
Reducing Complexity of Deep Learning for Time
Series Classification Using New Hand-Crafted

Convolution Filters

Ali Ismail-Fawaz1, Maxime Devanne1, Stefano Berretti2, Jonathan Weber1, and
Germain Forestier1,3
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Abstract. Deep learning for Time Series Classification (TSC) has become one
relevant subject in the literature for this task. It is used for wide applications in
multiple domains ranging from medical data, action recognition and robotics. In
the last decade, Convolutional Neural Networks (CNNs) have shown to be the
best base architecture to use when dealing with deep learning for TSC ever since
the release of the UCR archive, the largest repository for TSC datasets. The UCR
archive includes a variety of 128 datasets of univariate time series data, where
the task is to correctly classify the samples to their corresponding annotation.
Deep learning models face two main challenges. The first one is represented by
overfitting and the consequent incapacity of generalizing to new unseen samples.
With CNN based architectures, this is commonly due to the fact that the learned
filters tend to detect specific patterns in the training set instead of generic ones.
The second challenge is complexity wise, which limits its usability in real world
scenarios such as embedded systems. In this work, we propose to address these
two challenges with one solution: hand-crafting some generic non-learned convo-
lutional filters to detect generic patterns. These hand-crafted filters can replace
the usability of the first layer in the CNN model, resulting in a significant reduc-
tion in the number of parameters. The proposed architecture is evaluated on 128
datasets of the UCR archive and the results reveal a significant improvement in
performance compared to other approaches as well as the reduction in terms of
complexity.
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1 Introduction

Time Series is a type of sequential data that is almost in every domain these days. Many
tasks can be applied over this kind of data, including averaging [1], data augmentation [2],
clustering [3], regression [4], classification [5, 6]. Time Series Classification (TSC) is exten-
sively investigated in the literature such as the task of surface recognition by robots [7].
For instance, TSC can be used for evaluating surgical performance, [8] human motion
action recognition, [9, 10] surface type detection from robots movements [7] etc. The
availability of the UCR archive [11] made it possible to test multiple machine learning



tools to be benchmarked over the 128 datasets available. Ismail Fawaz et al. [12] presented
a comprehensive review with exhaustive experiments to compare deep learning models
for the task of TSC. This review concluded that Convolutional Neural Networks (CNNs)
based architectures are more suitable for the task of TSC on the UCR archive. One of the
winning CNN based architecture is the Fully Convolutional Network (FCN) [13], made
of three convolutional layers in cascade followed by Batch Normalization and ReLU ac-
tivation function. Moreover, the authors in [14] proposed InceptionTime, adapted from
Inception-v3 for image classification. InceptionTime is currently the state-of-the-art for
the task of TSC on the UCR archive. Some other work addressed deep learning for TSC
using self-supervised approach [15] and knowledge distillation [16]. Even though deep
learners present a success for the task of TSC, nevertheless, they do suffer from two main
problems. First, deep learners tend to overfit on the training examples, which leads, in
the case of CNNs, to learning filters to detect specific unique patterns in the training
examples. Second, deep learners have large complexity, this limits their deployment into
real world machines such as embedded systems.

In this work, we address these two problems and propose new hand-crafted convolu-
tion filters for time series data. We define three different hand-crafted filters to detect
generic patterns that are independent from the data: increasing trend, decreasing trend
and peaks. These filters, given that they are generic and non-learned, can help overcome
the overfitting problem when replacing the first convolutional layer in the network. By
combining the proposed hand-crafted convolution filters with the FCN [13] architecture,
we proposed the Custom Only FCN (CO-FCN), which replaces the first learned layer in
FCN by the hand-crafted filters.

We show that the CO-FCN reduces the number of parameters of FCN by almost 47%.
Evaluation on the 128 datasets of the UCR archive show that CO-FCN can outperform
FCN with a statistical significance in difference of performance. This is the higlight of
our contributions in this work:

– Proposing new hand-crafted convolution filters;
– Adapting an existing CNN network for Time Series Classification to use the hand-
crafted filters to reduce its number of parameters and increase its performance;

– Extensive experiments on 128 datasets of the UCR archive to evaluate the perfor-
mance of the hand-crafted filters and the proposed architecture.

2 Proposed Method

2.1 Definitions

First, we list some definitions to facilitate the understanding of the rest of this work:

Univariate Time Series: Let x be a univariate time series of length L, a sequence of data
points equally separated in time.

Univariate Time Series Dataset: A dataset D = {(x0, y0), ..., (xN , yN )} is a set of N
pairs of univariate time series of length L and a label y associated to it.

One Dimensional Convolution: An operation using a filter w of length k on a time series
x to obtain s = x ∗w as follows:

∀t ∈ [0;L− 1] s[t] =

k−1∑
i=0

x[t+ i].w[i] (1)

A detailed version of convolution on time series can be seen in Figure 1.



Activation of a Filter: When the convolution operation results in a positive response,
the filter is considered as activated.

Increasing Trend: A sub-sequence of a time series x, where the values are strictly in-
creasing in time.

Decreasing Trend: A sub-sequence of a time series x, where the values are strictly de-
creasing in time.

Stationary Trend: A sub-sequence of a time series x, where the values vary of a small
difference ϵ.

Peak: A sub-sequence of a time series x, where the values changed with a large variation
increasingly and then decreasingly.

In what follows, we detail the hand-crafted convolution filters.
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Fig. 1: One dimensional convolution filter being convolved with a one dimensional time
series.

2.2 Hand-Crafted Convolutional Filters

A summary of the three hand-crafted filters proposed in this work is given in Figure 2. The
information gathered from the gradient of the time series can give rise to the increasing
and decreasing trends. For this reason, both increasing and decreasing trends detection
filters are simply an oscillation between −1 and 1. Motivated by the Sobel filters proposed
on image contour detection [17], we adapt to a one-dimensional case the detection of peaks
by mimicking the inverse of the second order derivative of the Gaussian.

2.3 FCN Adaptation: Custom Only FCN (CO-FCN)

By replacing the first convolutional layer in the original FCN architecture and replacing
it by the hand-crafted filters, we obtain the Custom Only FCN (CO-FCN) presented in
Figure 3. The FCN model presents 264, 704 trainable parameters, where as CO-FCN has
only 122, 496 parameters to train.
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Fig. 2: The three hand-crafted convolutional filters applied on the Meat dataset of the
UCR archive.
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Fig. 3: The Custom Only FCN (CO-FCN) architecture. The hand-crafted filters are used
in the first layer (in green) followed by a ReLU activation (in magenta). The second and
third layers are made of convolution blocks (in orange: (n filters, kernel size)) followed
by batch normalization (in oily) and ReLU activation. The last layers are composed of a
1D global average pooling (in black) and a linear classification layer (in red).

3 Results and Discussion

3.1 Experimental Setup

To have a fair comparison between FCN and CO-FCN, we used the same number of
epochs, the same optimizer and its initial parameters and the same batch size. We also
used a learning rate decay that monitors the training loss function. Five different ini-
tialization are done and the performance presented in this work is the average over all
of them. The best model on the training loss during training is saved and used for the
evaluation phase.

We use the set of 128 datasets of the UCR archive [11], where each dataset is split
into train and test sets. The evaluation is done over the test set using the classification
accuracy. All of the datasets are z-normalized before training in order to have a zero
mean and unit variance.
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Fig. 4: One-vs-One scatter plot between FCN and CO-FCN. Each point represents one
dataset, on the x-axis the accuracy of the FCN is presented and the one of CO-FCN on
the y-axis.

3.2 CO-FCN vs FCN

To compare the performance of those two models, we evaluated their performance using
the accuracy metric on the test set of all the datasets of the UCR archive. In Figure 4,
the One-vs-One scatter plot between FCN and CO-FCN is presented. We counted the
number of times each model wins and the number of ties, the difference in performance
helps to produce the p-value (see legend in Figure 4) produced by the Wilcoxon Signed
Rank test [18]. This p-value represents a % of statistical significance for the difference in
performance between two comparates. This %, the p-value, if less than a given threshold
(usually set to 5%) means that the difference in performance is statistically significant.
If that last condition is not true then no conclusion can be made on the significance of
difference in performance. This comparison concludes that CO-FCN outperforms FCN
with a difference in performance that is statistical significant.

3.3 Comparing with State-of-the-Art

To compare the performance of CO-FCN to other deep learning approaches, we present
the Multi Comparison Matrix (MCM) [19] in Figure 5. The MCM presents a pairwise
comparison and a multi-classifier comparison at the same time. Each cell presents the
Win/Tie/Loss count between two classifiers and the difference in average accuracy and
the p-value using the Wilcoxon test. The MCM in Figure 5 also orders the competitors
following their average performance on the accuracy metric over all datasets used. CO-
FCN, even though coming third on the average performance, it can be seen that it beats
significantly FCN and is not statistically significant than ResNet, which is 4.1 larger than
CO-FCN in terms of number of parameters.
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Fig. 5: A Multi Comparison Matrix (MCM) benchmarking the state of the art models
including the proposed CO-FCN architecture.

4 Conclusions

We presented in this work new hand-crafted convolution filters that are non-learned and
generic to any time series data. These filters are able to replace the first convolutional
layer of the Fully Convolutional Network proposed for TSC. This replacement constructs
the CO-FCN with almost half the number of parameters of FCN. The proposed model is
not only less complex than the FCN but also outperforms it on the majority of the UCR
archive datasets. This new approach would help embed deep learners for TSC tasks into
small embedded systems such as robotics systems.
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