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Abstract: In the context of global change, up-to-date land use land cover (LULC) maps is a major
challenge to assess pressures on natural areas. These maps also allow us to assess the evolution of
land cover and to quantify changes over time (such as urban sprawl), which is essential for having a
precise understanding of a given territory. Few studies have combined information from Sentinel-1
and Sentinel-2 imagery, but merging radar and optical imagery has been shown to have several
benefits for a range of study cases, such as semantic segmentation or classification. For this study, we
used a newly produced dataset, MultiSenGE, which provides a set of multitemporal and multimodal
patches over the Grand-Est region in France. To merge these data, we propose a CNN approach
based on spatio-temporal and spatio-spectral feature fusion, ConvLSTM+Inception-S1S2. We used a
U-Net base model and ConvLSTM extractor for spatio-temporal features and an inception module
for the spatio-spectral features extractor. The results show that describing an overrepresented class is
preferable to map urban fabrics (UF). Furthermore, the addition of an Inception module on a date
allowing the extraction of spatio-spectral features improves the classification results. Spatio-spectro-
temporal method (ConvLSTM+Inception-S1S2) achieves higher global weighted F1Score than all other
methods tested.

Keywords: multitemporal; multimodal; Sentinel-1; Sentinel-2; land use; land cover; deep learning;
time series

1. Introduction

Continental mapping of land cover is important in the context of global climate change.
Complex workflows, often based on mono-temporal aerial or satellite imagery, can take
many years to produce global land cover map. High resolution and frequently updated
land cover maps became relevant to produce indicators to monitor and understand natural
and anthropic processes. Moreover, at present, almost all LULC products (OSO [1], ESA’s
World Cover 2020 [2], Google’s Dynamic World [3] or Esri’s 2020 Land Cover [4]) derived
from automatic classifications based on classical machine learning method are describing
urban areas only in one to four classes, with results that include salt and pepper effects [5].
However, urban areas also include vegetative areas, which are rich in biodiversity and
provide urban cool islands [6]. Having an accurate and up-to-date land cover map where
urban thematic classes are not reduced to two classes (urban/not urban) or four urban
classes (road networks, dense and sparse built-up areas, and specialized areas) [7] is a major
challenge, especially in the context of global change. Current works mapping urban areas
in more than five classes often use very high resolution spatial imagery (e.g., Worldview-3),
which is expensive with low temporal resolution (few images over time). This frequent
update is relevant for urban planning and change detection analysis.

Many spatial programs offer images with a high temporal resolution, which allows
obtaining relevant information on the temporal variability of anthropic and natural objects
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on the territory. This is particularly the case for the Copernicus program, developed by
ESA (European Space Agency), with the Sentinel sensors, which allow the acquisition of
the same site every six days, depending on the sensor. The data published per day for
this spatial program corresponds to more than 15 TB of images from multiple sensors
(Sentinel-1, Sentinel-2, Sentinel-3, and Sentinel-5). Several methods were developed to
use satellite image time series (SITS) for land cover mapping [1], change detection [8],
tree species detection [9], or crop classification [10]. Thanks to the high revisiting period,
Sentinel imagery (whether SAR for Sentinel-1 or optical for Sentinel-2), many works
showed the importance of these images for Land Use/Land Cover (LULC) mapping
both for optical [11], and SAR imagery [12]. Classical machine learning methods have
reached their limit in terms of performance, and require a lot of exogenous indexes to
achieve great results. The evolution of cloud computing has allowed the remote sensing
community to develop new techniques to produce LULC maps based on classification
methods and more particularly on deep learning [13]. Many works used deep learning
techniques and especially convolutional neural networks (CNN) for LULC mapping, either
with pixel classification [14] or semantic segmentation [15,16]. Furthermore, there exist
encoder/decoder networks such as U-Net [17] or SegNet [18] (also known as "U-Shape like"
networks), which show excellent results for semantic segmentation or scene classification
problems [7,19,20].

Optical (Sentinel-2) and SAR (Sentinel-1) imagery come with complementary informa-
tion on landscape elements. The first one describes the properties of surface materials and
the second one provides the structural characteristics of landscape objects [21]. The combi-
nation of optical and SAR imagery has led the community to develop methods to effectively
perform their fusion. Three types of fusion classically exist in remote sensing: fusion at
the pixel level (a), fusion at the feature level (b), and decisional fusion (c), which applies
to the output of classification models [22]. For classical machine learning approaches (i.e.,
Random Forest, SVM), data fusion consists of either concatenating the model input data
(a) [23] or merging the probabilities (c) using decisional fusion algorithms [24] such as ma-
jority voting of Dempster-Shafer [25]. These methods also allow the fusion of multimodal
data, especially optical and SAR imagery [26], and show a significant performance gain
compared to the use of a single sensor. On the other hand, these methods treat these two
modes of acquisition separately, and do not investigate the complementarity of the two
acquisition modes and the multitemporal information.

Semantic segmentation and “U-Shape like” networks can be modified to perform
feature fusion, which consists of combining features from several branches or layers of
a network [19,27]. The combination of optical and SAR imagery for feature fusion has
been experimented with in several works, both for change detection [28] and for LULC
classification [29] by stacking two data sources (in this previous case, Sentinel-1 and Landsat-
8 imagery). With the arrival of recurrent neural networks (RNN), it becomes possible, in
addition to multimodal fusion, to take into account the multitemporal information of
satellite images. These methods, called ConvLSTM, allow the use of both spatial and
temporal dimensions for the extraction of spatio-temporal features. They have been widely
used in multiple application fields, such as analyzing various video frame sequences [30],
precipitation forecasting [31] or travel demand prediction [32]. In the field of remote sensing,
ConvLSTM architectures have been proven to work well for Land Cover mapping [21],
change detection [33], deforestation mapping [34], or rice field classification [35].

In a previous work [19], we experimented with feature fusion methods between
Sentinel-2 single date optical imagery and spectral and textural indices for mapping urban
areas in five thematic classes and obtained very promising results. To our knowledge, very
few works attempt to classify urban areas with so many classes. Thus, the objective of this
work is to explore the combination of multitemporal and multimodal imagery for urban
fabric (UF) mapping using semantic segmentation networks. We make the hypothesis that
(1) multitemporal optical and SAR imagery and (2) balancing the dataset can improve
UF classification.
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The rest of the paper consists of four parts: the choice of study sites and preprocessing
methods in Section 2, the deep learning architecture used in Section 3, the analysis of the
results in Section 4. The results are discussed in Section 5 and a conclusion and perspectives
are detailed in Section 6.

2. Materials and Preprocessing Methods

This section describes materials and methods used to perform this study. First, Mul-
tiSenGE dataset will be presented in Section 2.1. Due to the temporal complexity of this
dataset, multitemporal patches selection is assessed in Section 2.2. Finally, the approach to
process the reference data typology is developed in Section 2.3.

2.1. MultiSenGE dataset

MultiSenGE [36] is a multitemporal and multimodal dataset developed over the Grand-
Est region (Figure 1) in France. It covers 14 Sentinel-2 tiles over one of the biggest regions in
France (57,433 km2). The dataset contains 8157 multitemporal patches of 256× 256 pixels
for the Sentinel-1 and Sentinel-2 sensors for 2020. A reference data, preprocessed from a
Land Use Land Cover database (BDOCGE2), is included with each Sentinel-1 and Sentinel-2
patch to form data triplet. The global process of MultiSenGE construction can be found
in [36]. This dataset is one of the first providing multitemporal and multimodal imagery
using Sentinel sensors for LULC applications. Furthermore, the reference data typology
offers a diversity, especially for UF in 5 classes (see semantic classes typology in Figure 1).

	

Dense	Built-Up

Sparse	Built-Up

Specialized	Built-Up	Areas

Specialized	but	Vegetative	Areas

Large	Scale	Networks

Arable	Land

Vineyards

Orchards

Grasslands

Groves,	Hedges

Forests

Open	Spaces,	Mineral

Wetlands

Water	Surfaces

Legend

Figure 1. Grand-Est region with ground reference subset, Sentinel-2 tiling grid and major cities.

Sentinel-1 carries a C-band SAR sensor and offers dual polarization data in Ground
Range Detection (GRD) and Single Look Complex (SLC). Only GRD products are used in
the construction of MultiSenGE and each Sentinel-1 patch consists of a stack of VV and
VH bands.

Sentinel-2 images are acquired through the Theia land services and datacenter down-
load portal (https://www.theia-land.fr/, accessed on 27 May 2022) and are L2A level,
corrected for atmospheric effects, and accompanied by a cloud mask. Unlike Sentinel-1
products, where all available images of the series were downloaded, only images with less

https://www.theia-land.fr/
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than 10% cloud cover are selected. Each MultiSenGE Sentinel-2 patch is composed of a
stack of 10-m spectral bands (B2, B3, B4, B8) and 20-meter spectral bands (B5, B6, B7, B8A,
B11, and B12) resampled to 10 m spatial resolution.

2.2. Optical and SAR Multitemporal Patches Selection

MultiSenGE [36] provides a set of functions to extract multiple Sentinel-1 and Sentinel-
2 time series information for each patch. For example, it is possible to extract all patches
that have at least one Sentinel-2 image associated for several months. Thus, we chose to
explore the dataset to find the best compromise between temporal and spatial diversity.
From Figure 2, we note that the dataset contains few images for winter and early spring.
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Figure 2. Number of patches with at least one Sentinel-2 image associated per month.

Therefore, we decided to select patches for July (07), August (08), September (09), and
November (11) to have the highest number of patches (Figure 2). To obtain images with a
regular time-lapse, a constraint on the number of days between two consecutive months is
applied to select the patches. To help in the choice of the best configuration of number and
spatial diversity on a large region, we propose a web-page (http://romainwenger.fr/visu-
multisenge/index.html, accessed on 5 September 2022) allowing displaying it by mapping
the center of the patch (Figure 3).

We decided to select 17 days between two consecutive months to maximize the number
of patches available (Table 1) as recommended in [33]. In a previous work, some tests were
made on the contribution of a larger number of Sentinel-2 dates. The first results showed
that four dates without clouds are relevant to reduce uncertainties in a classification result
compared to a larger number of dates which can increase them [37]. Moreover, the choice
of this gap between two consecutive months is the best compromise between the number
of patches and the spatial distribution of patches.

http://romainwenger.fr/visu-multisenge/index.html
http://romainwenger.fr/visu-multisenge/index.html
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Legend

Figure 3. Distribution of patches over the study area according to the number of days between two
consecutive dates for the months of July, August, September and November (2020).

Table 1. Number of patches depending on the days gap for two consecutive months.

Days Gap for Two Consecutive Months Number of Patches

15 6560
16 5890
17 5890
18 4960
19 3178
20 3178

A sampling of the training, validation, and test sets is done according to a geographical
stratification [38] following Sentinel-2 tiling (Figure 4). Patches from tiles T31UFP and
T31UGP are chosen for the validation set, T31UEQ for the test set, and all other available
tiles for the training set (T32UMV, T32ULU, T32TLT, T31UGQ, T31TFN, T31UFQ, T31UFR).
In total, there are 3369 patches for training (before data augmentation), 1911 patches for
validation, and 610 patches for the test set.

Particular attention is accorded to keep the proportion of classes in the training and
validation datasets. The patches from the test set are centered on Reims, another large city
in the west of the region, allowing us to assess the performance of your model for urban
thematic classes.
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Test

Train

Validation

Legend

Figure 4. Train, validation and test sets for the selected multitemporal and multimodal patches.

2.3. Reference Data Typology

The reference land cover dataset of MultiSenGE is described in 14 semantic classes.
Following the choice of the different sets by geographical stratification, some classes are not
homogeneously distributed in all the sets; for instance Orchards (8), Groces and Hedges
(10), Open Spaces, Mineral (12), and Wetlands (13) represent mostly under 1% for the total
dataset surface (Table 2).

Table 2. Semantic classes distribution for MultiSenGE dataset.

MultiSenGE Semantic Classes MultiSenGE Distribution

Dense Built-Up (1) 0.37%
Sparse Built-Up (2) 3.64%

Specialized Built-Up Areas (3) 2.17%
Specialized but Vegetative Areas (4) 0.44%

Large Scale Networks (5) 0.91%
Arable Lands (6) 38.73%

Vineyards (7) 0.98%
Orchards (8) 0.15%

Grasslands (9) 18.87%
Groves, Hedges (10) 0.01%

Forests (11) 32.52%
Open Spaces, Mineral (12) 0.01%

Wetlands (13) 0.31%
Water Surfaces (14) 0.89%



Remote Sens. 2023, 15, 151 7 of 23

To reduce the unbalanced distribution of classes, we decided to merge some of them:
(7) and (8) into a Vineyards and Orchards class, (10), (11) and (12) to create a class with
Forests and semi-natural areas, and (13) and (14) for all the Water Surfaces (Table 2). Two
different groupings are proposed on the baseline data, the first with 10 classes and the
second with 6 classes to increase the number of thematic classes into several UFs (Table 3).
The assumption is that with 10 land cover classes, the urban surfaces will be much better
classified than with 6 land cover classes because the confusion between the natural classes
will be reduced.

Even with these typologies in 6 or 10 classes, there are still some unbalanced classes
(with less than 1% of the total land cover), especially for UFs classes (Dense Built-Up(1),
Specialized but Vegetative Areas (4) and Large Scale Networks (5)). We have chosen
not to merge these urban classes as they have already been used in several existing
works [1,7,19,36]. Indeed, these UFs semantic classes are often useful for urban planning,
and decision-makers and are generic enough to map western cities.

Table 3. Semantic classes for MultiSenGE dataset and our reclassification in 6 and 10 classes.

MultiSenGE Semantic
Classes 10 Classes 6 Classes

Dense Built-Up (1) Dense Built-Up (1) Dense Built-Up (1)
Sparse Built-Up (2) Sparse Built-Up (2) Sparse Built-Up (2)

Specialized Built-Up Areas (3) Specialized Built-Up Areas (3) Specialized Built-Up Areas (3)
Specialized but Vegetative

Areas (4)
Specialized but Vegetative

Areas (4)
Specialized but Vegetative

Areas (4)
Large Scale Networks (5) Large Scale Networks (5) Large Scale Networks (5)

Arable Lands (6) Arable Lands (6)
Vineyards (7)
Orchards (8) Vineyards and Orchards (7)

Grasslands (9) Grasslands (8)
Groces, Hedges (10)

Forests (11)
Open Spaces, Mineral (12)

Forests and
semi-natural areas (9)

Wetlands (13)
Water Surfaces (14) Water Surfaces (10)

Non-urban areas (6)

3. Models

In this section, we explain the two architectures (Figure 5) used for the different
experiments. The first method uses a ConvLSTM module allowing the extraction of spatio-
temporal features and takes as input the Sentinel-1 and Sentinel-2 multitemporal series
(Section 3.1). The second method is an extension of the first one with the addition of a naive
inception module for the extraction of spatial features based on filters of three different sizes
in Section 3.2. Features computed for the two models are then concatenated and added as
an input to a U-Net to obtain a LULC classification. These two methods were compared by
taking as input different parameters described below (Section 3.3). Furthermore, evaluation
metrics used in this study are presented at the end of the section (Section 3.5).
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Figure 5. Sentinel-1 and Sentinel-2 ConvLSTM+Inception method (|| sign means concatenate). Incep-
tion module has been added and the U-Net netwrok take as input the concatenation of the 2 ConvLSTM
and the Inception module. This network is used for ConvLSTM and ConvLSTM+Inception methods.

3.1. Spatio-Temporal Feature Extractor: ConvLSTM-S1/S2

The first method, ConvLSTM (Figure 5), is implemented by taking as the primary
layer a ConvLSTM to extract spatio-temporal features that will be taken as input to a
U-Net network [17,39]. The ConvLSTM layer is an extension of the LSTM which only
computed temporal features without taking into account the spatial information of the 2D
data. It is then that the ConvLSTM layer was set up which takes in input 5D data of the
following form:

Xn × T × R× C× C′ (1)

where Xn represents the nth image, T the temporal dimension, R the number of rows, C
the number of columns and C′ the number of channels.

We used 256× 256 patches with a temporal depth of 4 and 10 spectral bands. Our
input data will therefore be of the following form:

Xn × 4× 256× 256× 10 (2)

The general structure of ConvLSTM (Figure 6) consists of taking as input X1, . . . , Xt
and returning as output spatio-temporal features which are 4D tensors. In Equation (3),
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which describes the ConvLSTM layer, ∗ denotes the convolutional operator and � the
Hadamard product [31].

it = σ
(
Wxi∗Xt + Whi∗Ht−1 + Wci � Ct−1 + bi

)
ft = σ

(
Wx f ∗Xt + Wh f ∗Ht−1 + Wc f � Ct−1 + b f

)
Ct = ft � Ct−1 + it � tanh

(
Wxc∗Xt + Whc∗Ht−1 + bc

)
ot = σ

(
Wxo∗Xt + Who∗Ht−1 + Wco � Ct + bo

)
Ht = ot � tanh(Ct)

(3)

In our case, we used a kernel of 3× 3 and a filter size of 32. This layer is used for
the Sentinel-1 time series, the Sentinel-2 time series, and finally for the two SAR and
optical series together with a concatenation of the spatio-temporal features from each of
the branches before input to the U-Net [17] model.

Figure 6. ConvLSTM structure.

We chose to use a U-Net which is widely used for semantic segmentation with or
without changes in the basic architecture [40–42]. This network has the particularity to
reduce the spatial information for the contracting part while increasing the features and
combining the spatial and geographical information for the expensive part. The first
part consists of a succession of convolutions followed by a ReLu (Rectified Linear Unit,
f (x) = max(0, x)) and a MaxPooling operation. The second part of the network is also
composed of a series of convolutions, but this time it is followed by an UpSampling layer.
At each pass through the network, the spatial resolution is initially reduced thanks to the
downsampling layers, while the "spectral" information is increased. A second time, the
"spectral" information is reduced to gain spatial information thanks to the UpSamplaing
layer. VGG-16 has been chosen as a backbone because it is a good compromise between the
complexity and the size of the network to limit overfitting. At the end of the network, a
softmax function calculate the probability of each pixel. This network has been implemented
thanks to [39].
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3.2. Spatio-Spectral-Temporal Feature Extractor: ConvLSTM+Inception-S1S2

The second method, ConvLSTM+Inception (Figure 5), consists of adding, in addition to
the ConvLSTM modules, a Naive Inception module (Figure 7) which allows performing
three 2D convolutions with filters of 1× 1, 3× 3 and 5× 5 followed by a MaxPooling which
allow limiting the overfitting and to save inputs in the model. Each 2D convolution of the
model is followed by a ReLu (Rectified Linear Unit, f (x) = max(0, x)) at the end of the 2D
convolution operations, the features extracted from the module are concatenated as well
as the spatio-temporal features extracted from the ConvLSTM Sentinel-1 and Sentinel-2
modules. This second method applies only to the Sentinel-1 and Sentinel-2 time series for
each ConvLSTM module as well as the first date of the series, in this case, the first date of
July for the optical and SAR modules, which are concatenated before being passed into the
Naive Inception module to extract spatio-spectral features.

Figure 7. Naive Inception module.

The U-Net used in the first part was also used in this one by taking as input the
stack of features computed by the Inception module and the two ConvLSTM layers. This
architecture was used for two experiments with, respectively, 6 and 10 classes as described
in Section 2.3.

3.3. Experimentation Details

Four main experiments (Table 4) are developed to test the contribution of each sensor
for spatio-temporal feature extraction and an additional one that adds the spatio-spectral
feature extractor combined with the spatio-temporal extractor. These tests are run for both
6 classes and 10 classes to explore the influence of a more diverse dataset which would
offer less confusion and a better classification of both UFs and natural classes.

Table 4. List of experiments based on the methods presented.

Name Sensors Method Number of Classes

ConvLSTM-S1 Sentinel-1 ConvLSTM 6 classes
ConvLSTM-S2 Sentinel-2 ConvLSTM 6 classes

ConvLSTM-S1S2 Sentinel-1 and Sentinel-2 ConvLSTM 6 classes
ConvLSTM-S1 Sentinel-1 ConvLSTM 10 classes
ConvLSTM-S2 Sentinel-2 ConvLSTM 10 classes

ConvLSTM-S1S2 Sentinel-1 and Sentinel-2 ConvLSTM 10 classes
ConvLSTM+Inception-S1S2 Sentinel-1 and Sentinel-2 ConvLSTM and Inception 6 classes
ConvLSTM+Inception-S1S2 Sentinel-1 and Sentinel-2 ConvLSTM and Inception 10 classes

3.4. Implementation Details

Due to the imbalance of the dataset (Table 2), we chose to implement a Weighted
Categorical Cross Entropy allowing us to assign a higher weight to the less balanced classes.
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The weight of each class is defined as the inverse of the frequency of the class [19,27] and is
commonly used in multiclass remote sensing classification [43,44]. As demonstrated by [45],
Categorical Cross Entropy loss performs better than some other loss functions for semantic
segmentation tasks. This method allows forcing the network to pay more attention to the
less represented classes in the reference data (e.g., Built-Up (Class 1), Specialized However,
Vegetative Areas (Class 4), or Large Scale Networks (5)). Furthermore, Adam is selected as
an optimizer [46] as it performs better in remote sensing data than all others [47–50].

The Sentinel-1 and Sentinel-2 data are normalized to the multi-temporal information
of each band using the following formula:

n =
b− b

σb
(4)

where n represents the normalized spectral band, b the reflectance values of each multi-
temporal spectral bands, b the mean of the multitemporal reflectance values, and σb the
standard deviation of the multitemporal reflectance values.

We chose to implement three different methods of data augmentation based on either
90, 180, or 270-degree rotation up/down flips and left/right flips. The training dataset is
augmented to 75%. EarlyStopping, present in the Keras (https://www.tensorflow.org/
api_docs/python/tf/keras accessed on 27 May 2022) library, is used with a patience of
20 epochs to avoid any overfitting. Adam optimizer is used with a LR of 10−3 and we
reduce it by a factor of 0.1 after 5 epochs each time a plateau is reached thanks to the
ReduceLROnPlateau method. Every Python code were run on a GPU cluster using 3
RTX6000 with 24 GB of VRAM each (72 GB in total). This allowed us to use a batch size of
16 for each run proposed in the paper.

3.5. Evaluation Metrics

Three evaluation metrics are used to assess the overall performance of the models and
each class studied: F1Score, Recall, Precision [51] and Cohen’s Kappa.

Precision score, also known as User’s Accuracy, allows extracting the number of
correctly classified pixels in the classified image and is calculated as follows:

Precision =
TP

TP + FP
(5)

Recall score, also known as Producer’s Accuracy, allows extracting the percentage of
well-predicted positives compared to all positives and is calculated as follows:

Recall =
TP

TP + FN
(6)

F1Score, also known as Dice, is the harmonic mean between the two previously ex-
plained metrics, Precision and Recall. It is calculated as follows :

F1Score =
2× Precision× Recall

Precision + Recall
(7)

We also chose to compute each weighted metric for all classes to globally evaluate
each model. They are calculated taking the mean of all class while considering each
class’s support.

Cohen’s Kappa measure the level of agreement between two annotations.

κ =
Po − Pe

1− Pe
. (8)

where Po defined the empirical probability of agreement (also known as the observed
agreement ratio) and Pe the expected agreement.

https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras
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4. Results

This section presents the results obtained for the two methods developed over the
test dataset. The test data set is independent of the training set and the validation set
and includes all available patches for the T31UEQ tile, as seen in Section 2.2. First, we
present the results for six LULC classes in Section 4.1 then the results for 10 LULC classes
in Section 4.2 and finally we compare UFs classification results between 6 and 10 LULC
classification methods for UFs in Section 4.3.

4.1. 6 Classes Results

All the results for the six semantic classes are compiled in Table 5. For these first
experiments, we study the influence of the addition of different sensors (Sentinel-1 and
Sentinel-2), for one date per month for July, August, September, and November. We notice
that with 6sixLULC classes, it is difficult for the tested methods to have a convergence
of the scores for all the classes. We notice that the ConvLSTM-S1 method offers the best
F1Score with 0.1344 for the classification of the Specialized but Vegetative Areas (4).

Table 5. Results of all methods for the test zone located in the north of Strasbourg, Grand-Est, France
(In bold the higher value for each metric and for each method).

ConvLSTM-S1 ConvLSTM-S2

Precision Recall F1 Precision Recall F1

Class 1 0.1335 0.9397 0.2337 0.2579 0.8704 0.3980
Class 2 0.4476 0.3809 0.4116 0.5575 0.7268 0.6310
Class 3 0.3560 0.5813 0.4416 0.3100 0.7763 0.4431
Class 4 0.0775 0.5072 0.1344 0.0528 0.4858 0.0953
Class 5 0.1313 0.5516 0.2122 0.2137 0.7995 0.3372
Class 6 0.9937 0.8937 0.9410 0.9979 0.8663 0.9274

W-Avg 0.9469 0.8661 0.9001 0.9544 0.8574 0.8958

ConvLSTM-S1S2 ConvLSTM+Inception-S1S2

Precision Recall F1 Precision Recall F1

Class 1 0.3122 0.7624 0.4430 0.2308 0.8599 0.3639
Class 2 0.5671 0.7706 0.6533 0.6260 0.6472 0.6364
Class 3 0.4654 0.6859 0.5545 0.4794 0.7647 0.5894
Class 4 0.0314 0.5739 0.0595 0.0312 0.4461 0.0584
Class 5 0.2745 0.8085 0.4099 0.2736 0.7898 0.4064
Class 6 0.9971 0.8446 0.9145 0.9965 0.8719 0.9301

W-Avg 0.9578 0.8369 0.8875 0.9591 0.8596 0.9018

The addition of multitemporal and multimodal data for the extraction of spatio-
temporal features (ConvLSTM-S1S2 method) allows obtaining a large part of the best
Recall score and F1Score, especially for Dense Built-Up (1), Sparse Built-Up (2) and Large Scale
Networks (5). The addition of the Inception module for the extraction of spatio-spectral
features (ConvLSTM+Inception-S1S2) does not allow a significant improvement of the
classes, even if in terms of Weighted-F1Score, it is very close to the ConvLSTM-S1S2 method
with 0.8875 against 0.9018 for the latter (Table 5 and Figure A1). On the other hand,
ConvLSTM+Inception-S1S2 obtains the best Weighted-Precision and Weighted-F1Score with
0.9591 and 0.9018. The confusion matrix (Figure A2) informs us about a strong confusion
between Specialized However, Vegetative Areas (4) and Non-urban areas (6), probably due to the
imbalanced dataset because Non-urban areas (6) covers 92.46% of the dataset. Furthermore,
it is complex to differentiate it from other natural classes as Non-urban areas (6) is the
aggregation of all other natural areas. Moreover, we notice a strong confusion between
Dense Built-Up (1) and Sparse Built-Up (2) which are complex classes to differentiate because
their texture and spectral signature are very close at 10m. The only difference between these
two UF classes is the portion of vegetation between buildings [7,19], which are close to
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none for Dense Built-Up (1) and are restricted to the personal garden for Sparse Built-Up (2).
We can see that Recall values are systematically higher than the Precision Values whatever
the method. However, the Precision value is also always higher (classes Sparse Built-Up
(2) and Specialized Built-Up Areas (3)) or very similar (classes Dense Built-Up (1), Specialized
However, Vegetative Areas (4) and Large Scale Networks (5)) with ConvLSTM+Inception-S1S2
than other methods. As seen in Table 6 with the Cohen’s Kappa metric, we can see that
there is a very low agreement as seen with the scores between 0.3929 and 0.4223.

Table 6. Cohen’s Kappa for each method for 6 semantic classes (In bold the best method).

Method Cohen’s Kappa

ConvLSTM-S1 0.3929
ConvLSTM-S2 0.4223

ConvLSTM-S1S2 0.3852
ConvLSTM+Inception-S1S2 0.4186

The visual analysis (Figure 8) is performed on three patches with different urban
densities: 31UEQ_GR_7453_4112, 31UEQ_GR_6939_6682, 31UEQ_GR_3855_8481 (these
patches can be viewed by downloading MultiSenGE [36]). These results confirm the
statistical results where the best classifications are found for the ConvLSTM-S1S2 and
ConvLSTM+Inception-S1S2 methods. We notice a better delimitation of the boundaries
between UFs (class (1) to (5)) and Non-urban areas (6).

0 1 2 3  km

(S2 RGB) (Ground reference) (ConvLSTM-S1) (ConvLSTM-S2) (ConvLSTM-S1S2) (ConvLSTM+Inception-S1S2)

Figure 8. Results for each method for 6 semantic classes (Legend is available in Table 3).

4.2. 10 Classes Results

This section summarizes all quantitative and qualitative results for the 10 LULC
classifications. Table 7 contains all the statistical results for the 10 classes of experiments.
We notice that all the global evaluation metrics such as the accuracy, the Weighted-F1Score
and the Mean-F1Score have the highest scores for the ConvLSTM+Inception-S1S2 method
with 0.8831, 0.6373 and 0.8851, respectively. Moreover, the vast majority of the classes
have a higher F1Score for the latter. Only three classes have higher scores for another
method (ConvLSTM-S2): Dense Built-Up (1), Sparse Built-Up (2) and Vineyards and Orchards
(7). Moreover, this method allows better extraction of natural classes probably thanks to
the spatio-spectral feature extractor (Figure A3). The analysis of the confusion matrixes
(Figure A4) allows us to identify weaker confusions for the ConvLSTM+Inception-S1S2
method than for all the other methods tested. We can also notice that Recall values are
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always higher than Precision for almost every UF classes and method. This trend does not
apply to natural classes.

Table 7. Results of all methods for the test zone located in the west of the Grand-Est region (In bold
the higher value for each metric and for each method).

ConvLSTM-S1 ConvLSTM-S2

Precision Recall F1 Precision Recall F1

Class 1 0.1872 0.9247 0.3114 0.5629 0.4968 0.5278
Class 2 0.5718 0.5224 0.5460 0.6814 0.7625 0.7197
Class 3 0.4208 0.6480 0.5103 0.4909 0.7329 0.5880
Class 4 0.0892 0.4973 0.1512 0.1597 0.3499 0.2193
Class 5 0.2142 0.6183 0.3182 0.2914 0.8076 0.4283
Class 6 0.9649 0.8540 0.9060 0.9838 0.9263 0.9542
Class 7 0.8361 0.5625 0.6726 0.9003 0.8737 0.8868
Class 8 0.3890 0.4111 0.3997 0.5720 0.4336 0.4933
Class 9 0.7515 0.8280 0.7879 0.9002 0.7697 0.8299

Class 10 0.3143 0.4748 0.3782 0.1611 0.9106 0.2737

W-Avg 0.8422 0.7836 0.8055 0.9000 0.8517 0.8696

ConvLSTM-S1S2 ConvLSTM+Inception-S1S2

Precision Recall F1 Precision Recall F1

Class 1 0.2736 0.8199 0.4103 0.3870 0.7190 0.5031
Class 2 0.6498 0.7287 0.6870 0.6672 0.8066 0.7303
Class 3 0.5840 0.3955 0.4716 0.4612 0.7632 0.5749
Class 4 0.1885 0.2692 0.2217 0.1863 0.3643 0.2465
Class 5 0.2739 0.8666 0.4163 0.4290 0.7560 0.5474
Class 6 0.9862 0.9033 0.9430 0.9718 0.9558 0.9637
Class 7 0.7822 0.9203 0.8457 0.8869 0.8512 0.8687
Class 8 0.4914 0.4555 0.4728 0.7422 0.3949 0.5155
Class 9 0.8516 0.8533 0.8524 0.8585 0.8643 0.8614

Class 10 0.2759 0.8660 0.4185 0.4654 0.7074 0.5614

W-Avg 0.8825 0.8482 0.8600 0.8977 0.8831 0.8851

As seen in Table 8, the best agreement between reference data and classification are
for the ConvLSTM+Inception-S1S2 with 0.7945 for Cohen’s Kappa evaluation metric. This
confirmed the best results for this method compared to others.

Table 8. Cohen’s Kappa for each method for 10 semantic classes (In bold the best method).

Method Cohen’s Kappa

ConvLSTM-S1 0.6422
ConvLSTM-S2 0.7445

ConvLSTM-S1S2 0.7482
ConvLSTM+Inception-S1S2 0.7945

To perform the qualitative assessment for this section, we used the same patches as in
Section 4.1 to compare the two approaches (31UEQ_GR_7453_4112, 31UEQ_GR_6939_6682,
31UEQ_GR_3855_8481).

The qualitative analysis allows us to observe that the Vineyard and Orchards (7) class
initially strongly confused with the Specialized but vegetative Areas class (4) in the 6-class
methods is correctly classified. The urban boundaries are correctly defined. We also notice
that for the natural areas and more particularly the class Forest and semi-natural areas (9),
the boundaries between the classes are more precise for the ConvLSTM+Inception-S1S2
method than for all the other methods. For the second best performing method (ConvLSTM-
S2), a strong confusion is found between this class and the Water Surfaces (10) class. It is
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also interesting to note that the small roads, initially not present in the reference data, are
detected for the ConvLSTM-S2 and ConvLSTM+Inception-S1S2 methods (Figure 9).

0 1 2 3  km

(S2 RGB) (Ground reference) (ConvLSTM-S1) (ConvLSTM-S2) (ConvLSTM-S1S2) (ConvLSTM+Inception-S1S2)

Figure 9. Results for each method for 6 semantic classes (Legend is available in Table 3).

4.3. UFs Analysis

The evaluation metrics F1Score for each class UFs are displayed on several graphs
(Figure 10) for the best 10-class method and all 6-class methods. We notice that the
ConvLSTM+Inception-S1S2 method for 10 class LULC classes provides better results for all
five class UFs chosen for this study. Only the Specialized Built-Up Areas class (3) performs
better for ConvLSTM+Inception-S1S2 at 6 classes than at 10 classes. On the other hand,
all other classes are better classified for 10 classes because the confusion between them is
strongly reduced. As seen in Figures 8 and 9, the better performance with 10 LULC classes
is particularly noticeable at the level of the urban periphery. ConvLSTM+Inception-S1S2
allows better separating the Dense Built-Up (1) and the Sparse Built-Up (2). Large Scale
Networks (5) were better extracted using ConvLSTM+Inception-S1S2 and less confusion can
be seen with Specialized Built-Up Areas (3) compared to other methods tested.

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. Scatter plot to compare UFs (classes 1 to 5 in Table 3) classifications of ConvLSTM+
Inception-S1S2 for 10 classes between every method implemented for 6 classes. (a) 10 classes
ConvLSTM+Inception-S1S2 vs. 6 classes ConvLSTM-S1. (b) 10 classes ConvLSTM+Inception-S1S2
vs. 6 classes ConvLSTM-S2. (c) 10 classes ConvLSTM+Inception-S1S2 vs. 6 classes ConvLSTM-S1S2.
(d) 10 classes ConvLSTM+Inception-S1S2 vs. 6 classes ConvLSTM+Inception-S1S2.

5. Discussion

In this paper, we developed a semantic segmentation method taking as input multitem-
poral and multimodal imagery from the MultiSenGE dataset. We propose a network con-
sisting of two extractors, one for spatio-spectral features and the other for spatio-temporal
features. The latter provides the best results compared to the other tested approaches.
Moreover, discriminating an over-represented class improves the classification results for
the studied object, in our case the UFs, reducing both intra and inter-classes confusion.

5.1. Application on UF Mapping

For UF mapping, results showed higher quantitative metrics at 10 classes using SAR
and optical time series and an Inception module allowing the extraction of spatio-spectral
features in addition to spatio-temporal features. This latter approach allows reducing the
strong confusion between classes coming from imbalanced datasets during the 6 LULC
classification. This was particularly true for Figures 8 and 9 where Vineyards and Orchards
(7) were strongly confused with Specialized but Vegetative Areas (4), a class that also includes
scattered trees in urban parks or squares. Moreover, the results presented allowed us to
see the contribution of Sentinel-1 SAR imagery thanks to the better detection of natural
surfaces in the periphery of the UF. Without this acquisition mode, the confusion between
the natural classes and Specialized but Vegetative Areas (4) would probably have been more
important and would not have allowed a better detection of these areas.

Sentinel-2 satellite imagery provides a high spatial and high temporal coverage thanks
to its temporal resolution (3 to 6 days). However, UF mapping remains challenging as these
classes contains very small objects with various spectral diversity. Indeed, the distinction
between UFs classes is mainly based on the amount of vegetation in each class (e.g., Dense
Built-Up (1) and Sparse Built-Up (2)). On the other hand, temporal diversity provides
essential information to refine the classifications as it offers the possibility to assess the
evolution of the landscape and especially the vegetation through time. Results obtained
in this study are superior to existing work mapping UF in several classes from Sentinel
imagery [7,19].
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5.2. Comparison with a State of the Art LULC Product

Compared to existing products such as OSO [1], our method is better to describe
UF classes on most of the class. Indeed, using semantic segmentation instead of classical
machine learning approaches (e.g., Random Forest) reduces the salt and pepper effect.
Furthermore, we include a fifth class, Specialized but Vegetative Areas (4), which is almost
never mapped in existing works using 10 m spatial resolution imagery (e.g., Sentinel).
In fact, OSO only derives UFs in four classes, Dense Built-Up, Sparse Built-Up, Specialized
Built-Up, and Large Scale Networks. For natural areas, OSO has 13 semantic classes, which is
slightly higher than our approach. However, we are only experimenting with a specific
region in France and a regional LULC semantic segmentation dataset, which reduce the
possibilities to extend the number of classes. Due to the complex spectral diversity of
the Specialized but Vegetative Areas (4) class because of the large number of objects (Trees,
Grasslands, Minerals . . . , also included in other LULC classes), F1Score cannot exceed
0.25. However, almost every vegetative areas inside urban areas remains to Specialized but
Vegetative Areas (4) using our method. Confusions are mostly seen outside urban areas.

5.3. Network Performance

Semantic segmentation networks, and more specifically the encoder-decoder like
structures, allow us to obtain a map with the spatial extent of each class (assigning to each
pixel a label and taking into account the spatial context of the image). Thus, we can note a
lack of precision in the border of the classes, in particular those of the UF. Moreover, the
complexity and density of UF make the distinction between classes difficult, especially at
10 m spatial resolution. The geographical area, being anisotropic in nature, differences in
the distribution and frequency of the classes over the territory also make the classification
more complex and challenging. This could be assessed by doing pixel-wise classification
and balancing each class in the dataset. Through this technique, salt and pepper noise,
which was almost erased with semantic segmentation, could happen again. Weighting
the loss is one of the methods that has been successful in the community to assess this
challenge [19,27,43,44]. In the case of our study, it seems to be working because the least
represented classes (less than 2% of all classes) reach F1-Scores above 0.5. However, this
strategy seems to have difficulties for the least separable and most confused classes, such as
Dense Built-Up (1) (often confused with Sparse Built-Up (2)), Specialized but Vegetative Areas
(4) or Grasslands (8).

Through these experimentations, ConvLSTM+Inception-S1S2 for 10 LULC classes
appears to be the best method to map UF using multitemporal and multimodal imagery.
Detailing an over-represented class allowed the network to improve the results by reducing
intra-class confusion. Moreover, the contribution of an Inception module and of spatio-
spectral features could be one of the reasons for the improvement of the classification results.
The spatial context of an image, in semantic segmentation problems, is an important aspect
in classification results. The addition of this module, allowing the calculation of features
according to several filter sizes, may have contributed to the results obtained. On the other
hand, according to the classification results, the spatio-spectral feature extractor provides
important information on the smallest objects of the territory thanks to multiple kernel
filter sizes.

6. Conclusions

In this study, we demonstrated the contributions of multitemporal and multimodal
imagery and the use of deep learning models allowing the extraction of spatio-spectral and
spatio-temporal features for a better extraction and semantic segmentation of UF. Further-
more, the results, which demonstrate better F1Score for the 10 classes ConvLSTM+Inception-
S1S2 method, showed that it is better to segment and diversify an over-represented class
composed of spectrally and texturally distinct objects. This method has also greater metrics
scores thanks to the addition of a spatio-spectral feature extractor. The current scores for
UF are encouraging and show that combining and extracting different types of features
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and balancing the initial dataset provides better results by reducing confusion between the
classes studied (Figures 9, 10 and A3). The developed methods could be used in large-scale
LULC classification to study their genericity under different scenarios at different spatial
scales (e.g., over France and/or Europe). For example, for cities slightly different than
western cities, transfer learning could be applied and compared to a network trained from
scratch. To increase the accuracy of the classifications, one of the perspectives could be
to add an image with a very high spatial resolution (e.g., Pléiades or Spot6/7) and to
merge the features from the multi-temporal optical and SAR images and very high spatial
resolution. Furthermore, we would like to explore spatial and temporal inference to cover
large territories and produce a land cover map that may be included in climatic models to
characterize Local Climate Zone (LCZ).
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Appendix A

Figure A1. Bar plot results of all methods for the test zone located in the west of the Grand-Est region
for 6 semantic classes.

(a) (b)

Figure A2. Cont.
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(c) (d)

Figure A2. Confusion matrix computed over the test dataset for every method for 6 semantic
LULC classes. (a) Confusion matrix for ConvLSTM-S1. (b) Confusion matrix for ConvLSTM-S2.
(c) Confusion matrix for ConvLSTM-S1S2. (d) Confusion matrix for ConvLSTM+Inception-S1S2.

Figure A3. Bar plot results of all methods for the test zone located in the west of the Grand-Est region
for 10 semantic classes.
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(a) (b)

(c) (d)

Figure A4. Confusion matrix computed over the test dataset for every method for 10 semantic
LULC classes. (a) Confusion matrix for ConvLSTM-S1. (b) Confusion matrix for ConvLSTM-S2.
(c) Confusion matrix for ConvLSTM-S1S2. (d) Confusion matrix for ConvLSTM+Inception-S1S2.
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