
Efficient search of the best warping window for Dynamic Time Warping

Chang Wei
Tan1

Matthieu
Herrmann1

Germain
Forestier2,1

Geoffrey I.
Webb1

François
Petitjean1

1Faculty of IT, Monash University, Melbourne, Australia – firstname.lastname@monash.edu
2MIPS, University of Haute Alsace, Mulhouse, France – firstname.lastname@uha.fr

Abstract

Time series classification maps time series to labels. The

nearest neighbor algorithm (NN) using the Dynamic Time

Warping (DTW) similarity measure is a leading algorithm

for this task and a component of the current best ensemble

classifiers for time series. However, NN-DTW is only a

winning combination when its meta-parameter – its warping

window – is learned from the training data. The warping

window (WW) intuitively controls the amount of distortion

allowed when comparing a pair of time series. With a

training database of N time series of lengths L, a naive

approach to learning the WW requires Θ(N2·L3) operations.

This often results in NN-DTW requiring days for training

on datasets containing a few thousand time series only. In

this paper, we introduce FastWWSearch: an efficient and

exact method to learn WW. We show on 86 datasets that

our method is always faster than the state of the art, with

at least one order of magnitude and up to 1000x speed-up.

1 Introduction

Since its introduction in the 70s, Dynamic Time Warp-
ing (DTW) [16] has played a critical role for the analysis
of time series, with hundreds (if not thousands) of pa-
pers published every year that make use of it. Many
studies [1, 3, 10, 12, 13, 17, 19, 20] have shown that the
One Nearest Neighbor Search with DTW (NN-DTW)
outperforms most other algorithms when tested on the
benchmark datasets [4], in spite of its simplicity.

In addition, the 2017 comprehensive benchmark of
all time series classification methods [2] ranked COTE
[3] as the most accurate classifier. COTE is an ensem-
ble of classifiers – one of its base learners is NN-DTW
with learned warping window (WW). It directly follows
that the complexity of NN-DTW is a lower bound on
COTE’s complexity. This becomes ever more problem-
atic as the size of the training data increases. Figure 1
shows that the state-of-the-art method UCR Suite
takes more than a day to learn the best WW from
50,000 or more examples for this satellite image time
series data. State-of-the-art methods LB Keogh [7]
and PrunedDTW [17] pass the day threshold with just

Size of training dataset #104
0 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

ti
m

e
(s

)

10-2

100

102

104

106

1 day

1 week

DTW with LB_Keogh
DTW with UCR Suite
PrunedDTW with LB_Keogh
Our Method - FastWWSearch

Figure 1: Training time for NN-DTW where the warp-
ing window is learned.

20,000 time series. The blue curve shows that our Fast
Warping Window Search (FastWWSearch) method
learns the best WW in just 2 hours for 50,000 time se-
ries and can learn WW for 100,000 time series in about
6 hours, a quantity of data that that is infeasible to pro-
cess with the state of the art. With a training database
of N time series of lengths L, a naive approach to learn-
ing the WW requires Θ(N2 · L3) operations.

On the importance of the L3 term. Figure 1 actually
shows quite an optimistic picture, because this large
dataset holds only very short series (with the length,
L = 46), hence limiting the impact of the L3 factor.
For most datasets, L is typically ten times larger, which
strongly influences runtime. We will see in Section 4
that speed-up can be up to 1000x for datasets with
longer series. Note that this dataset comes from the
problem of creating a temporal land-use map from a
series of satellite images [11, 18].

On the importance of the N2 term. It has been
shown that for a specific task, the larger the training
data available, the smaller the warping window [14].
One could thus wonder if there is a need for a fast
technique, because one could limit the scope of the
search for the best warping window to a small subset of

WW values. However, for large datasets, the N2 term
takes over and becomes too important to even consider
testing a few values of WW.

In this paper, we propose FastWWSearch: a
novel approach to speed up the learning process of the
warping window for DTW. Our approach builds on the
state of the art and introduces new bounds and exact
pruning strategies with associated algorithms. Fast-
WWSearch is always at least one order of magnitude
faster than state-of-the-art methods, and with speed-
ups that can reach 1000x for some datasets. In essence,
this algorithm takes a systematic approach to filling a
vector representing the nearest neighbor for each WW
for each series in the training data. It searches efficiently
and systematically to complete this vector, exploiting
numerous bounds to avoid most computations. We re-
lease our code open-source to ensure reproducibility of
our research, and to enable researchers and practition-
ers to directly use FastWWSearch as a subroutine
in further algorithms, including in the state-of-the-art
methods for classification: COTE [3] and EE [10].

This paper is organized as follows. In Section 2, we
review some background and related work. Section 3
shows the intuition of our work and outlines our ap-
proach. Section 4 shows an evaluation of our method
with the standard methods. Lastly, Section 5 concludes
our work with some future work.

2 Background and Related Work

In this paper, we use T = {T1, · · · , TN} to denote a
training dataset of size N where all time series are of
length L, the letters S and T to denote two time series,
and T (i) to denote the i-th element of T .

2.1 Dynamic Time Warping (DTW) was intro-
duced in [15, 16]. As it has been presented numerous
times in the literature, we simply define the elements
that are the most critical for the understanding of this
paper and refer the reader to [7] for more information.
DTW uses dynamic programming to find an optimal
alignment of two time series S and T ; it solves Equa-
tion 2.1 where a cell (i, j) of the cost matrix DS,T ac-
counts for all elements of S and T , up to i and j re-
spectively, and where δ(·, ·) is an Lp-norm. We then
have DTW(S, T) = (DS,T (L,L))1/p. Using dynamic
programming, the alignment is solved in Θ(L2).

(2.1) DS,T (i, j) = δ(S(i), T (j)) + min

 DS,T (i− 1, j − 1)
DS,T (i, j − 1)
DS,T (i− 1, j)

The warping path associated with DTW(S, T) is
the sequence of minimum values taken consecutively by
DS,T (·, ·). We note such warping path ~p = 〈ω1, · · · , ωK〉

(a)

Q

C

(b)

Figure 2: (a) DTW alignment for two time series. (b)
Cost matrix D with warping path W (green)

and illustrate it on an example in Figure 2b. A couple
ωk = (i, j) belonging to the warping path translates
into an association (S(i)− T (j)) when aligned by DTW
(illustrated in Figure 2a). Again here, as this has been
covered in numerous papers, we refer the reader to [7] for
more details about the warping path and its conditions
(boundary, continuity and monotonicity).

2.2 Warping Window A warping window w is a
global constraint on the re-alignment that DTW finds
(originally called Sakoe-Chiba band [16]), such that el-
ements of S and T can be mapped only if they are less
than w elements apart, and we write DTWw(S, T). For-
mally, this results in a warping path having as constraint
∀(i, j) ∈ ~p, |i − j| 6 w. Figure A.1 (in supplementary
material) illustrates such a constraint with w = 3 –
the warping path is found within the gray band. Note
that we have 0 6 w 6 L − 1, DTW0 corresponds to
the Euclidean distance, and DTWL−1 is equivalent to
unconstrained DTW. This added constraint has two
main benefits: (1) preventing pathological alignments
(and thus increasing the accuracy of the classifier) and
(2) reducing the time complexity of DTW from Θ(L2)
to Θ(w · L). Note that other types of constraints have
been developed in the literature, including the Itakura
Parallelogram [6] and the Ratanamahatana-Keogh band
[13]. In this paper, we focus on the warping window
which, arguably, is by far the most used constraint in
the literature [14, 20].

Why should the warping window be learned?
The choice of the warping window (WW) has long been

known to have a strong influence on accuracy [4, 14, 20].
One of many examples is the CinC ECG Torso dataset
[4], for which using a learned window reduces the error-
rate from 35% to 7% [4]. We illustrate in Figure 3 the
importance of learning the warping window on some
datasets. In an extensive set of experiments Bagnall
et al. [1] demonstrated that DTW is only competitive
when the warping window is set via cross-validation.
It is important to note that learning WW can be

- the largest UCR dataset

e
rr

o
r

Figure 3: Test error on some datasets

critical even for large datasets. This is illustrated in
Figure 3 with the largest dataset in the UCR archive –
ElectricDevices – for which selecting an appropriate
WW reduces error by 7 percentage points relative to
Euclidean distance (DTW0). Finally, it is important to
realise that the two state-of-the-art ensembles for time
series classification – COTE [3] and EE [10] – include
NN-DTW with learned warping window as one of their
constituents. The time complexity of learning the WW
has become even more significant since Bagnall et al. [2]
showed that COTE outperforms all existing methods for
time series classification.

How do we learn the warping window?
Learning of the warping window is not a simple prob-
lem; accepted methods in the field are all based on cross-
validation: either on leave-one-out (LOO-CV) [1, 2] or
on x-fold cross-validation [5]. In this paper, we focus on
LOO-CV for the sake of clarity, with all our algorithms
directly usable for x-fold cross-validation. In supple-
mentary material, we illustrate the learning/search for
LOO-CV as well as the algorithm for it Algorithm A.1.

2.3 Related work As learning the warping window
involves leave-one-out cross-validation, the task boils
down to being able to find the nearest neighbor of each
time series in the training dataset (within the training
dataset excluding themselves). We review below the
state-of-the-art methods to perform this task efficiently.

Silva et al. [17] proposed PrunedDTW to speed
up DTW computation itself. They first compute an
upper bound and skip the cells of the cost matrix D that
are larger. The authors were able to learn the optimal
window size faster than the naive method [17]. However,
as we will show in the experiments, the improvement for
warping window search is only minimal.

Rakthanmanon et al. [12] proposed the UCR
Suite, which includes 4 optimization techniques: early
abandoning, reordering early abandoning, reversing
query and data roles in LB Keogh (see Section 2.4),
and cascading lower bounds. Although they did not di-
rectly use their method to learn the warping window, it
is natural to repurpose it for this task.

First

Last

Maximum

Minimum

(a) (b)

Figure 4: (a) Kim and (b) Keogh lower bound

However, as shown in Figure 1 (and described later
in Section 4), those methods do not scale well for large
datasets. This is mostly because they only try to tackle
the impact of the length L on the O(N2 ·L3) complexity.
We will see that our FastWWSearch method tackles
both the impacts of L and N .

2.4 DTW Lower Bounds Learning the warping
window via cross-validation involves being able to ef-
ficiently find the neighbor of a time series within the
training dataset, i.e. to perform a NN-DTW query for
each time series. Lower-bounds to DTW have long been
used in this context, they allow us to avoid the (expen-
sive) DTW calculation if it is not needed.

Several bounds have been introduced including
LB Kim [8], LB Keogh [7] and LB Improved [9] (see
Figure 4). Lower bounds can also be used in cascade,
starting by the looser (and computationally cheap) one
and progressing towards tighter lower bounds [12]. Al-
gorithm A.2 in supplementary material shows a simple
nearest neighbor search with lower bounds and can eas-
ily be modified for cascading lower bounds by changing
the LB function in line 3.

3 Fast Warping Window Search for DTW

In this section, we introduce our approach: Fast-
WWSearch. In the first subsection, we start by in-
troducing the mathematical properties that constitute
the basis for our algorithm, which we introduce in the
second subsection.

It is interesting to start by noting that, to find the
best warping window via cross-validation, it is sufficient
to know the nearest neighbor T of each time series S
(T ∈ T \ S) for each value of the warping window
we want to test. The näıve (and almost state-of-the-
art) algorithm for finding the best warping window
is given in Algorithm A.1 in supplementary material.
In this algorithm, we can observe that the loops are
independent. The aim of this paper is to make the most
of the inter-relation between the iterations of these two
loops. As mentioned earlier, we focus our explanation
on LOO-CV, but our method is directly extensible for
any type of x-fold cross-validation.

3.1 Properties for FastWWSearch
Property #1: Warping path can be valid for

several windows

Theorem 3.1. Let S, T be two time series, w1 and w2

two warping windows, and ~pw1
and ~pw2

their associ-
ated warping paths. ~pw1 = ~pw2 ⇒ DTWw1(S, T) =
DTWw2(S, T). In other words, DTW(S, T) can only
differ if the warping path differs.

Proof. Let ~pw1
= 〈(iw1

1 , jw1
1), · · · , (iw1

K , kw1

K)〉,
~pw2

= 〈(iw2
1 , jw2

1), · · · , (iw2

K , kw2

K)〉. We have:

DTWw1(S, T) =
∑K

k=1 δ(S(iw1

k), T (jw1

k)) Eq 2.1

=
∑K

k=1 δ(S(iw2

k), T (jw2

k)) (By hyp.)
= DTWw2

(S, T) �

Theorem 3.2. Let S, T be two time series, w a warping
window, and ~pw = 〈(i1, j1), · · · , (iK , kK)〉, then

(|ik − jk| < w)∀k ⇒ DTWw(S, T) = DTWw−1(S, T)

In other words, if no point of a warping path ‘touches’
the extremity of the warping window at w, then the
DTWw(S, T) = DTWw−1(S, T).

Proof. By definition, DTWw(S, T) finds the

warping path ~pw such that the
∑K

k=1 δ(S(ik), T (jk)) is
minimized respecting constraint (|ik − jk| 6 w). Our
additional requirement (|ik − jk| < w) ensures that
(|ik − jk| 6 w − 1). It results that the warping paths
are equal, and by Theorem 3.1 so are the distances. �

In the following, we say that DTWw(S, T) has a
“window validity” of [[v, w]] if all the warping paths
~pw, ~pw−1, · · · ~pv are the same and thus that the distances
are all identical. We will see in Section 3.2 how we can
use these theorem to prune many DTW computations,
by starting with finding the NNs with larger warping
window down to w = 0.

Property #2: DTW is monotone with w

Theorem 3.3. Let S, T be two time series, and
w a warping window, we have DTWw(S, T) 6
DTWw−1(S, T). Proof. Reductio ad absurdum: As-
sume DTWw(S, T) > DTWw−1(S, T), then this means
that there exists a warping path ~pw−1 such that the asso-
ciated cost is lower than the one for ~pw. This translates
in DTW not having found the optimal solution at win-
dow w, which is a contradiction [16]. �

Figure 5 illustrates the combination of Theorem 3.1, 3.2
and 3.3, by showing the value of DTWw(S, T{1,2,3}) as
a function of w. It shows that DTW decreases mono-
tonically with w (Theorem 3.3), while the flat sections
on the right section of the plot illustrate Theorems 3.1
and 3.2. Figure 5 also shows that the path computed
for w = 24 remains valid down to w = 1 for T1.

Warping Windows, w
0 5 10 15 20

D
TW

 D
is

ta
n
ce

0.5

1

1.5

2

2.5

3

warping path for T1 is valid until w=1

warping path for T2 is valid until w=3

warping path for T3 is valid until w=3

DTW distance is constant when

the warping path is valid

T
1

T
2

T
3

Figure 5: DTW distance at different w

Property #3: LB Keogh is monotone with w

Theorem 3.4. Let S, T two time series, and w
a warping window, we have LB Keoghw(S, T) 6
LB Keoghw−1(S, T).

Proof. Let us define UT and LT as the upper
and lower envelopes for any time series T , such that
the ith element of the envelopes are defined as UT

w (i) =
max(T (i − w) : T (i + w)) and LT

w(i) = min(T (i − w) :
T (i+ w)) [7]. Reductio ad absurdum using [7, Eq. 9]:

LB Keoghw(S, T) > LB Keoghw−1

⇒
L∑

i=1

{
UT
w (i) if S(i) > UT

w (i)
LT
w(i) if S(i) < LT

w(i)
<

L∑
i=1

{
UT
w−1(i) if S(i) > UT

w−1(i)
LT
w−1(i) if S(i) < LT

w−1(i)

which contradicts the definition of lower and upper
envelopes that gives UT

w (i) 6 UT
w−1(i) and LT

w(i) >
LT
w−1(i),∀i. �

Intuitively, the smaller the window, the closer the en-
velopes are to the reference time series. This then
results to a larger lower bound (the green part in
Figure 4b). We will see in Section 3.2 that we
use LB Keoghw+1 as themselves lower bounds to
LB Keoghw.

3.2 The FastWWSearch algorithms We have
presented the theoretical basis for our work; we now
proceed with our algorithm.

Intuition behind FastWWSearch Learning the
warping window can be seen as creating a (N × L)-
table, illustrated in Table 1, giving the nearest neighbor
(NN) of every time series for all windows. Once that
table is filled, the best value of the window can be
learned in one pass over it. We can reframe the aim
of FastWWSearch as the construction of such an
(N × L)-table. Filling it naively, i.e. by computing

Nearest neighbor at warping windows
0 1 · · · L− 2 L− 1

T1 T24(2.57) T55(0.98) · · · T55(0.98) T55(0.98)
...

...
TN T60(4.04) T47(1.61) · · · T47(1.61) T47(1.61)

Table 1: Table of NNs for each WW. A cell (i, w) =
Tk(dist) means Ti has Tk as its NN for window w with
distance dist.

DTW for each nearest neighbor NN(i, w) using DTW
only, requires Θ(N2 · L3) operations. Note that, an
exhaustive search of all L warping windows for large
L and N can be extremely computationally demanding.
Thus, most practitioners settle with a subset of WW
[10]. Our method applies to either all or a subset of
the possible warping windows, simply starting from the
largest and scanning through the windows down to the
smallest.

Until recently, most of the research had focused on
finding bounds for a fixed value of a warping window.
Our method will explore bounds across columns of this
table. Section 3.1 gives us two additional lower bounds
that we use to prune potential nearest neighbors before
we have to compute DTWw:

Lower Bound name Complexity
LB Kim Θ(1)
LB Keoghw+k Θ(L)
LB Keoghw Θ(L)
DTWw+k Θ(w · L)

Note that we also use the fact that LB Keogh
is not symmetrical in FastWWSearch below. To
take advantage of Theorems 3.3 and 3.4, we order our
computations by decreasing window size. Our algorithm
iterates from larger values of windows down to smaller
ones. This has the consequence of obtaining either
LB Keoghw+k or DTWw+k ‘for free’ when assessing
window w (if pruning at step w + k wasn’t possible
with LB Kim), because those will have been calculated
in a previous step with a higher w. Of course, we
will see that these bounds should only be used if they
have already been computed; there is indeed no point
in computing DTWw+k to potentially prune DTWw of
which the value is less expensive to compute.

Moreover, ordering our computation by decreasing
window size also allows us to make the most of The-
orem 3.1 and 3.2. Referring to Figure 5, the long flat
tails correspond to large validity windows for DTWL−1.
It means that, in that flat section (and any subsequent
other), no bounds are at all necessary, because we al-
ready know that the value of DTW (previously com-
puted) has not changed. This element actually has two
important consequences.

First imagine that we did find the nearest neighbor
for a time series at window w = L; this implies that we
had to calculate DTWL for those 2 series. If the warping
path is valid down to w = 0, then a consequence of our
Theorem 3.1, 3.2 and 3.3 is that we know that this will
also be its nearest neighbor down to w = 0, and this
without any additional calculations.

Second, when calculating an actual DTWw(S, T),
even if the candidate T does not become the nearest
neighbor of S at w, we know nonetheless that we do
not need to recompute DTWw′(S, T) for all windows w′

such that the warping path is valid (see Theorem 3.1
and 3.2).

Lazy Nearest Neighbor Assessment We now
have all the elements necessary to the presentation of
our FastWWSearch algorithm. We start by present-
ing LazyAssessNN in Algorithm 1. LazyAssessNN
is a function that, given a pair of time series (S, T),
establishes if they can be less than a given distance d
apart for a warping window w. It functions in a lazy
fashion, by making the most of all possible bounds that
we presented in Section 3.2. The algorithm tries lower
bounds of increasing complexity until one of two things
happen: (1) either a lower bound or DTWw(S, T) itself
is greater than d, in which case the procedure aborts;
or (2) we have DTWw(S, T) < d, and we have actually
calculated DTWw(S, T).

LazyAssessNN is lazy in that it postpones calcu-
lations for as long as it is possible to do so. As we will
see next, one has to imagine here that LazyAssessNN
will be called several times for the same pair of time
series (S, T) for decreasing values of w. When w de-
creases, any value that was previously calculated for a
larger window, becomes a lower bound for the current
w. We use a cache C(S,T) to store the previous results
of LazyAssessNN obtained for larger w.

We first start by checking if the cache has been
initialized; if not we compute LB Kim, which is valid
regardless of the warping window (line 1). On line 2,
we then test where the cache last stopped, i.e. was it
computing a lower bound for that target window w, was
it computing a lower bound for another window w′ > w,
or was it computing an actual DTW distance (that
might be still valid). We then assess if it last stopped
having had calculated DTW for a larger window (lines
3–5); if that DTWw′ has a path that is still valid and its
value is smaller than d, then we return that value of the
distance. We then assess if it had calculated DTWw′

that is still valid and smaller than d. It is important to
observe here that the code terminates when a distance
is larger than d or DTWw is computed. If we cannot
prune with DTWw′ , we proceed and check if we are
able to prune using previously computed bounds (lines

Algorithm 1: LazyAssessNN(C(S,T), w, d, S, T)

Input: C(S,T): cache storing the previous
measure between S and T

Input: w: the warping window
Input: d: the distance to beat
Input: S, T : the time series to measure
Result: DTWw(S, T) if > d, else pruned

1 if C(S,T) = ∅ then C(S,T) ← LB Kim(S, T)
2 switch C(S,T).stoppedAt do

// LB calculated with larger window w′

3 case DTWw′ do
4 if w ∈ C(S,T).valid ∧ C(S,T).value < d then
5 return C(S,T).value

6 case LB KimorLB Keoghw′ do
7 if C(S,T).value > d then return pruned

// Cascading LB Keogh and DTW
8 otherwise do
9 C(S,T) ← LB Keoghw(S, T)

10 if C(S,T).value > d then return pruned

11 C(S,T) ← LB Keoghw(T, S)
12 if C(S,T).value > d then return pruned

13 C(S,T) ← DTWw(S, T)
14 if C(S,T).value > d then return pruned

15 return C(S,T).value

6–7). Otherwise from lines 8 to 12, we use cascading
lower bounds, testing if we can prune after each of them.
Finally, if all the bounds fail to prune T , we compute
DTWw, store the results and if DTWw < d, T is the new
NN for S (line 13). We will see in our main algorithm
that the next call to LazyAssessNN for the pair (S, T)
will be with a smaller w.

Although our scheme does make it possible to
use Early Abandon on LB Keogh [12] and to use
LB Improved [9], we disregarded them after observing
that they both increased computation time: early aban-
doning because it significantly increases the number of
times the function has to be restarted; LB Improved
because it requires to compute a projection of a series
onto the other, which has an additional cost not justified
by the added pruning power in our case.

We take the bounds ordered by computational
complexity, which in practice usually correlates with
tightness [12]. DTWw′ will also generally be tighter
than LB Keoghw, especially when w′ is close to w.

Our core FastWWSearch algorithm
We now turn to our core algorithm: Fast-

WWSearch. Let us recall that the central aim of our
algorithm is to build an (N ×L)-table that contains the
nearest neighbor of each time series (out of N) and for
each value of the warping window (out of L) – illus-

Algorithm 2: FastWWSearch

Data: T : training data
Result: w?: best warping window

1 NNs← FastFillNNTable(T)
2 bestNErrors ← |T |+ 1
3 for w ← 0 to L− 1 do
4 nErrors ← 0
5 foreach Tt ∈ T do
6 if NNs[t][w].class 6= T.class then nErrors++

7 if nErrors < bestNErrors then
8 bestNErrors ← nErrors
9 w? ← w

trated in Table 1. Once this table has been calculated,
one pass over it is sufficient to determine the best value
of the warping window. That pass is the entry point to
FastWWSearch and is presented in Algorithm 2. It
assumes there exists a method to fill the table and re-
turns the warping window with the lowest leave-one-out
cross-validation error on T . The result of Algorithm 2
is identical to the state-of-the-art presented in supple-
mentary material – Algorithm A.1 – obviously assuming
that the (N × L)-table is calculated correctly, which is
illustrated with our fail-safe experiments in Section B
of the supplementary material.

Obviously, the core of our approach resides in how
we calculate this table, which we present in Algorithm 3.
At the highest level, our algorithm works by building
this table for a subset T ′ ⊆ T of increasing size, until
T ′ = T . We start by building the table for TSet′

comprising only 2 first time series T1 and T2, and fill
this (2×L)-table as if TSet′ was the entire dataset. At
this stage it is trivial that T2 is the nearest neighbor of
T1 and vice versa. We then add a third time series T3
from T \ T ′ to our growing set T ′. At this point, we
have to do two things: (a) find the nearest neighbor of
T3 within T ′ \ {T3} = {T1, T2} and (b) check if T3 has
become the nearest neighbor of T1 and/or T2. We can
then add a fourth time series T4 and so on until T ′ = T .

We now describe Algorithm 3 line by line. We start
by initializing the NNs (N ×L)-table to (,+∞), which
means that the table is empty and the distances are
thus +∞ (line 2). We then initialize T ′ in line 3. Line
4: we start the iteration at 2 as the definition of NN only
makes sense if there is at least 2 time series. We then
proceed with some initializations (lines 5–7), including
for the cache associated with S (line 7). We are then
ready to find (a) the NN of S within T ′, and (b) update
the NN for all T ∈ T ′ now that S has been added.
We will do this operation for all w in descending order,
starting with the largest value L− 1 (line 8). Note that
to only assess a subset of all possible L values for w,

one only need to modify this line; our only requirement
is for the values to be taken in descending order.

Line 9: we start by checking if we already have
a NN for S from previous (i.e. larger) windows.
Note that NNs[s][w] here comes compulsorily from
DTWw′,w′>w(S,) for which its path is still valid. We
then already have the NN of S and only need to check
whether S has also become a NN for other time series
in T ′ (lines 10–14). To this end, we get the previously
calculated NN for such T ∈ T ′ (line 11), which we
will use as the threshold of distance that we have to
‘beat’ (i.e. be smaller than) for S to become the NN
of T . On line 12 we then call our LazyAssessNN
function to assess if S has actually become the NN
of T . If LazyAssessNN exits with pruned, it then
means that S is not the NN of T , and thus that the
previous NN of T is still valid, hence nothing has to be
done. LazyAssessNN only exits with something else
than pruned if DTWw(S, T) < toBeat, which means
that S has indeed become the NN of T ; we update this
information on line 14.

The else case starting on line 15 is if we didn’t
already have the NN of S from a previous window.
We will then analyze all couple (S, T)T∈T ′ and perform
the NN update for S and T simultaneously. At this
stage, it is possible that we will already have – from
previous windows – some information about which T ∈
T ′ might be a better candidate to be the NN of S.
This information is stored in the cache C, which may
contains different types of lower bounds. The number
of calculations will be minimized if the very first T is
actually the NN of S, because it will give the tightest
possible pruning threshold first. This is why we should
first examine the time series that have highest potential
to become the NN of S and order the time series.1

At line 17, we obtain the distance threshold from
NNs[s][w]; the first time, we will have NNs[s][w] = ∅
which is associated with a value of +∞, there will thus
be computation of DTWw(S, T), which will later on
be stored in NNs[s][w] (line 20). From the second T ,
NNs[s][w].distance stores the distance to the so-far
NN of S; we use LazyAssessNN to prune candidates
or replace the current one if it is better (lines 19–20).
We then proceed by checking if S is the NN of T on
lines 21–24 (same as lines 11–14). Finally on line 25,

1Ranking LB Keogh lower bounds has been previously stud-

ied in [18]. Here, we however have different types of lower bounds

to interlace. LB Kim often has a smaller value than LB Keogh
simply because it only looks at 4 elements of series (vs L for

LB Keogh). In addition, because DTWw′,w′>w has tried to align

S and T , it will probably represent a better estimate of DTWw

than LB Keogh. To reflect this, we rank the time series in T ′

using LB Kim /4, LB Keogh /L, 0.8 · DTW /L (the 0.8 factor is

used to push DTWs forward when close to the LB Keogh values).

Algorithm 3: FastFillNNTable(T)

Input: T the set of time series
Result: NNs[N][L] the nearest neighbors table

1 Define LANN as LazyAssessNN
2 NNs.fillAll(,+∞)
3 T ′ ← ∅
4 for s← 2 to N do

// We want to update NNs wrt adding S
5 S ← Ts
6 T ′ ← T ′ ∪ {Ts−1}
7 foreach T ∈ T ′ do CS,T ← ∅
8 for w ← L− 1 down to 0 do

// If we already have NN of S for w
9 if NNs[s][w] 6= ∅ then

// Update table NNs[t][w]16t6s−1
10 for t← 1 to s− 1 do
11 toBeat← NNs[t][w].distance
12 res← LANN(C(S,Tt), w, toBeat, S, Tt)
13 if res 6= pruned then
14 NNs[t][w]← (S, res)

15 else
// Check S against previous T ∈ T ′

16 foreach T ∈ T ′ in asc. order using C do
17 toBeat← NNs[s][w].distance
18 res← LANN(C(S,T), w, toBeat, S, T)
19 if res 6= pruned then
20 NNs[s][w]← (T, res)

// Update NNs[t][w] if needed

21 toBeatT← NNs[t][w].distance
22 resT← LANN(C(S,T), w, toBeatT, S, T)
23 if resT 6= pruned then
24 NNs[t][w]← (S, resT)

// Propagate NN for path validity

25 for w′ ∈ NNs[s][w].valid do
NNs[s][w′]← NNs[s][w]

having processed all T ∈ T ′, NNs[s][w] contains the
actual NN of S at w, and we propagate this information
for all w′, w′ < w for which the warping path is also
valid. Note that the cache C is never reused once the
row NNs[s] is computed, which makes it possible for our
algorithm to have Θ(N) memory complexity.

4 Empirical Evaluation

This section describes the experiments that evaluate our
FastWWSearch method. To facilitate others to build
on our work, as well as to ensure reproducibility, we
have made our code available open-source at https://

github.com/ChangWeiTan/FastWWSearch and the full
raw results at http://bit.ly/SDM18.

https://github.com/ChangWeiTan/FastWWSearch
https://github.com/ChangWeiTan/FastWWSearch
http://bit.ly/SDM18

We compare FastWWSearch’s ability to learn
the warping window compared to the state of the art:

• LB Keogh [7]: It searches for the best warping
window as described in Algorithm A.1 (sup. mate-
rial) using LB Keogh as LB.

• UCR Suite [12]: It is the state of the art for
fast NN-DTW and uses cascading lower bounds to
replace LB in Algorithm A.1.

• LB Keogh–PrunedDTW: The PrunedDTW
algorithm [17] was introduced to speed up the cal-
culation of DTW using upper bounds (instead of
lower bounds). It assesses warping windows in as-
cending order and uses the results for a smaller w
as the upper bound for the larger w. Note that we
actually improve here on the original paper [17] by
adding LB Keogh to the search mechanism.

• UCR Suite–PrunedDTW: To make the com-
parison as fair as possible, we propose to com-
bine the power of UCR Suite’s lower bounding
and of PrunedDTW’upper bounding. Again, this
method is an improvement on both methods.

We performed our experiments using all of the 85 freely
available benchmark UCR time series datasets [4] and
use the original train/test split from [4]. Note that these
datasets are provided z-normalized but our method is
directly applicable to unnormalized series. We perform
an exhaustive search for all methods; as mentioned
in Section 3.2, all methods are directly applicable to
any subset of [[0, L − 1]] that one might want to use
instead of the full set. All methods have linear memory
complexity, so we were able to conduct all experiments
on a small machine (64-bit Linux with AMD Opteron
63xx Class CPU @1.80GHz and 6GB RAM). As the
ordering of the time series in T affects all compared
methods. the time to search for the best warping
window, we report the average results over 10 runs for
different reshuffles of T . We report the full leave-one-
out cross-validation running time.

All methods are exact: they all learn the same value
of the warping window, and thus all return the same
accuracy, which is why we focus on running time. A
fail-safe check is presented in Section B (supplementary
material) and shows that all methods indeed learn the
same warping window.

4.1 Speed-up Figure 6 shows the scatter plot of
learning time for our FastWWSearch method (x-
axis) vs all competitors (y-axis). This is a clear-cut
and significant result: our method is faster than the
state of the art for all datasets (above the line means
that our method is faster). There is also a slight
upwards trend: as the task becomes more and more
complicated, it seems that so is the improvement of

FastWWSearch, search time (s)
10-2 100 102 104 106 108

C
om

p
et

it
or

s,
se

ar
ch

ti
m

e
(s

)

10-2

100

102

104

106

108

FastWWSearch is faster here

Competitor is faster here

LB_Keogh
UCR Suite
LB_Keogh-PrunedDTW
UCRSuite-PrunedDTW

Figure 6: Average 10 runs results on the benchmark
datasets (better seen in color)

our FastWWSearch method over the state of the art.
For easy task requiring less than 10 seconds with the
state of the art, FastWWSearch gains one order of
magnitude and performs in less than 1 seconds. This
makes sense and this is not where the gain is the most
interesting. However, as the task becomes harder, so
is the advantage of our method over others getting
more important. This even reaches up to 3 orders of
magnitude speed-up for very demanding tasks. For
dataset HandOutlines for instance, the fastest state-
of-the-art method requires 100 days (9 · 106 s), while
FastWWSearch only needs 2.5 hours (9 · 103s).

It is also interesting to summarize the results de-
pending on size of the data and length of the series.
We calculated the average speed-up for datasets with
smaller training size (N 6 200) and larger training size
(N > 200). The average speed-up for smaller datasets
was of 106x, while it was of 184x for larger ones. Re-
garding length, we calculated the average speed-up for
datasets with shorter series (L 6 300) and longer ones
(L > 300). The average speed-up for datasets with
shorter series was of 67x, while it was of 250x for longer
ones. These results confirm that our algorithm is tack-
ling both the N and L terms.

4.2 Scalability to 100,000 time series It is now
interesting to comment again on Figure 1 that was
presented in the introduction. This dataset corresponds
to 100,000 time series, associated to 100,000 ‘pixels’
observed over time (over a series of satellite images)
(more details in [11]). In this task, the aim is to
establish the land-use of a geographic area based on its
radiometric evolution over a series of satellite images.
Time series are required because, for instance, one needs
the temporal dynamic to distinguish between types of
crops (when they grow and are harvested, how fast they

grow, etc). Note that we used a computer with 16GB
memory for this experiment to be able to store the data.

This dataset is also particularly interesting because
the time series are short with L = 46, which tends to
isolate the influence of N on the scalability. We can
see in Figure 1 that when N = 100, FastWWSearch
makes it possible to gain 1.5 orders of magnitude in
running time over UCR Suite and 2 orders over
the other state-of-the-art methods; and those gains
seem very stable when N grows. For N = 100, 000,
FastWWSearch only requires 6 hours to complete,
while the fastest state-of-the-art method – in this case
UCR Suite – requires 7 days (and more than 18 days
for the others). Note finally that, in Section C of
the supplementary material, we study the question of
whether incorporating PrunedDTW would make it
faster and show that it has little influence on the results.

5 Conclusion

In this paper, we proposed FastWWSearch: a novel
algorithm and underlying theory to efficiently learn the
warping window for Dynamic Time Warping. Our ex-
periments show that it is one to two orders of magnitude
faster than the state of the art. This result is important
both for the use of NN-DTW and also for incorporation
into the state-of-the-art classifiers EE and Cote.

Acknowledgements

This work was supported by the Australian Research
Council under grant DE170100037. This material is
based upon work supported by the Air Force Office
of Scientific Research, Asian Office of Aerospace Re-
search and Development (AOARD) under award num-
ber FA2386-16-1-4023. The authors would like to thank
Professor Eamonn Keogh, Hoang Anh Dau and anony-
mous reviewers for their comments on this paper.

References

[1] A Bagnall and J Lines, An experimental evaluation
of nearest neighbour time series classification. techni-
cal report #CMP-C14-01, Department of Computing
Sciences, University of East Anglia, Tech. Rep, (2014).

[2] A Bagnall, J Lines, A Bostrom, J Large, and
E Keogh, The great time series classification bake
off: a review and experimental evaluation of recent
algorithmic advances, Data Mining and Knowledge
Discovery, 31 (2017), pp. 606–660.

[3] A Bagnall, J Lines, J Hills, and A Bostrom,
Time-series classification with COTE: the collective of
transformation-based ensembles, IEEE Transactions on
Knowledge and Data Engineering, 27 (2015).

[4] Y Chen, E Keogh, B Hu, N Begum, A Bag-
nall, A Mueen, and G Batista, The UCR Time Se-

ries Classification Archive, 7 2015. www.cs.ucr.edu/

~eamonn/time_series_data/.
[5] HA Dau, DF Silva, F Petitjean, A Bagnall, and

E Keogh, Judicious setting of DTW’s warping window
width allows more accurate classification of time series,
in IEEE Big Data Conference, 2017, pp. 1–4.

[6] F Itakura, Minimum prediction residual principle
applied to speech recognition, IEEE Transactions on
Acoustics, Speech, and Signal Processing, 23 (1975),
pp. 67–72.

[7] E Keogh and CA Ratanamahatana, Exact indexing
of dynamic time warping, Knowledge and information
systems, 7 (2005), pp. 358–386.

[8] SW Kim, S Park, and WW Chu, An index-based
approach for similarity search supporting time warping
in large sequence databases, in IEEE ICDE, 2001,
pp. 607–614.

[9] D Lemire, Faster retrieval with a two-pass dynamic-
time-warping lower bound, Pattern recognition, 42
(2009), pp. 2169–2180.

[10] J Lines and A Bagnall, Time series classification
with ensembles of elastic distance measures, Data Min-
ing and Knowledge Discovery, 29 (2015), pp. 565–592.

[11] F Petitjean, J Inglada, and P Gançarski, Satel-
lite image time series analysis under time warping,
IEEE Transactions on Geoscience and Remote Sens-
ing, 50 (2012), pp. 3081–3095.

[12] T Rakthanmanon, B Campana, A Mueen,
G Batista, B Westover, Q Zhu, J Zakaria, and
E Keogh, Searching and mining trillions of time series
subsequences under DTW, in ACM SIGKDD, 2012,
pp. 262–270.

[13] CA Ratanamahatana and E Keogh, Making time-
series classification more accurate using learned con-
straints, in SIAM SDM, 2004.

[14] , Three myths about DTW data mining, in SIAM
SDM, 2005, pp. 506–510.

[15] H Sakoe and S Chiba, A dynamic programming ap-
proach to continuous speech recognition, in Interna-
tional Congress on Acoustics, vol. 3, 1971, pp. 65–69.

[16] , Dynamic programming algorithm optimization
for spoken word recognition, IEEE Transactions on
Acoustics, Speech, and Signal Processing, 26 (1978).

[17] DF Silva and GE Batista, Speeding up all-pairwise
dynamic time warping matrix calculation, in SIAM
SDM, 2016, pp. 837–845.

[18] CW Tan, GI Webb, and F Petitjean, Indexing and
classifying gigabytes of time series under time warping,
in SIAM SDM, 2017, pp. 282–290.

[19] X Wang, A Mueen, H Ding, G Trajcevski,
P Scheuermann, and E Keogh, Experimental com-
parison of representation methods and distance mea-
sures for time series data, Data Mining and Knowledge
Discovery, 26 (2013), pp. 275–309.

[20] X Xi, E Keogh, C Shelton, L Wei, and
CA Ratanamahatana, Fast time series classification
using numerosity reduction, in ICML, 2006, pp. 1033–
1040.

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

	Introduction
	Background and Related Work
	Dynamic Time Warping
	Warping Window
	Related work
	DTW Lower Bounds

	Fast Warping Window Search for DTW
	Properties for FastWWSearch
	The FastWWSearch algorithms

	Empirical Evaluation
	Speed-up
	Scalability to 100,000 time series

	Conclusion

