, and the second stream is fed with a motion
map of a scene that contains trajectory features. The CTRN method
is included within an emergency alert system that send alerts when
the BMO triad satisfies certain conditions. The method is trained and
tested onto the CUHK crowd and the normal–abnormal datasets. CUHK
Crowd is divided into homogeneous and heterogeneous crowds, and the
normal–abnormal crowds, is a local dataset, that contains homogeneous
and heterogeneous crowds, but essentially violent crowds. The BMO
representation of the crowd, which is a good start to differentiate
multiple crowd types situations, had been reduced to a three classes
classifier. Hence, the CTRN and the alert system will not be able to
catch special cases scenarios where heterogeneous crowds would be
endangered by the abnormal behavior of individual elements. The eval-
uation metrics that were used are the Receiver Operating Characteristic
(ROC) curve, the Area Under the Curve (AUC), and the Mean Accuracy.

Wang and O’Sullivan (2016) propose a Spatio-temporal Hierarchical
Dirichlet Process (STHDP) that is a non-parametric Bayesian method
to learn spatial and temporal patterns in order to detect activities
and anomalies in video data. Time is modeled in a non-Markovian
continuous fashion to handle the varying time duration of each activity.
The STHDP is an unsupervised clustering method that does not require
much prior knowledge about the crowd dynamics. In this situation,
the number of clusters is not predetermined. The type of clusters
are trajectory clusters. The authors do not group trajectories using a
distance metric but cluster individual observations of trajectories from
frame to frame. The method detects the occurrence of an activity,
its duration, its fading, and its disappearance. The method had been
trained and tested on a synthetic data and on real data. Three datasets
were used for the real data: 1. Edinburgh dataset (Forum), 2. MIT
Carpark (Carpark), 3. New York Central Terminal (Train Station).
On these datasets, STHDP was compared to two non-recent methods:
MOTIF (Emonet, Varadarajan, & Odobez, 2011) and Dual Hierarchi-
cal Dirichlet Processes (DHDP) (Wang, Ma, Ng, & Grimson, 2011).
Although, it is slower than MOTIF and as fast as DHDP, it performs
slightly better than DHDP and is highly more accurate than MOTIF.

Yan et al. (2019) propose a crowd video captioning approach ap-
plied on off-site spectators: a type of crowds that they consider as
neglected by research studies. The purpose is to generate 8 different
comments describing the density and the behavior of a crowd: someone
walk in, someone run in, someone walk out, someone run out, many
people walk in, many people walk out, many people run in, many
people run out. As the possible classes suggest, these off-site spectators
crowds occur at entrances or exits of stadiums, theaters, rallies, etc.
They apply their methods on the WorldExpo’10 dataset, and they
evaluate them using the following evaluation metrics for captioning:
Cider, Meteor, Bleu, Rouge. They propose a pipeline of an encoder–
decoder made up of a feature extractor (the encoder) that feeds a
sequence-to-sequence network that converts video to text (the decoder)
S2VT. The feature extractor is either a 3D ConvNets (C3D) network
pretrained on the Sports-1 m dataset, or ResNet-152, Inception V3/V4,
each of them trained on ImageNet. The S2VT is a 2-layer Recurrent
Neural Network (RNN) whose cells are either LSTM or GRU. They
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evaluate all the possible combinations, in terms of accuracy and the
above-mentioned metrics, to select the best combination which ends
up to be Inception V3 as feature extractor coupled with GRU as cells
for the S2VT to generate comments.

Ullah et al. (2016) work on crowd behavior identification. They
intend to identify 5 types of behaviors which are: lane, arch/ring,
bottleneck, blocking, fountainhead. They propose an approach based
on the extraction of optical flow from a video clip, using the Farnebäck
technique (Farnebäck, 2003), on which they apply the Thermal Dif-
fusion Process (TDP) (Wang et al., 2014) to make it more coherent.
After that, the moving particles are restricted to individuals on which
they apply a modified version of the Social Force Model (M-SFM) to
understand the interactions between individuals. At the end of this
process, they end up with a continuous dynamic system that describes
the motion flow field from which they extract the first order and the
second order derivatives to identify the crowd behavior. Their method
was validated on the benchmark dataset (Solmaz, Moore, & Shah, 2012)
and the UCD dataset (Ullah & Conci, 2012), evaluated using the average
F1 score metric, and compared to Solmaz et al. (2012)’s method where
it has difficulties with the lane class.

Ullah et al. (2019) work on crowd video classification. They propose
a two-stream convolutional architecture to achieve this. A stream ex-
tracts spatial features from an RGB frame and a second stream extracts
temporal features from a trajectory-based descriptors (Wang, Kläser,
Schmid, & Liu, 2011) computed on a motion flow field of a certain
number of consecutive frames. The streams are initialized with weights
pretrained on the ImageNet dataset. Their method is evaluated on the
CUHK crowd dataset and compared to reference methods on terms of
average accuracy and confusion matrices: tensor learning classifica-
tion (TLC) (Zhang, Liu, & Jiang, 2018), spatio-temporal classification
(STC) (Li, Liang, & Jin, 2016), and energy-based features (Zhang,
Zhang, Hu, Guo, & Yu, 2018).

We observe that even if action recognition in individual scenes is
a hot topic, action or behavior recognition in highly crowded scenes
is not enough explored in recent works, despite few interesting recent
projects (Dupont et al., 2017; Ullah et al., 2019, 2016; Yan et al., 2019).
Applying Deep Learning models developed for action detection and
recognition and applying them to class video clips of highly crowded
scenes is challenging and still a niche due to data scarcity.

4.2.2. Motion tracking, analysis, and prediction
Before the massive application of Deep Learning methods in Com-

puter Vision starting from 2012, research in trajectory and motion
analysis was split between flow analysis (top-down approaches) and
pedestrians trajectory analysis (bottom-up approaches).

Ali and Shah (2007) use Lagrangian particle dynamics to segment
a crowd flow and detect instabilities within the crowd. Their approach
is at the crossroads of motion analysis, crowd behavior analysis, and
anomaly detection. The authors consider the moving crowd as an
aperiodic dynamical system. They start by computing an optical flow
field that illustrates the interactions of the individuals within the crowd
with each other and with the physical environment. They lay a grid
of particles on this flow field and advect it to create Flow Maps.
After that, they compute the Finite Time Lyapunov Exponent (FLTE)
field from the spatial gradient tensor of the Flow Map. This operation
yields the Lagrangian Coherent Structures (LCS) which allows to divide
the crowd into several groups. The approach is tested on clips taken
from Getty-Images, Photo-Search, Google Videos and Inside Mecca a
National Geographic documentary. However, the approach was neither
tested using proper metrics nor compared to other methods. The code
source of this approach is publicly available in github.3

In another work, Ali and Shah (2008) propose a probabilistic ap-
proach to track individuals in a highly dense crowded scene based on
the scene structure force model. The constraints of this force model

3 https://github.com/saadali37/Crowd-Flow-Segmentation.
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are determined by three floor fields inspired from the evacuation
dynamics domain. The three fields are (1) the Static Floor Field (SFF):
which represents the locations the crowd is heading to, (2) Dynamic
Floor Field (DFF): which represents the interacting forces between
the individual and the surrounding crowd. Here, the optical flow,
the use of particles advection and the social force model is involved,
(3) Boundary Floor Field (BFF): which represents the limits of the
crowded environment that the crowd cannot infringe and that are
found through the computation of the Finite Time Lyapunov Exponent
(FLTE) field. The authors divide the scene image into a grid of cells
where each cell represents a particle or a pedestrian. On each particle
they calculate the three constraints: DFF, SFF, BFF. These constraints
help to predict the future locations of the pedestrians. Ali and Shah
undertook their experiments on the three sequences of the Marathon
dataset. Their method was compared in terms of accuracy to the mean-
shift tracker. The experiments show that the authors met some issues
with tracking pedestrians in crowded scenes when their approach faces
severe illumination changes and occlusion. However, it could handle
partial occlusions.

With the emergence of Deep Learning, the development of trackers
caught its second wind during the last years (Alahi, Ramanathan, & Fei-
Fei, 2017; Bera, Kim, & Manocha, 2018; Sadeghian, Alahi, & Savarese,
2017). The emphasis is put on a satisfying trade-off between speed and
accuracy (Bewley et al., 2016). In what follows, we list out the trackers
we came across.

Bewley et al. (2016) implemented SORT, an online and real-time
tracker, that relies on the Kalman Filter (Kalman, 1960) and the Hun-
garian algorithm (Kuhn, 1955). Bewley et al. point out the necessity to
choose an excellent pedestrian detector. For their tracker, they used the
Faster Region CNN (FrRCNN) (Ren et al., 2015). More precisely, after
comparing the results of FrRCNN(Zeiler Fergus (ZF)) (Zeiler & Fergus,
2014) and FrRCNN(Visual Geometry Group (VGG) 16) (Simonyan &
Zisserman, 2014), they opted for the FrRCNN(VGG16). The detected
pedestrians are represented by Bounding Boxes. The Kalman filter is
used to compute the velocity components of a target when a new
detection is associated to it. The Hungarian algorithm is used to assign
a new detection to a target relying on the Intersection-over-Union
IoU distance. The authors point out that this policy helps to handle
short term occlusion. Tested on 11 sequences taken from the Multiple
Objects Tracking (MOT) benchmark (Leal-Taixé, Milan, Reid, Roth, &
Schindler, 2015), and compared with 9 other trackers, SORT is 20
times faster than the state-of-the-art. It achieves a good accuracy score,
making it close to state-of-the-art trackers. However, SORT considers
long-term occlusions as an unimportant issue, making it failing to
perform in person re-identification which worsens the score of identity
switches.

In the same line, Wojke et al. (2017) developed deepSORT, an
improved version of SORT that includes a deep pre-trained associa-
tion metric augmented with appearance and motion information. This
makes it facing better long-term occlusions while maintaining a similar
speed. The association metric is pre-learned on the MARS person re-
identification dataset (Zheng et al., 2016) using a Convolutional Neural
Network. Specifically, the key changes occur at the assignment stage.
More precisely, the SORT’s formulation of the assignment problem
is kept: the Kalman filter predicts states. These states are correctly
associated to newly arrived measurements by using the Hungarian
algorithm. However, within deepSORT, the motion and the appearance
features are integrated to this formulation. On the one hand, the motion
feature is incorporated following the computation of the squared Ma-
halanobis distance between the Kalman predicted states and the newly
arrived measurements. On the other hand, the appearance feature is
incorporated following the computation of the cosine distance between
the appearance descriptor of the last detection and the appearance
descriptors of many tracks. The bounding box appearance descriptors
are yielded using a pre-trained CNN model. However, despite the use
of these features, the assignment procedure still suffer from some issues
 d
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that are caused by longer occlusions. To solve this, the authors intro-
duce a matching cascade procedure. This latter prioritizes the young
tracks related to frequently observed pedestrians. Compared to SORT
and to other batch and online trackers on MOT16 (Milan et al., 2016),
deepSORT achieves competitive performance scores. Furthermore, it
reduces the identity switches of SORT by 45%. But it suffers from a
high number of false positives. The sequences on which the method
was evaluated contain top-down surveillance setups and front-view
scenes with a moving camera. However, during these experiments, the
hyperparameter weighting the intervention of each additional informa-
tion had been nullified, implying the non-involvement of the motion
information. Despite the arguments explaining this nullification for
moving camera setups, we do not see how this can be justified for static
cameras. It would have been interesting to see the results obtained if
different hyper-parameter values were considered for these sequences.

Lamba and Nain (2019) propose a contour-based trajectory cluster-
ing method for crowd flow segmentation to detect overcrowdedness
within a crowd to issue alerts in the attempt to avoid crowd disasters.
Their method starts by separating the foreground region occupied
by the crowd from the rest of the image occupied by the environ-
ment (walls, trees, etc.). After that, block-level interest points are
extracted from the crowd, which are tracked over the frames using
Kanade–Lucas–Tomasi algorithm. The trajectories are clustering based
on several parameters: position, density, shape, direction, using the
Jaccard distance. Finally, the crowd flow is segmented using the DB-
SCAN algorithm. The density of each flow is analyzed to detect local
overcrowdedness. Their method is trained and tested on UCF crowd
dataset, Collective Motion,4 and Violent Flows. However, their results
were compared in terms of Jaccard similarity, F-score, and Mean Ab-
solute Error (MAE) to non-recent methods, which makes the proposed
method perform well.

Li et al. (2019) propose a top-bottom clustering algorithm based
on pedestrians trajectories to detect groups. First, they extract the
pedestrians trajectories. After that, they leverage distance and velocity
difference between two trajectories in order to measure their similarity.
Secondly, they use a combination between density peak clustering
and a greedy algorithm to perform top-level coarse-grained clustering
that relies on the mean distance between trajectories based on the
Euclidean distance. Here the authors do not need to specify the number
of clusters. After that, they use the improved Hausdorff mean distance
to perform the bottom-level fine-grained clustering on the output of
the top-level clustering. The proposed method is evaluated on a unique
scenario of a real-world scene taken by an HD camera of an Unmanned
Aerial Vehicle (UAV) that was capturing a crowd at an intersection,
where 67 pedestrians were tracked. They use the silhouette coefficient
and the consistency rate to evaluate the quality of the bottom fine-
grained clustering. They compare their method with the fundamental
diagram (FD) (Favaretto, Dihl, & Musse, 2016), Ge, Collins, and Ruback
(2009)’s, and Ge et al. (2012)’s methods, and based on their results they
obtain a better accuracy.

Wu et al. (2017) propose to extract Curl and Divergence of motion
trajectories (CDT) to describe motion patterns and classify them within
a crowded scene. Their method is able to classify 5 types of crowd
behaviors: lane, clockwise arch, counterclockwise arch, bottleneck,
fountainhead. They start by extracting the optical flow from the video
clip using the Lucas–Kanade method (Lucas, Kanade, et al., 1981), and
then apply a temporal clustering on the optical flow to obtain the
motion vector field. After that, they apply particle advection (Solmaz
et al., 2012) to decompose the motion field into sub-motion fields.
From these fields, they extract the CDT descriptors that describe curl
along the tangential paths, and divergence along the radial paths. After
applying a feature pooling on the CDT descriptors, they obtain motion
features that are used as input to a Support Vector Machine (SVM)

4 Collective motion: http://mmlab.ie.cuhk.edu.hk/projects/collectiveness/
ataset.htm.

http://mmlab.ie.cuhk.edu.hk/projects/collectiveness/dataset.htm
http://mmlab.ie.cuhk.edu.hk/projects/collectiveness/dataset.htm
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classifier to detect crowd behaviors using one-against-all strategy. They
evaluate their method in terms of Area Under Curve (AUC) and Re-
ceiver Operating Characteristic (ROC) curve on the UCF crowd dataset,
CUHK Crowd dataset, and a combination of UCF and CUHK crowded
scenes. They compared to other baseline methods, where they showed
that it performs well on all the classes, except on the bottleneck class.

Alahi et al. (2016) propose Social-LSTM a Recurrent Neural Network
which contains Long Short-Term Memory units, to learn pedestrians
movements and jointly predict their future locations by taking into
account the social context of each pedestrian’s trajectory. From a
video clip of a crowded scene, the authors obtain the positions of
the pedestrians on all the frames. After that, they use a separate
LSTM model to learn each pedestrian’s trajectory. The LSTMs are
connected to each other via a social pooling layer, so that spatially
close LSTMs share information about each other and inputs it to the
next step. They train their model following a leave-one-out validation
strategy and evaluate it on UCY (Lerner, Chrysanthou, & Lischinski,
2007) and ETH (Pellegrini, Ess, Schindler, & Van Gool, 2009) datasets.
Social-LSTM is tested in terms of Average Displacement Error (ADE),
Final Displacement Error (FDE), Average non-linear displacement error
(ANLDE). They compare their method to the Kalman Filter, a Collision
avoidance based on the Social force model (Yamaguchi, Berg, Ortiz,
& Berg, 2011), the social force model, the iterative Gaussian process
(IGP) (Peter, Richard, Murray, & Krause, 2013), a vanilla LSTM model
without the social pooling layer, and a simpler version of their model
that contains only the occupancy maps (O-LSTM) which captures the
positions of the neighbors at time t without taking into account the
previous positions. The methods learn the trajectories for 3, 2 s and
try to predict the 4, 8 following seconds. The overall results show that
Social-LSTM outperforms other methods on the test sequences of both
of the datasets. However, it is sometimes outperformed by IGP because
it knows the ground truth final destination of each pedestrian contrary
to the other methods, and O-LSTM because it performs well on less
crowded scenes.

Bartoli, Lisanti, Ballan, and Del Bimbo (2018) propose a context-
aware Recurrent Neural Network that uses Long Short-Term Memory
units to learn and predict pedestrians trajectories. They extend the
Social-LSTM and the O-LSTM models proposed by Alahi et al. (2016) by
incorporating to them a context-aware pooling that takes into account
the human–human interactions as well as the static objects that are
located in the vicinity of pedestrians. This approach needs a prior
knowledge of the positions of the static objects. They evaluate their
method, in terms of Average Displacement Error (ADE), on the UCY
dataset (Lerner et al., 2007) and the MuseumVisits dataset (Bartoli
et al., 2018). As in Alahi et al. (2016), the methods learn the tra-
jectories for 3, 2 s and try to predict the 4, 8 following seconds.
The authors found out that context-aware O-LSTM performs well on
the MuseumVisits because the persons move in group and are only
interested in artworks, but context-aware Social-LSTM performs well
in the UCY sequences because there the persons move alone and the
prior knowledge of entry and exit points are fed to the model.

A lot of research has been done for motion tracking (Bewley et al.,
2016; Wojke et al., 2017) and motion analysis (Lamba & Nain, 2019; Li
et al., 2019; Wu et al., 2017). Contribution in these two sub-fields has
become very hard due to harsh competition. However, in the recent
years, we denote a burgeoning interest for motion prediction (Coscia
et al., 2018; Tang, Ma, Liu, & Zheng, 2018) that we can illustrate in
the papers we mentioned (Alahi et al., 2016; Bartoli et al., 2018).

4.2.3. Group behavior analysis
Here, we present some approaches used for group behavior analysis.

Today, Deep learning is widespread in Group behavior analysis. How-
ever, the use of these methods started years after the first successes of
Deep Learning in Computer Vision.

Shao et al. (2014) propose an approach to detect groups within a

crowded scene and to recognize their behavior. They detect the groups
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using the Collective Transition (CT) prior. This prior also helps to find
visual group descriptors and properties that are scene-dependent and
impervious to crowd density variations, which are: stability, collec-
tiveness, uniformity, and conflict. These extracted descriptors help to
determine the groups’ inner states and behaviors into one of these four
classes: Gas, Solid, Pure fluid, Impure fluid. The Collective Transition
approach is a clustering algorithm that is used for group detection. The
authors start by extracting the tracklets of each pedestrian using the
KLT tracker. The initial clusters of tracklets are found by using the Co-
herent Filtering method (Zhou et al., 2012). After that, anchor tracklets
are elected to represent the centers of the clusters (groups) or individu-
als and tracklets are grouped using the Expectation–Maximization (EM)
algorithm. Intra-group and inter-group properties which are stability,
collectiveness, uniformity, and conflict, are verified through the use
of graph K-Nearest Neighbors algorithm. Experiments had been under-
taken on the self-made CUHK Crowd dataset. The authors’ method was
compared to a mixture of dynamic textures (DTM) (Chan & Vascon-
celos, 2008), hierarchical clustering (HC) (Ge et al., 2012), coherent
filtering (CF) (Zhou et al., 2012). The measures used to evaluate the
performance of their clustering approach are the Normalized Mutual
Information (NMI) (Wu & Schölkopf, 2007), purity (Aggarwal, 2004),
and Rand Index (RI) (Rand, 1971). For the classification task of the
group behavior, the evaluation metrics that were used are accuracy and
the confusion matrix.

Vahora and Chauhan (2018) propose a Deep Learning-based bottom-
up approach to identify group activities. Their method relies on contex-
tual and human–human interactions. They use Convolutional Neural
Networks (CNN) to capture action-pose features and scene-related
cues, and Recurrent Neural Networks to unveil group changes. They
developed two approaches: one based on Long Short Term Memory
(LSTM) and another one based on Gated Recurrent Units (GRU). They
evaluated their method on the collective activity dataset (Choi, Shahid,
& Savarese, 2009), and compared it to six other state-of-the-art ap-
proaches. The author’s approach that relies on GRU units outperforms
all the others on terms of accuracy.

Shu et al. (2017) propose a Confidence-Energy Recurrent Neural
Network (CERN) using Long Short-Term Memory (LSTM) units, to
recognize individual human actions, interactions and group activities.
They developed two variants of their algorithm: CERN-1 and CERN-2.
They tested these two variants on the Collective Activity (Choi et al.,
2009) and Volleyball (Ibrahim, Muralidharan, Deng, Vahdat, & Mori,
2016) datasets. Compared to other methods, CERN-2 outperforms all
the methods in terms of accuracy.

Zitouni et al. (2020) adopt a mesoscopic approach to crowd behav-
ior analysis, where they perceive the crowd as a compound of two types
of elements individuals and groups. In this context, groups are divided
into simple groups which demonstrate a homogeneous behaviors and
compound groups which demonstrate heterogeneous behaviors. They
propose a pipeline where pedestrians, heads, and groups are detected
and then tracked. Afterwards, a Gaussian Mixture Model of Dynamic
Textures detection technique (GMM-of-DT) (Zitouni, Bhaskar, & Al-
Mualla, 2016) based on a Kalman filter is utilized to categorize crowd
behaviors into 4 classes: individual, group, leader–follower, and social
interaction. The method was validated on 6 sequences from the PETS
dataset (Ferryman & Shahrokni, 2009), and tested on sequences from
Parking Lot (Dehghan, Modiri Assari, & Shah, 2015) and Town Cen-
ter (Benfold & Reid, 2011). The evaluation were undertaken using the
F-measure.

Bisagno et al. (2018) propose Group LSTM, a method to detect
groups and predict their trajectories. First, they use the coherent fil-
tering approach (Zhou et al., 2012) to cluster trajectories and form
groups based on the individuals trajectories, and by taking into account
their surroundings: pedestrians walking in the same direction belong
to the same group. After that, they use an extended version of Social-
LSTM (Alahi et al., 2016) to predict the group trajectories. While

Social-LSTM predicts solely pedestrians’ trajectories by associating an
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LSTM for each of them, Bisagno et al. introduce a social pooling hidden
layer to extend the interest for all the group of pedestrians, and then
predict the trajectory of the group. They evaluate their method on
UCY and ETH datasets, using the Average Displacement Error (ADE)
and the Final Displacement Error (FDE). Their method is compared to
Social-LSTM (Alahi et al., 2016), to its variant (Gupta, Johnson, Fei-Fei,
Savarese, & Alahi, 2018), and to the Kalman Filter. In terms of ADE,
they obtain the best results, but in terms of FDE, they sometimes fail
to find the final position of a group, contrary to other methods.

Research in group behavior analysis does not attract the attention
of researchers as it does for motion tracking or action recognition in
individual scenes. This may be due to the lack of datasets where group
activities can be found. However, we can observe during the recent
years a rising interest for this research axis. Recent papers (Bisagno
et al., 2018; Zitouni et al., 2020) bypass data paucity and perform group
behavior analysis on datasets that are not originally meant for this task
such as ETH and UCY, or PETS dataset.

4.3. Anomaly detection

Anomaly detection and forecasting can be done for any subtopic of
crowd analysis. This research axis is getting more and more attention in
crowd analysis because of its various applications in video surveillance
and crowd monitoring (Zhan et al., 2008).

Inspired by the effectiveness of the Mixture of Dynamic Textures
(MDT) in video modeling and video clustering (Chan & Vasconcelos,
2008), Mahadevan et al. (2010) propose an unsupervised framework
based on MDT to model normalcy in crowded scenes. This model con-
siders temporal and spatial outliers as anomalies. Temporal anomalies
represent events that are unlikely to happen or that happen rarely,
and spatial anomalies are detected using discriminant saliency. Metrics
used to evaluate the model on the UCSD anomaly dataset are the ROC
curve when the comparison between ground-truth and the detected
anomaly is done at the frame level and the pixel level. Another metric
inferred from the ROC curve that had been used is the EER (Equal Error
Rate) which computes the percentage of mis-classified frames. The MDT
outperforms the Social Force method (Mehran et al., 2009), an optical
flow monitoring method (Adam, Rivlin, Shimshoni, & Reinitz, 2008),
the mixture of optical flow (Kim & Grauman, 2009), and a combination
between (Kim & Grauman, 2009; Mehran et al., 2009). The major
inconvenience of this approach is its high dependence on the examples
it was trained on to consider as normal events.

Mehran et al. (2009) employ the Social Force model to detect
anomalies in crowded scenes. The authors lay a grid of particles on the
first frame of a crowded scene, and then they apply particles advection
following the fluctuations of the optical flow field. A Force Flow vector
field is extracted, relying on the laws of the Social Force model which is
based on the interactions that occur between the particles in the scene.
From this vector field, a bag of words is constructed to represent the
different behaviors of a crowd. The Latent Dirichlet Allocation (LDA), a
Natural Language Processing technique, is trained to recognize normal
behaviors. Finally, the Expectation–Maximization (EM) method is used
to differentiate between normal and abnormal behaviors. Abnormal
behavior is found in regions where high force flow occurs. The method
is tested on the UMN and the Web datasets. The ROC curve metric is
used to test the method. The authors show that the Social force-based
approach outperforms methods based solely on Optical Flow. The major
drawback of this approach is its inability to recognize new examples
taken from a different camera angle or position than the camera angle
and position of the examples the model was trained on.

Hassner et al. (2012) propose violent flows descriptors (ViF) to
detect violence in crowded scenes. These descriptors are extracted from
the fluctuations in the magnitudes of optical flow vectors. The authors
propose to use a Bag-of-Features representation of the scenes with the
ViF descriptor and then to train Support Vector Machines (SVM) to
classify the scenes in either violent or non-violent. For the classification
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task, the metrics that were used are the mean prediction accuracy
(ACC) ±standard deviation (SD) and the area under the ROC curve
(AUC). The authors propose a violence detection dataset on which they
test their approach and compare it to other state-of-the-art features
extraction techniques. Their descriptor is efficient in classifying violent
and non-violent scenes. However, as shown by the authors, it is not as
well performing on the Hockey Fights dataset where it is outperformed
by other Space–Time Interest Points (STIP)-based descriptors (Laptev,
2005).

Singh et al. (2018) developed the Drone Surveillance System (DSS)
to identify violent individuals in real-time using the cloud computation.
First, the DSS detects humans using the feature pyramid network
(FPN) (Lin et al., 2017). Then, a proposed ScatterNet Hybrid Deep
Learning (SHDL) network is used for pose estimation. Brought back to
the table from previous works (Singh, Hazarika, & Bhattacharya, 2017;
Singh & Kingsbury, 2017b, 2017c, 2018), the SHDL network is com-
posed of a combination of a front-end hand-crafted ScatterNet (Singh
& Kingsbury, 2017a) and a back-end Regression Network. The SHDL
yields a 14 key-points skeleton structure for each individual summa-
rizing his/her pose. This structure is then leveraged to distinguish
five violent activities from one normal action using a Support Vector
Machine (SVM). The DSS outperforms a State-of-the-Art approach (Pen-
metsa, Minhuj, Singh, & Omkar, 2014) by over 10% accuracy on
the proposed Aerial Violent Individual (AVI) dataset. Following these
results, it would be interesting to see the performance of this method
on other publicly available datasets.

Ravanbakhsh et al. (2016) developed a measure-based unsupervised
approach that detects local abnormality by combining motion infor-
mation with appearance. They get motion and appearance information
using a Convolutional Neural Network (CNN). Their approach consists
in three steps: after feeding a Binary Fully Convolutional Network
(BFCN) with input frames, they extract from them binary maps. They
use these binary maps to compute a measure, inspired from the com-
motion measure (Mousavi, Nabi, Kiani, Perina, & Murino, 2015), which
they called the Temporal CNN Pattern (TCP). Mixed with Optical Flow,
they yield refined motion segments. The Binary Fully Convolutional
Network is composed of a Fully Convolutional Network and a Binary
Quantization Layer (BQL). Although the weights of the FCN are ob-
tained from a pre-trained AlexNet model (Krizhevsky et al., 2012),
the weights of the BQL are obtained from a hashing method. They
tested their methods in terms of frame-level anomaly detection and
pixel-level anomaly detection. When the former assesses the ability of
the model to identify correctly an anomalous frame, the latter ensures
that it localizes it accurately. The experiments were undertaken on the
UMN SocialForce, and UCSD’s Ped1 and Ped2 datasets. The evaluation
metrics are the Receiver Operating Characteristic (ROC) curve and
the Area Under Curve (AUC). Most of the time, the method performs
well. However, sometimes, the developed model cannot detect anomaly
when the abnormal object is tiny or partly occluded and/or has not a
usual motion ‘‘(i.e., a car moves the same speed of normally moving
pedestrians in the scene)’’. To enhance the approach, the authors
propose two improvements: plugging a TCP measure layer and fine-
tune it with back-propagation; based on two of their former works on
Generative Adversarial Nets (Ravanbakhsh,Nabi et al., 2017; Ravan-
bakhsh, Sangineto et al., 2017), they propose them as a replacement
of the BFCN.

Ramos et al. (2017) propose a meta-heuristic based approach to
detect global anomalies in crowded scenes that has a low computa-
tional cost. To do so, they use Optical Flow to extract motion layers
between each pair of consecutive frames. Then, they use the Artificial
Bacteria Colony (ABC) meta-heuristic to optimize the extracted layers
and results in a coverage of regions of interest (ROIs) depicting high
movement. After that, they train a Self-Organizing Map (SOM) on
the ABC’s population, food storage and centroids to find particular
events relying on behavior patterns similarity. ABC’s population, stock
and centroids represent respectively movement’s spread, density and
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center. During the process, it is noteworthy to mention that ABC’s
population is subjected to the Darwinian natural selection method, and
that the fitness function relies on the food stock. Using Optical Flow
to extract motion layers reinforces the method’s resilience to noise and
light changes. Experiments were undertaken on the UMN SocialForce
dataset. For decent values of bacteria population and neurons number
for the SOM map, the approach outperforms other runs quite quickly,
processing each frame for 0.033 s on average. It outperforms Mehran
et al. (2009)’s method AUC (Area Under Curve) score by 18%. It
would have been interesting to observe the performance of the author’s
method compared to more recent approaches. As a future work, the
authors propose to use Mehran et al. (2009)’s Social Force Model
instead of Optical Flow, and to extrapolate the improvements to the
use of ABC to optimize spatio-temporal volumes.

Singh et al. (2020) propose Aggregation of Ensembles (AOE), an
aggregation of four classifiers over sub-ensembles of three fine-tuned
Convolutional Neural Nets (CNNs) on crowd datasets to detect anoma-
lies in videos of crowded scenes using the majority vote. One classifier
is applied for each sub-ensemble. A sub-ensemble of CNNs is made
up of the following 3 pretrained models: AlexNet (Krizhevsky et al.,
2012) on CIFAR-10, GoogleNet (Hu, Huang, Gao, Luo, & Duan, 2018),
VGGNet (Simonyan & Zisserman, 2014), both on ImageNet. The CNNs
were used as feature extractors that feed three variants of Support
Vector Machines (SVM): a Linear SVM, a Quadratic SVM, a Cubic SVM
; and a Softmax classifier. The features are extracted from a batch of
frames selected from a video. If more than 10% of the frames of the
batch are classified as anomalous, the video is considered as anomalous.
Models finetuning, AOE training and evaluation were undertaken on
the following datasets: UCSD Ped 1, UCSD Ped 2, and the Avenue
dataset.5

Qasim and Bhatti (2019) propose a three-dimensional descriptor
made up of three features, based on Optical Flow (OF) extracted from
videos. Most of the time, 7 consecutive frames are selected from a
video. The 3 features are: 1. sum of thresholded OF magnitude, 2.
joint entropy of the OF magnitude of 2 consecutive frames. The joint
entropy helps to detect sudden changes related to a rapid dispersion
(for example), 3. variance of a space–time cuboid obtained using the
history of OF field magnitude. On top of this descriptor a Support
Vector Machine (SVM) classifier is used to detect anomalies in videos.
Qasim and Bhatti’s purpose is to propose a good trade-off between
accuracy and real time performance. Their method is evaluated in terms
of accuracy on the UMN dataset.

Hao et al. (2019) propose an abnormal behavior detector based on a
Gabor-filtered extracted spatio-temporal texture. On a raw video clip, a
spatio-temporal volume (STV) (Adelson & Bergen, 1985) is constructed,
from which a Spatio-temporal textures (STT) are extracted. STTs are
vertical or horizontal slices of STVs along the time axis. Gabor filtering
is applied on the STT for background subtraction and noise removal.
Among the filtered STTs, the STT that maximizes the information
entropy is selected. Second, crowd features (signatures) are obtained
by applying a gray-level co-occurrence matrix (GLCM) (Haralick et al.,
1973) on the selected STTs. The selected STTs are first converted from
RGB to gray images, a raw GLCM is applied on it, and then four
features are extracted: contrast, orderliness (angular second moment
and entropy), descriptive features (variance). These features help to
model a STT signature which is used to feed a behavior classifier. These
signature features are compared to TAMURA texture patterns (Ranjan &
Agrawal, 2016). Each of these features are fed to a series of classifiers:
K Nearest Neighbors, Naïve Bayes, discriminative analysis classifier
(DAC), random forest, Support Vector Machine (SVM). The comparison
between TAMURA features and GLCM features, held on the UMN
dataset, show that Hao et al.’s GLCM strategy is good for detecting

5 http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.
tml.
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panic situations, however TAMURA is good for describing congestion
situations.

Lin et al. (2019) propose Social Multiple Instance Learning (Social
MIL) framework coupled with a dual branch network to detect anoma-
lies in crowded scenes. Their approach is made up of a Two-Stream
Neural Network: 1. a spatio-temporal stream, and 2. an interactive
dynamic stream. The first stream is a spatio-temporal branch, that is fed
with RGB video clips. The video clip is converted to a video segment
then fed through a 3D ConvNets (C3D) pre-trained model on Kinetics
and UCF-101 for features extraction. The features are fed to a one
dimensional dependency attention capturing module which output is
inputted to a fully connected network. The second stream is fed with
social force maps. Social forces maps are obtained using the social
force model (Mehran et al., 2009) that describe the interactions that
occur within a scene. Their method is trained using a MIL ranking loss
function, and evaluated on the UCF Crime dataset (Sultani et al., 2018),
using the receiver operating characteristic (ROC) curve and area under
the curve (AUC) metrics. During the evaluation process, it is compared
to 4 other methods.

Xie et al. (2019) propose crowd abnormal behavior recognition
algorithm based on the computation of optical flow and the use of
the social force model. First, they compute optical flow from a video
clip using Lucas–Kanade method. After that, optical flow is mapped
to 2D geospatial space using the camera parameters. This operation
helps them to extract particle points from a video clip. Second, they use
these particle points to compute the social interaction force between
the particles. They sum the interaction forces of each frame and they
compare it to an empirically set threshold to decide whether a frame is
anomalous or not.

Anomaly detection has always caught the interest of researchers in
crowd analysis. However, as highlighted in Section 2.3, research has
not come up yet with a unanimous definition of anomaly. This situation
makes few previously published works generalizable to every situation
of anomaly recognition.

5. The sources of data

We can find two sources of video data: 1. public or private video
datasets that are used for training and testing purposes, 2. live video-
surveillance from which we can create video datasets but that require
video annotation. In this section, we will enumerate some sources of
live video-surveillance data.

5.1. Live video-surveillance

Several sources of live video-surveillance are available and freely
accessible throughout the internet. The proposed scenes can be used
for many interesting tasks such as pedestrian/vehicle detection and
tracking, crowd counting or crowd behavior analysis. However, their
use may be subjected to prior authorization that need to be obtained
from the providers. We list below some live video-surveillance sources
we came across during our research. Table 3 summarizes the charac-
teristics of the live video-surveillance we came across.

• United Kingdom road traffic video-surveillance: The live
video-surveillance gives you access to mono-cameras observing
fifty roads. The provided frames can be used mainly for vehicle
detection. Tracking may be a possibility, however the cameras
produce one frame per minute. In the same line to this live video-
surveillance, but with a better frame-rate alongside with videos
already stored in a repository, UA-DETRAC,6 can also be used for
vehicle detection and tracking (Lyu et al., 2017).

6 UA-DETRAC dataset: https://detrac-db.rit.albany.edu/.

http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
https://detrac-db.rit.albany.edu/
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• Earthcam: This repository of live fixed mono-cameras offer a
gamut of testing possibilities, ranging from crowd behavior anal-
ysis, pedestrian detection, tracking and other crowd statistics
related tasks.

• Live Mecca: The use of the provided videos can be precious
for several situations pertaining to crowd analysis ranging from
crowd statistics and massive crowd motion, notably during im-
portant occasions such as the yearly hajj period. Moreover, the
cameras offer a lot of views, and they are not always fixed,
offering the challenging possibility to perform crowd analysis
with a moving camera. The high-resolution produced frames are
at a real-time frame-rate.

• Live Vatican: Fixed pedestrian-level mono-camera directed to the
St. Peter’s square, that is subjected to frequent medium density
people gatherings.

• Monthey Place Centrale: These two cameras emit mid-to-low
resolution images at around 1 frame per second. The images are
subjected to illumination changes and to various other challenges
such as occlusion, clutter, and different weather situations. They
can be used for pedestrian and vehicle detection and tracking.

5.2. Datasets

We do not intend to be exhaustive about the existing datasets.7 Most
of the datasets we introduce, in this subsection, are frequently used
for tracking and pedestrian detection such as KITTI and MotChallenge,
action recognition such as UCF-101 and HMDB-51, solely pedestrian
detection such as Inria Person and Caltech Pedestrian. The datasets
that tend more to be used for crowd analysis-related tasks are rare
to find. We listed the most relevant and popular ones. Tables 4 and
5 summarize the characteristics of these datasets.

5.2.1. Crowd statistics
• Multi Task Crowd: This dataset was developed by Marsden et al.

(2017). They used it to train their ResnetCrowd architecture
to perform three tasks: crowd counting, density estimation and
violence detection. The dataset is composed of a set of images.
These images are obtained from the WWW Crowd videos dataset.8

• UCF CROWD 50: Used for Crowd Counting, UCF Crowd 509

dataset consists of 50 images of densely crowded scenes. The
pictures that were collected from FLICKR10 contain a population
ranging from 94 to 4543 individuals.

• GTA 5 Crowd Counting (GCC) dataset: Proposed by Wang et al.
(2019), this synthetic dataset is created using the Script Hook
V11 C++ library applied on the Grand Theft Auto 5 (GTA 5)
Rockstar game. The scenes come from 100 different indoor and
outdoor locations in Los Santos (fictional city inspired by Los
Angeles). The people in the scenes are diverse and generated from
265 different person models. However, the scenes in GTA 5 are
limited to 256 individuals. The GCC dataset has 15,212 images.
The resolution of each image is 1080 × 1920. The scenes of the
dataset have got 7 different weather conditions: clear, clouds,
rain, foggy, thunder, overcast and extra sunny. They are captured
at any time of the day.

7 For the sake of completeness; we invite you to explore these three
ebsites:
∙ http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm.
∙ http://riemenschneider.hayko.at/vision/dataset/index.php.
∙ https://www.di.ens.fr/~miech/datasetviz/.
8 WWW Crowd Dataset: https://computervisiononline.com/dataset/

105138602.
9 UCF Crowd 50: http://crcv.ucf.edu/data/ucf-cc-50/.

10 FLICKR: https://www.flickr.com/.
11 Script hook v. http://www.dev-c.com/gtav/scripthookv/.
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5.2.2. Tracking and motion analysis
• Town Center: The Town Center Dataset, proposed by Benfold

and Reid (2011), is a video recorded from a video-surveillance
mono-camera recording the pedestrians walking in a city center.
The dataset is mainly used for tracking. At each frame, there is at
around 16 pedestrians. The video quality is good, 1920 × 1080
pixels for 25 FPS.

• i-Lids for AVSS 2007: The i-Lids dataset12 contains two types
of videos: one recording a train station (Task 1), and an other
recording road vehicle traffic (Task 2). The sequences we are
interested in are those of the train station. They can be used for
Pedestrian detection, tracking, Abnormal behavior detection (in
this case: abandoning a luggage). The resolution of the videos are
of 720 × 576 pixels for 25 Hz.

• MOTChallenge Dataset: The 2016 MOTChallenge Dataset13 is an
extension of the precedent version of 2015 proposed by Leal-Taixé
et al. (2015) (Milan et al., 2016). It consists of 14 sequences, con-
taining crowded scenarios such as the famous PETS09-S2L1. The
dataset presents some challenging conditions like a dynamic cam-
era, illumination changes, and various viewpoints. The annotated
objects are pedestrians, sitting persons, vehicles and occluding
objects, etc. This dataset encourages the use of the CLEAR met-
rics (Kasturi et al., 2009), in addition to other metrics such
as those evoked in Huang, Nevatia, and Li (2009), to evaluate
methods used for object detection and tracking.

• KITTI: The videos of the KITTI Dataset14 were obtained from a
moving VM station wagon that was recording for 6 h at 10–
100 Hz, in the city of Karlsruhe, Germany (Geiger et al., 2013).
Several sensors were involved for the recording such as a color
and a grayscale stereo camera, and a Velodyne 3D laser scanner.
Color and grayscale images are stored under the 8-bit PNG files
format. The dataset is used, inter alia, for object detection and
tracking. Eight classes of objects can be tracked and detected in
challenging conditions, because the objects may be static or dy-
namic, and the camera is constantly moving. These eight classes
are: ‘Car’, ‘Van’, ‘Truck’, ‘Pedestrian’, ’Person (sitting)’, ‘Cyclist’,
‘Tram’ and ‘Misc’. The provided annotations are in the form of
3D bounding boxes tracklets. The total size of the provided data
is 180 GB.

• Toulouse Campus Surveillance: The Toulouse Campus Surveil-
lance Dataset15 can be used, among other things, for object detec-
tion/tracking and audio event recognition (Malon et al., 2018).
The dataset results from a multi-camera setup, and thereby, can
be useful for assessing Multi-source fusion methods. Some cam-
eras are fixed, others are mobile. The setup gave birth to 50 videos
fairly broken down into two scenarios. Each video is depicted by
three resolution qualities: 1920 × 1080, 960 × 540, 640 × 360.
The Ground Truth annotations for detection and tracking are only
provided for the first scenario.

• The PathTrack MOT: Assisted by the crowd-sourcing permitted
by Amazon Mechanical Turk, where approximately 80 AMT work-
ers were involved, Manen et al. (2017) propose the large-scale
PathTrack MOT dataset.16 This dataset was released following the
creation of the PathTrack annotator. It contains the annotation
of 720 sequences depicting pedestrian movements from video-
surveillance scenes that were captured by either static or moving
cameras. The sequences include 16.287 annotated trajectories.

12 i-Lids Dataset: http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html.
13 MOT Challenge datasets: https://motchallenge.net/.
14 The KITTI Dataset: http://www.cvlibs.net/datasets/kitti/index.php.
15 Toulouse Campus Surveillance: http://ubee.enseeiht.fr/dokuwiki/doku.

php?id=public:tocada.
16 The PathTrack MOT dataset: https://data.vision.ee.ethz.ch/daid/MOT/

pathtrack_release_v1.0.zip.

http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
http://riemenschneider.hayko.at/vision/dataset/index.php
https://www.di.ens.fr/~miech/datasetviz/
https://computervisiononline.com/dataset/1105138602
https://computervisiononline.com/dataset/1105138602
http://crcv.ucf.edu/data/ucf-cc-50/
https://www.flickr.com/
http://www.dev-c.com/gtav/scripthookv/
http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html
https://motchallenge.net/
http://www.cvlibs.net/datasets/kitti/index.php
http://ubee.enseeiht.fr/dokuwiki/doku.php?id=public:tocada
http://ubee.enseeiht.fr/dokuwiki/doku.php?id=public:tocada
https://data.vision.ee.ethz.ch/daid/MOT/pathtrack_release_v1.0.zip
https://data.vision.ee.ethz.ch/daid/MOT/pathtrack_release_v1.0.zip
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• Optical Flow Dataset: Also named TUB CrowdFlow Dataset, the
Optical Flow Dataset17 was created by Schröder et al. (2018).
The authors graphically generated the dataset by using Unreal
Engine. They simulate crowd motion in five different situations.
Moreover, the crowd is captured by a static and a dynamic
camera. The dataset contains 10 sequences whose lengths range
from 300 to 450 frames. The sequences are characterized by a
frame-rate of 25 Hz and a HD resolution. The scenes contain
between 371 and 1451 individuals. The authors also verified that
the results that state-of-the-art methods obtain on this dataset can
be transferred to real-world generated datasets such as UCF crowd
tracking (Ali & Shah, 2008). Within the dataset, the ground truth
data provided is for optical flow, and dense and sparse trajectories
of individuals.

• UCF crowd tracking: The UCF crowd tracking dataset18 was
created by Ali and Shah (2008). The dataset is composed of
three sequences called Marathon-1, Marathon-2, and Marathon-
3. The length of these sequences ranges from 333 to 492 frames.
To test their methods, the authors annotated the trajectories of
respectively 199 individuals, 120 individuals, and 50 individuals
on the three sequences.

.2.3. Pedestrian detection
• INRIA Person: The Inria Person Dataset19 is used for pedestrian

detection. The dataset contains bounding-boxes annotations of
original images, resized positive images of pedestrians in 64 ×
128𝑝𝑖𝑥𝑒𝑙𝑠 format with original negative images. The dataset con-
tains 1805 images of people in challenging situations: differ-
ent poses and orientations, and within a wide range of back-
grounds (Dalal & Triggs, 2005).

• Caltech Pedestrian: The Caltech Dataset20 is commonly used for
Pedestrian Detection (Dollar et al., 2012). It can also be used
for occlusion handling. The dataset contains 10 h of 640 × 480
pixels video recorded from a mono-camera mounted on a vehicle
moving in the street. These 10 h video are also depicted by
250.000 frames. The provided Ground Truth is for 2300 different
pedestrians, in a form of 350.000 bounding boxes.

• COCO Common Object in Context: Lin et al. (2014) propose
the COCO dataset.21 It is mainly used for object and keypoint
detection, and image segmentation. In addition to pedestrians, 79
other objects can be detected. The dataset contains 330 K images
and more than 200 K are labeled.

5.2.4. Action recognition in individual scenes
• UCF-101: Soomro et al. (2012) propose UCF-101,22 an extension

of UCF-50. The dataset consists of 13320 web clips depicting 27 h
of video, obtained from Youtube.23 The resolution of each clip is
of 320 × 240 at a frame rate of 25 FPS. The clips are categorized
into 101 action classes. The videos are subjected to background
clutter, camera motion, lighting changes, partial occlusion and
low quality frames. Was assessed, on this dataset, a bag-of-words
(BoW) approach used for action recognition that resulted in an
overall accuracy of 43.9%.

• HMDB-51: Kuehne et al. (2011) propose HMDB-51.24 The dataset
consists of 6766 annotated video clips gleaned from various

17 Optical Flow Dataset: https://github.com/tsenst/CrowdFlow.
18 UCF crowd tracking: https://www.crcv.ucf.edu/data/tracking.php.
19 The Inria Person Dataset: http://pascal.inrialpes.fr/data/human/.
20 The Caltech Dataset: http://www.vision.caltech.edu/Image_Datasets/
altechPedestrians/.
21 The Coco dataset: http://cocodataset.org/#detection-2018.
22 UCF-101 dataset: http://crcv.ucf.edu/data/UCF101.php.
23 Youtube: https://www.youtube.com/.
24 HMDB-51 dataset: http://serre-lab.clps.brown.edu/resource/hmdb-a-
arge-human-motion-database/#dataset.

22
sources such as Youtube or Movies. In terms of resolution, the
videos share all the same 240 pixels height. However, the width
of each video clip is re-sized so as to maintain its proper aspect
ratio. The frame-rate of all the clips is of 30 FPS. The videos are
categorized into 51 action classes. Meta-information within the
dataset details for each video clip a range of information such
as camera viewpoint, occlusion, occurrence of camera motion
(that concerns 2∕3’s of the database), video quality (which is
categorized into high, medium, or low), the number of individuals
appearing in the video. Two methods were assessed on this
dataset: Jhuang, Serre, Wolf, and Poggio (2007)’s and Laptev
(2005), Laptev et al. (2008), Wang, Ullah, Klaser, Laptev, and
Schmid (2009)’s, and achieved at around 23% accuracy.

• Kinetics: Kay et al. (2017) propose the Kinetics dataset,25 a
dataset that is similar to UCF-101 and HMDB-51, and that is
mainly used for video classification. It consists of 400 classes
of different actions performed by a wide spectrum of different
persons. There are from 400 to 1150 video clips for each class.
Each video clip is taken from Youtube and lasts for approxi-
mately 10 s. These actions cover human–human and human-
object interactions. The challenges presented by this dataset are
illumination changes, background clutter, camera motion and
vibrations, shadows, etc. The annotation process relied on the
Amazon Mechanical Turk (MTurk).26 The clips are not exhaus-
tively annotated. Some of them may incorporate more than one
action, but the authors made sure that each clip is labeled with
the name of, at least, one of occurring actions.

• Sports-1m: Karpathy et al. (2014) propose the Sports-1 m
dataset.27 This dataset contains 1 million Youtube videos that
lasts for 5 min and 36 s on average. As the name of the dataset
suggests it, the videos are solely about sports-related activities.
Each activity is a class-name, and within the dataset, there are
487 different activities. There is, at around, 1000–3000 videos per
class, and about 5% of the videos possess more than one label.

5.2.5. Anomaly detection
• Aerial Violent Individual (AVI): Proposed by Singh et al. (2018)

to train their ScatterNet Hybrid Deep Learning (SHDL) network
for pose estimation, this dataset contains 2000 images. The
recorded scenes are mildly dense and contain at around 2 to
10 individuals. The interesting part of the dataset is that each
individual is annotated with 14 key-points allowing a detailed
estimation of its pose. The images were recorded by a drone from
four different heights. Unfortunately, this dataset is not publicly
available.

• UMN SocialForce and Web datasets: UMN SocialForce and Web
datasets28 are two datasets used by Mehran et al. (2009) in their
work. UMN SocialForce consists of 11 videos all illustrating a
normal-starting situation and an abnormal ending. Web Dataset
consists of 20 videos, 8 videos containing abnormal events such
as panic, clashes, fights, and 12 video clips of a normal situation
(pedestrians walking).

• UCSD Anomaly Detection: UCSD Anomaly Dataset29 is com-
monly used for anomaly detection and it consists of at around
100 video clips. These videos are divided into two sub-datasets:
Peds1 and Peds2 (Chan et al., 2008). The anomalies are linked

25 The Kinetics dataset: https://deepmind.com/research/open-source/open-
source-datasets/kinetics/.

26 Amazon Mechanical Turk: https://www.mturk.com/.
27 The Sports-1 m dataset: https://cs.stanford.edu/people/karpathy/

deepvideo/.
28 UMN SocialForce and Web Datasets: http://crcv.ucf.edu/projects/

Abnormal_Crowd/.
29 UCSD Anomaly Detection Dataset: http://www.svcl.ucsd.edu/projects/

anomaly/dataset.htm.

https://github.com/tsenst/CrowdFlow
https://www.crcv.ucf.edu/data/tracking.php
http://pascal.inrialpes.fr/data/human/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://cocodataset.org/#detection-2018
http://crcv.ucf.edu/data/UCF101.php
https://www.youtube.com/
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/#dataset
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/#dataset
https://deepmind.com/research/open-source/open-source-datasets/kinetics/
https://deepmind.com/research/open-source/open-source-datasets/kinetics/
https://www.mturk.com/
https://cs.stanford.edu/people/karpathy/deepvideo/
https://cs.stanford.edu/people/karpathy/deepvideo/
http://crcv.ucf.edu/projects/Abnormal_Crowd/
http://crcv.ucf.edu/projects/Abnormal_Crowd/
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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to abnormal elements appearing in the video clip such as the
circulation of non-pedestrians. However, anomalies pertain also
to pedestrians adopting abnormal motion patterns. The ground
truth indicate the occurrence of an anomaly on frame via a binary
flag. The bounding-box localization of the abnormal element is
also provided.

• Agoraset: Created by Allain et al. (2012), this dataset can be
used for pedestrian tracking, abnormal event analysis and density
estimation. The simulations have been generated using a model
based on the Lagrangian forces proposed by Helbing, Farkas, and
Vicsek (2000). The dataset consists of 7 scenarios that can be
broken down into several video clips by changing the crowd state
(soft motion or panic) and/or the illumination rendering (shading
or no shading).

• Violent Flows (ViF): Following the observation about the
scarcity of even Action Recognition-related datasets, and the
almost non-existence of those pertaining to Violence Behavior,
Hassner et al. propose The Violent Flows Dataset30 (Hassner et al.,
2012). The dataset, that consists of 246 videos, is mainly collected
from Youtube. The video frames were resized to 320 × 240
pixels. The average video duration is of 3.60 s. To assess their
dataset, they compared their technique to two other existing ones:
an interest-point driven method (Laptev, 2005), and a frame-
based descriptor, the LTP (Local Trinary Patterns) (Yeffet & Wolf,
2009). Their technique is based on the use of Optical Flow and
Support Vector Machines. They also developed for the need of
their method the ViF (Violent Flows) descriptor. The code to
compute the violence descriptors is publicly available.31

• Caviar: The Caviar Dataset32 can be used for pedestrian and
group behavior analysis in a mildly crowded scene, but mainly
for anomaly detection. All the scenes were scripted (ED, 2003).
The sequences are divided into two scenarios depending on where
they come from: an indoor scene from the entrance lobby of
INRIA Labs at Grenoble, and a shopping center from Portugal. The
first set consists of 28 clips stemming from a mono-camera. The
second set consists of 26 video clips originating from two cameras
yielding two views for each scenario.

• Crowd-11: The Crowd-11 dataset is a totally annotated dataset
that was created by Dupont et al. (2017) for crowded scene
classification. The dataset consists of 6272 video sequences cap-
tured from a mono-camera. Each sequence is made up of 100
frames each. Each video sequence lasts for 5 s. The resolution
depends on each video. The dataset is mainly intended for be-
havior classification and violence detection. The sequences can
be classified into 11 categories, namely: No Crowd, Laminar flow,
Turbulent flow, Crossing flows, Merging flow, Diverging Flow,
Gas free, Gas jammed, Static agitated, Interacting crowd. This
very large dataset originates from video-sharing websites such
as Youtube, Pond5 and Gettyimages, and from other datasets,
namely Agoraset, UMN, Violent Flows, CUHK Crowd, WWW
Crowd Attributes, Shanghai WorldExpo’10 Crowd, Hockey fights
and movies, PETS-2009.

• Motion Emotion: The Motion Emotion Dataset33 was created
by Rabiee, Haddadnia, Mousavi, Kalantarzadeh et al. (2016) and
Rabiee, Haddadnia, Mousavi, Nabi et al. (2016), and is used for
anomaly detection in human motions and emotions. The dataset
is made up of approximately 44.000 frames that are divided in
31 video clips. The dataset depicts 5 types of motions, which are:
panic, fight, dealing with an obstacle, congestion, and neutral
behaviors; and 6 types of emotions, which are: angry, happy,

30 Violent Flows (ViF): https://www.openu.ac.il/home/hassner/data/
iolentflows/.
31 https://talhassner.github.io/home/projects/violentflows/index.html.
32 Caviar Dataset: http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.
33 Motion Emotion Dataset (MED): https://github.com/hosseinm/med.
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excited, scared, sad, and neutral. The dataset is exhaustively an-
notated. The scenes are recorded from a camera fixed at a height
oriented to the ground to capture people walking. The video reso-
lution is of 554 × 235 pixels and consists of 30 frames per second
(FPS). The density of the scenes varies from an intermediate to a
high concentration of individuals.

• UCF Crime: The UCF Crime dataset34 was created by Sultani et al.
(2018). The dataset consists of 1900 long and untrimmed surveil-
lance videos, that totalized 128 h of recording, and that were
acquired from Youtube and Liveleak35 via text queries expressed
in different languages. UCF Crime can be used for two tasks:
General anomaly detection as we can find normal and abnormal
behaviors; and anomalous activities classification, because the
abnormal behaviors can be classified into 13 anomalous activities
which are: Abuse, Arrest, Arson, Assault, Road Accident, Burglary,
Explosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, and
Vandalism. When the authors evaluated methods on this dataset,
they could fix the frame rate to 30 FPS and the resolution to
240 × 320 pixels.

• CCTV-Fights: The CCTV-Fights dataset36 was created by Perez
et al. (2019). The dataset consists of 1000 temporally annotated
videos of real-world fights that required more than 17 h of
camera recording. These videos are made up of 280 CCTV videos,
whose duration varies between 5 s to 12 min, in addition to 720
videos that come from Non-CCTV sources, whose duration varies
between 3 s to 7 min. The resolutions of the videos are diverse.

5.2.6. Group detection and behavior analysis
• The Friends Meet (FM): Bazzani et al. (2012) propose The

Friends Meet Dataset37 for their Decentralized Particle Filter tech-
nique used for joint pedestrian-group tracking. The Friends Meet
is suitable for the development of bottom-up group tracking and
detection approaches. The dataset contains 53 sequences broken
down into 16286 frames, involving 3 to 16 individuals per frame.
The sequences are divided into two groups: a synthetic set, of
28 sequences and 200 frames each, and a real dataset. The syn-
thetic set includes simple and challenging events. The real dataset
concerns only outdoor scenarios. The events described within
the dataset are: groups appearing, disappearing, going through
split/merge and queue events.

• CUHK Crowd Dataset: Created by Shao et al. (2014, 2017),
the CUHK Crowd dataset38 contains 474 video clips of different
lengths depicting 215 crowded scenes taken from various environ-
ments. The dataset is mainly used for mesoscopic group detection:
clustering pedestrians into groups and crowd segmentation, even-
tually group behavior analysis and anomaly detection. It can also
be used for crowd statistics. The annotations for group detection
and state analysis, and crowd video classification are provided in
the dataset.

• MuseumVisitors The MuseumVisitors Dataset,39 created by Bar-
toli, Lisanti et al. (2015), was recorded by a multi-camera setup
of three IP cameras at a resolution of 1280 × 800 pixels at a
frame rate of 5 FPS, inside the National Museum of Bargello in
Florence, Italy. This challenging dataset, in terms of occlusion,
lighting and scale changes, is intended for pedestrian and group
detection under occlusion, gaze estimation, behavior analysis,

34 UCF Crime: https://webpages.uncc.edu/cchen62/dataset.html.
35 https://www.liveleak.com/.
36 CCTV-Fights: http://rose1.ntu.edu.sg/Datasets/cctvFights.asp.
37 The Friends Meet Dataset: https://www.iit.it/research/lines/pattern-

analysis-and-computer-vision/pavis-datasets/533-friends-meet-dataset.
38 CUHK Crowd dataset: http://www.ee.cuhk.edu.hk/~jshao/CUHKcrowd_

files/cuhk_crowd_dataset.htm.
39 The MuseumVisitors Dataset: https://www.micc.unifi.it/resources/
datasets/museumvisitors/.

https://www.openu.ac.il/home/hassner/data/violentflows/
https://www.openu.ac.il/home/hassner/data/violentflows/
https://talhassner.github.io/home/projects/violentflows/index.html
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
https://github.com/hosseinm/med
https://webpages.uncc.edu/cchen62/dataset.html
https://www.liveleak.com/
http://rose1.ntu.edu.sg/Datasets/cctvFights.asp
https://www.iit.it/research/lines/pattern-analysis-and-computer-vision/pavis-datasets/533-friends-meet-dataset
https://www.iit.it/research/lines/pattern-analysis-and-computer-vision/pavis-datasets/533-friends-meet-dataset
http://www.ee.cuhk.edu.hk/~jshao/CUHKcrowd_files/cuhk_crowd_dataset.htm
http://www.ee.cuhk.edu.hk/~jshao/CUHKcrowd_files/cuhk_crowd_dataset.htm
https://www.micc.unifi.it/resources/datasets/museumvisitors/
https://www.micc.unifi.it/resources/datasets/museumvisitors/
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person re-identification. The dataset contains two scenarios, the
first one depicts individual visitors watching artworks, and the
second one depicts groups of visitors watching artworks. Provided
annotations are in the form of Bounding Boxes containing the
visitors. If a person is occluded, its visible part is surrounded by a
second Bounding Box. The Ground Truth furnishes also a unique
identifier for each Group and each Pedestrian in all the frames.
Seven detectors, pre-trained either on the Caltech pedestrian or
the INRIA pedestrian datasets, were assessed on the dataset and
improved their miss rate at 10−1 false positive per image (FPPI)
for Pedestrian and Group detection scenarios.

• Behave: Blunsden and Fisher (2010) observed that most of the
available ground truthed datasets are used for target detection,
tracking, and individual behavior analysis. Consequently, they
proposed the Behave Dataset.40 The dataset is used for pedestrian
detection, bottom-up group behavior recognition, and abnormal
behavior analysis. It consists of 4 WMV video clips, depicted by
76800 frames. Qualitatively, the resolution is at 640 × 480 at
a frame-rate of 25 FPS. There are 125 individuals involved in
the actions within the scenes. The detected pedestrians are sur-
rounded by rectangular bounding boxes, which results in 83545
bounding boxes. The annotations are yielded using the Viper-
GT41 tool. The group behavioral interactions are categorized in 10
classes. The annotation policy in this dataset considers the unique
pedestrian as the smallest group unit. A group may include many
pedestrians that are involved in the same activities and showing a
certain proximity. A group activity is labeled by an activity name
that happens between two persons. The challenges presented by
this dataset are light changes and the recurrent occlusions. A
Hidden Markov Model (HMM) classifier had been tested on the
dataset. The authors varied several times the size of the window
centered on a current frame. Each frame is represented by a
feature vector. For a window size of 100, the reached performance
is at around 93.67%.

• SALSA: Alameda-Pineda et al. (2016) propose the SALSA dataset42

a dataset dedicated to group detection and behavior analysis,
and more precisely for the study of free-standing conversational
groups (FCGs). Within the dataset, two scenarios are depicted in
an indoor setup: a poster presentation and a cocktail party. In
each of them, 18 participants are involved and their behaviors
were not scripted. The recorded scenes last for 60 min. The
challenges presented by this dataset are the low resolution, the
lighting variations, and occlusions. The provided annotations are
about each individual’s personality as well as their position,
head and body orientation, the group F-formation information.
The individual’s personality annotation are scores related to
Extraversion, Agreeableness, Emotional Stability, and Creativity.
These scores were obtained following the Big Five personality
questionnaire (John & Srivastava, 1999), that each participant
filled beforehand.

.3. Conclusion on the existing sources of data

As you can observe from the range of datasets presented in this sec-
ion, most of the publicly available datasets can be used for individual-
cene action detection/recognition, pedestrian detection/tracking and
ometimes group detection/tracking, crowd counting and density esti-
ation, crowded scene classification, few cases of anomaly detection,

nd very few cases of group activity recognition. However, there is a
ack of datasets reproducing crowd motions, in roads or avenues of
opulated cities. Besides, to the best of our knowledge, there is not any

40 Behave Dataset: http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/
NTERACTIONS/.
41 Viper-GT: http://viper-toolkit.sourceforge.net/.
42 SALSA dataset: http://tev.fbk.eu/salsa.
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dataset that can be used for massive upstream crowd behavior analysis
and motion forecasting that can be utilized to train and test a deep
Neural Network.

The access to the video data, provided by live video-surveillance
presented in Section 5.1, can widen our possibilities as the crowded
situations happens several times with even a high level of service (LoS)
in Mecca, Saudi Arabia, often in the Wailing Wall, Jerusalem, Israel
(Earthcam), medium to low LoS in St. Pietro Square, Vatican, medium
LoS in Times Square, Manhattan, New York, United States (EarthCam),
etc. However, publishing results or snapshots of those places may
require a prior authorization from the providers of those feeds (see
Fig. 12).

6. Annotators

As you may have observed from the precedent section, data scarcity,
and more precisely the lack of relevant labeled data, is one of the
major problems of crowd analysis. One solution to this problem is
the use of annotators assisted with massive crowd-sourcing. In this
section, we provide a small list of annotators that can be used for crowd
analysis-related tasks. Table 6 summarizes their characteristics.

6.1. Image annotators

Russell, Torralba, Murphy, and Freeman (2008) propose LabelME,
a publicly available web-based tool intended for image annotation. Its
purpose is to create ground truthed image datasets intended for object
detection and recognition tasks.

In the same line, Dutta and Zisserman (2019) propose the VGG
Image Annotator (VIA), a web-based tool used to define and describe
regions in an image using six different shapes such as: a rectangle
(or a bounding box), a point and polylines which can be used for
mask annotation. The tool allows a preliminary annotation of images
by applying object detectors before altering the annotations manually,
which alleviates the burden of manual image annotation. The code
source of the VIA tool is publicly available. Although the annotator can
be used for video annotation like face tracking, the authors mention
that this feature will become officially a part of the software in its
upcoming updates.

Andriluka, Uijlings, and Ferrari (2018) propose Fluid Annotation.
An image annotator that relies on three principles: Machine-learning
aid which means that a pre-annotation is performed by a machine
learning model; a full image annotation in a single pass, which means
that many tasks are performed during image annotation such as draw-
ing bounding boxes and the segmentation of the image, which appears
to be more handy than the previously presented VIA tool; empower
the annotator which means that the annotator tool sees itself what it
is suitable to annotate allowing the human expert to intervene only on
the errors made by the tool. This reduces the workload of the human
annotator. For instance, the authors compared their use of both of
Fluid Annotation and LabelMe, and concluded that annotation time is
reduced by a factor of 3× when using their own tool.

Despite being three times quicker than LabelMe, and more handy
than VIA, Fluid Annotation does not seem to perform video annotation
contrary to VIA.

6.2. Group and crowd behavior annotators

Bartoli et al. (2017) propose PACE an open-source collaborative tool
used for the annotation of crowded scenes, that is an improvement of
WATSS (Bartoli, Seidenari et al., 2015), and is targeted to indoor multi-
camera setups and group behavior understanding. Developed using
HTML5 and Javascript, it has two back-ends: a PHP-based that can
mainly be summarized to a relational database, and a Python-based
REST server that is used for computer vision tasks. The tool allows
to determine person location and identity (through respectively an

http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/
http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/
http://viper-toolkit.sourceforge.net/
http://tev.fbk.eu/salsa
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Fig. 12. Snapshots of some of the aforementioned datasets.
Table 6
Summarized presentation of annotators.
Annotator Release dateUsed for AvailabilityReference

LabelMe 2008 Object detection, image segmentation Public Russell et al. (2008)
VIA 2017 Object detection, image segmentation Public Dutta and Zisserman (2019)
Fluid Annotation2018 Object detection, image segmentation Public Andriluka et al. (2018)
PathTrack 2017 Pedestrian detection/tracking Private Manen et al. (2017)
Pace 2015 Group/pedestrian detection, gaze and body orientationPublic Bartoli et al. (2017)
SpotOn 2016 Action detection/recognition Private Mettes, van Gemert, and Snoek (2016)
WATSS 2015 Group/pedestrian detection Public Bartoli, Seidenari, Lisanti, Karaman, and Del Bimbo (2015)
embedding bounding box and bounding box inside), occluded parts,
group membership, gaze and body orientation. Although, it is open for
25
public use to encourage collaborative work, the tool is also supported
with predictive algorithms. The predictive annotation works as follows:
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Fig. 13. Examples of annotators’ User Interfaces (UI) or Ground Truthing (GT) process.
when a person is annotated on frames 𝑡− 𝑘 to 𝑡, its label is inferred on
the frames 𝑡 + 1 to 𝑡 + 𝑚 by using tracking based on the Kalman Filter-
ing (Kalman, 1960). However, motion detection and person detection
are respectively based on Mixture of Gaussians (MoG) (Godbehere, Mat-
sukawa, & Goldberg, 2012) and Histogram of Gradients (HoG) (Dalal
& Triggs, 2005), methods that are quite outdated.

6.3. Tracking annotators

Manen et al. (2017) propose PathTrack, a realtime trajectory anno-
tator, and aspire to enrich MOTChallenge-like datasets. The annotations
are produced by users watching a video-surveillance scene and fol-
lowing targets with a cursor. The annotations are then turned into
frame-by-frame bounding boxes. The use of PathTrack halved the mis-
classification rate on a person matching method trained on Multiple
Object Tracking Challenge 2015 (Leal-Taixé et al., 2015), and improved
NOMT performance reducing the identity switches by 18% and the frag-
ments by 5%. As aforementioned, the crowd-sourced use of Pathrack
allowed the creation of a public dataset, named the PathTrack MOT
dataset. This annotator does not seem to be publicly available.

6.4. Action recognition annotators

Mettes et al. (2016) propose Spot On, a spatio-temporal action
annotator in video clips. Instead of annotating accurate action boxes,
Spot On relies on action proposals inferred by point annotations on a
subset of frames. This annotator does not seem to be publicly available.

6.5. Conclusion on the existing annotators

We saw in this section some popular annotators used for important
tasks in crowd analysis such as pedestrian detection, tracking, action
and behavior recognition (see Fig. 13).

Currently, a lot of annotation tools intended for object detec-
tion/tracking and image segmentation are being developed (Andriluka
et al., 2018; Dutta & Zisserman, 2019). However, except Spot On
and PACE, few annotators are used for action recognition, crowd
26
behavior analysis and other more precised tasks such as group detection
and behavior recognition. Besides, we did not found any public or
private annotator on other problems intended for less studied, but
still important, topics in crowd analysis such as massive crowd motion
analysis and behavior recognition.

7. Conclusion and discussion

The deployment of intelligent surveillance systems is linked with
the development of smart cities. The use of these systems requires the
development of a framework capable of scanning adequately video-
surveillance scenes. As video-surveillance occurs most of the time
in public areas (Krausz & Bauckhage, 2012), crowd analysis-related
methods are becoming highly demanded.

The purpose of a review paper is to provide a panoramic view of
a precised field of research through particular lenses. A review paper
captures this overview by taking into account recent trends in the field
itself and by taking into consideration parent fields. This review paper
being dedicated to crowd analysis, we talked about recent trends in
this field. Throughout this paper, we explored previous reviews on
crowd analysis. We saw recent studies pertaining to pedestrian and
group detection, as well as on the branches and several sub-branches
of crowd analysis. We enumerated the sources of video/image data we
came across, and due to the paucity of datasets, we found it relevant
to talk about annotators. These latter are somehow neglected by the
research community in some subtopics of crowd analysis which are:
crowd statistics, action recognition, and crowd behavior analysis. This
review allowed us to find out that group analysis-related tasks are not
widely explored using Deep Learning methods, despite their widespread
use in crowd analysis. Moreover, upstream massive crowd analysis
for motion tracking and/or anomaly detection is not widely explored
by the Deep Learning literature, due to the non-existence of relevant
datasets.

Future research should focus on creating annotators dedicated to
massively ground truthing datasets that can be used for crowded scenes
analyses tasks such as crowd behavior recognition, crowd tracking and
motion prediction. Moreover, it should focus on the creation of anno-
tated datasets depicting several group activities, and other annotated
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datasets for crowded scenes classification such as Crowd-11 (Dupont
et al., 2017).
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