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Abstract. Rehabilitation is the process of assisting people with disabilities in re-
gaining their function and independence. As artificial neural networks are trained
on large datasets using deep learning, rehabilitation can be improved by pro-
viding individualized and efficient treatment options. As human rehabilitation
involves multivariate time series data, we review well-known algorithms for the
classification of time series data. We also discuss the challenges and opportunities
presented by the use of deep learning in rehabilitation, including the need for
large and diverse datasets and the potential for bias in algorithms. Overall, our
analysis indicates that deep learning has the potential to improve rehabilitation
outcomes and the lives of disabled individuals. A comparison of many methodolo-
gies was conducted in order to establish a framework capable of supporting and
reliably evaluating patients’ workouts throughout recovery programs. In order to
assess the algorithms, two datasets pertaining to human rehabilitation are used:
KIMORE, and UI-PRMD for regression tasks.

1 Introduction

One of the most efficient methods to diagnose musculoskeletal issues and rehabilitate
post-stroke participants is through physical therapy treatment through workouts on spe-
cific tasks. However, it is neither practical nor cost-effective for a physician to attend
every rehabilitative exercise program. Patients typically execute these exercises at home,
without the involvement of specialists or therapists. Despite the fact that patients are
supposed to document and record their progress as well as contact the doctors on a regu-
lar basis, various medical organizations have stated that patients are not able to complete
the exercises correctly, causing the recovery process to be extended. As a result, patients
are unable to receive proper supervision and feedback for the required activity. These
challenges make human rehabilitation a hot topic in a research environment [1]. Thanks
to recent Computer Vision algorithms, it is possible to capture human motion by es-
timating from an image joints’ 3D coordinates, forming a humanoid skeleton. In this
paper, we use Deep Learning to analyze human rehabilitation programs, represented by
3D skeleton sequences, leveraging precise and outstanding performance. We propose to
recast the problem of human rehabilitation movement assessment as a multivariate time
series analysis. Time series analysis has been investigated for various tasks such as clas-
sification [2], clustering [3], averaging [4] and adversarial attacks [5]. In this work we
particularly study a well-known architecture in the field of time series classification [6]
for the task of rehabilitation assessment. However, there are two main issues that must
be addressed prior to deployment:

1. First, we must switch the implementation domain from classification to regression in
order forecast a single numerical score corresponding to patient’s performance.



2. Second, because deep learning models assume fixed-size inputs, pre-processing pro-
cedures are mandatory before any deep learning model can be implemented on the
human rehabilitation dataset.

We established our experiments on the KIMORE [7] and UI-PRMD [8] datasets. In
particular, Kimore dataset is more practical for real-world situations since it incorporates
both healthy and unhealthy subjects. We believe that our proposed method could be very
helpful for physical rehabilitation assessment and could for instance be embedded into
a autonomous system (like a robot coach [9]) for monitoring rehabilitation sessions in
rehabilitation center or at home.

2 Background and Related Work

2.1 Multivariate Time Series

A multivariate time series [6] contains multiple time-dependent features. Multivariate
time series X = [X1, X2, ...., XM ] contains M individual univariate time-series where
Xi ∈ RT .

2.2 Convolution

Convolution can be used to [6] perform and sliding filter through time series. It just
has one-dimensional filters (time) rather than two dimensions like images. The filter can
alternatively be viewed as a non-linear change of time series.

Ct = f(ω ∗Xt− l/2 : t+ l/2 + b) | ∀t ∈ [1, T ], (1)

2.3 Classification

Various works have been investigated in order to replace the expensive and arbitrary
judgment of human experts with an automated process. Classification evaluations are
used to estimate categorical values that indicate the ability level of the activities that
are performed. Such evaluations categorize executed motions into distinct groups that
belong to a rank but can be challenging to precisely define. Assessments may fall into
one of two groups in a straightforward classification system (correct or incorrect). On
the other hand, adding more classes allows us to make more exact distinctions between
executed motions. More examples from each class are required for better performance.
As a result, if there are numerous classes or features that enhance complexity, they may
create a scaling difficulty.

2.4 Parametric Assessment

Rather than a classification task, a parametric assessment provides continuous value
in order to evaluate the performance of rehabilitation exercises. These methods apply
strategies similar to other approaches but they emphasize domain-specific factors. As a
result, such methods offer helpful detail in their evaluations of executed human reha-
bilitation exercises. Some research for exercise assessment tasks often concentrates on
learning distance measures [10]. Those techniques can find similarities between two ran-
dom exercises, however, they can’t represent task-specific exercises. To solve this issue,
another line of research relies on probabilistic techniques for evaluating workouts, such



as Hidden Markov models [11], [12] and Gaussian mixtures [13]. These techniques im-
pede end-to-end processing as they need many pre-processing phases and the knowledge
of experts in the particular field. We intend to analyze exercises using deep learning
techniques since deep learning algorithms are better suitable for end-to-end processing.

2.5 Evaluation of Rehabilitation Exercise

There hasn’t been enough research on this subject. [14] Lee et al. classified a variety of
motions into true and false categories with the help of hand-crafted features. In the work
of [15] for the evaluation of human rehabilitation exercises spatio-temporal architecture is
suggested. In order to boost performance, multi-branch convolution, recurrent networks,
and temporal pyramid. The downside of these approaches they employ a variety of feature
engineering and pre-processing steps. In light of the recent achievement of deep learning
approaches in various fields, we conduct human rehabilitation exercise assessments with
deep learning frameworks. We use common time series classification algorithms [6] for
this study since human rehabilitation activities involve coordinates of joint positions
throughout time.

3 Proposed Approach

In this paper, we adapted the inception network to human rehabilitation exercises. The
inception network [16] is convolutional neural network initially created for a more deep
representation of time series classification problems. The inception network is made up of
two main concepts: bottleneck layers and sliding several filters. By utilizing a bottleneck
layer, time series data dimensions can be reduced while capturing complex features and
overfitting issues can be minimized. Moreoever, this architecture allow to slide several
filters of varying lengths over the given input time series at the same time in order to
capture meaningful patterns at different scales. Our inception network is adapted to hu-
man rehabilitation and extrinsic regression to generate a numerical value that represents
the score associated with the input motion sequence. Figure 1 illustrates the proposed
architecture.
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Fig. 1: The overall framework of our proposed rehabilitation exercise assessment

4 Experiments and Results

4.1 Datasets

For evaluating the proposed approach, we use two separate datasets: KIMORRE and
UI-PRMD. KIMORE dataset [7] contains RGB-D videos collected by Kinect sensor and
clinical scores evaluation of human motions. There are 5 distinct exercises done by control
groups and an unhealthy group. The control group included 44 healthy people, 12 of



whom were physiotherapists with competence in the treatment of postural and back pain,
while the remaining 32 were non-expert healthy people. The unhealthy group consists of
34 patients who suffer from pain and postural issues and have chronic motor impairments.
(2) UI-PRMD dataset [8] is made up of ten rehabilitation activities that were gathered
from 10 healthy individuals utilizing Kinect and Vicon sensing devices. There were ten
repetitions of the same activity performed by each individual. A comprehensive collection
of data is provided, which includes the positions and angles of the joints throughout the
body.

4.2 Normalization

Before feeding data through deep learning algorithms, normalization processes must be
performed on the data. Because variability in input feature scales can increase the com-
plexity of the model performance. In general, models that are constructed with heavy
weights are unstable, meaning that they perform poorly during learning and exhibit high
sensitivity to input values. The learning process can become unstable when a target vari-
able has a wide spread of values, and the error gradients may be large, causing weight
values to change drastically. As long as your output activation function has a scale of [0,
1], so the target values also fall inside that range. As a result, we normalize all human
motion data into the range [-1, 1], and clinical values between 0 and 1. When we apply
three different methods to normalize clinical scores:

– Initially, we divide the truth values by 100. The results are negatively affected by
dividing by 100 since there is a large difference between the truth values of healthy and
unhealthy subjects. Due to this, a model is not capable of capturing these differences
between healthy and unhealthy clinical scores.

– Second, we apply minmaxscaler to clinical score labels to obtain values between 0
and 1. This strategy is effective when using the second and third splits, but for the
first split, as train and test data is separated it treats the different distribution of
data as the same values, therefore deep learning algorithms treat different clinical
scores in the same manner. This leads models to mislead to find the desired output
values correctly.

4.3 Evaluation Process

For evaluating regression tasks for human rehabilitation exercises we use two metrics:
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), as defined below:

MAE =
1

n

n∑
i=1

|xi − yi| (2)

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)2 (3)

The Root Mean Square Error indicates how condensed the values are close to the
best-fit line. The Mean Absolute Error computes an absolute average gap between the
actual and predicted data.



4.4 Experimental Results on Kimore

We train our model on the splitting technique using the leave-one-only cross-validation
(LOOCV) on unhealthy samples. As part of this technique, one subject is used for testing,
and the remaining data serve as a training set, which is combined with healthy and
unhealthy samples. As Deep Learning models are dependent on their initial random
initialization, we run our algorithm 5 times and report in Table 1 average values with
standard deviations for both metrics on each exercise separately.

Table 1: Results of Inception algorithm 5 exercises (Ex) conducted on the KIMORE
dataset by MAD and RMSE metrics

Metric Ex1 Ex2 Ex3 Ex4 Ex5

RMSE 0.33± 0.04 0.31± 0.05 0.42± 0.04 0.34± 0.03 0.28± 0.02
MAE 0.19± 0.03 0.15± 0.03 0.27± 0.04 0.17± 0.03 0.16± 0.02

Considering that we used to leave one out cross-validation which improved model
performance. Moreover, Figure 2 shows the comparison of real (green) and predicted
(red) scores obtained by our approach on test sequences of exercise 2 (lateral tilt of
the trunk with the arms in extension). We can see that our proposed method allow to
correctly predict corresponding scores with low errors.

Fig. 2: The comparison plot between predicted and actual values for the Inception network
on KIMORE dataset

The UI-PRMD dataset was subjected to the same experiments as the KIMORE
dataset using the Inception model. In addition to other experiments related to human
rehabilitation exercises, we applied subject-based leave-one-out cross-validation to pre-
vent the use of the same subject information in both the train and test set at the same
time.

Based on the Figure 3, we can conclude that our proposed method in the UI-PRMD
dataset also shows promising results



Table 2: Results of 10 exercises conducted on the UI-PRMD dataset by MAD and RMSE
metrics for the Inception model

Ex RMSE MAE

Ex1 0.0227± 0.0047 0.018± 0.0037
Ex2 0.0128± 0.0038 0.01± 0.0032
Ex3 0.0245± 0.0010 0.0178± 0.0011
Ex4 0.0282± 0.0026 0.0233± 0.0027
Ex5 0.242± 0.454 0.0841± 0.1442
Ex6 0.0186± 0.0017 0.0138± 0.0009
Ex7 0.0219± 0.0045 0.0172± 0.0029
Ex8 0.0316± 0.0050 0.0223± 0.0029
Ex9 0.02± 0.0022 0.017± 0.0025
Ex10 0.7436± 1.3082 0.2866± 0.4182

Fig. 3: The comparison plot between predicted and actual values for the Inception network
on UI-PRMD dataset

5 Conclusion

In this paper, we proposed a human rehabilitation assessment approach using the In-
ception network. We modified the original architecture to provide numerical values by
considering our analysis as a multivariate time series extrinsic regression problem. Our ap-
proach is evaluated on two datasets that represent rehabilitation exercises, the KIMORE
dataset and the UI-PRMD dataset. Our results indicate that the Inception network al-
gorithm can be used for human rehabilitation exercises with promising results. As future
work, we aim at investigating explainability methods allowing to understand which part
of the rehabilitation motion is more responsible of a given score.
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