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Abstract

Unsupervised deep learning using autoencoders has shown excellent results in image analysis and computer vision. However, only
few studies have been presented in the field of digital pathology, where proper labelling of the objects of interest is a particularly
costly and difficult task. Thus, having a first fully unsupervised segmentation could greatly help in the analysis process of such
images. In this paper, many architectures of convolutional autoencoders have been compared to study the influence of three main
hyperparameters:

(1) number of convolutional layers, (2) number of convolutions in each layer and (3) size of the latent space. Different clustering
algorithms are also compared and we propose a new way to obtain more precise results by applying ensemble clustering techniques

which consists in combining multiple clustering results.
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1. INTRODUCTION

Pathology is essential for the diagnosis evaluation and un-
derstanding of many underlying biological and physiological
mechanisms. It is usually a visual evaluation by pathologists
of a tissue sample using a microscope to identify its structural
properties. Currently, the visual evaluation of microscopic spec-
imens is largely an unassisted process, and the pathologist’s ac-
curacy is established through extensive training, comparative
analysis, peer quality control and personal experience. How-
ever, this field has undergone several technological revolutions
in recent years with the advent of virtual microscopy (conver-
sion of glass slides into high-resolution images called Whole
Slide Images - WSI), often referred to as “digital pathology”.
Thus, major efforts have been made to design image analysis
tools, for example to identify basic biological structures (stroma,
immune cells, tumour, etc.), in order to make it easier for doc-
tors to (semi-)automate the interpretation of slides. Meanwhile,
automatic image analysis algorithms have recently made ex-
traordinary progress, particularly with the advent of the deep
learning methods introduced by Lecun ef al. [1]. Indeed, the
performances of these methods have exploded in recent years,
allowing the detection, classification and segmentation of ob-
jects of interest in images and particularly in medical images
with high precision [2, 3]. But most of these approaches oper-
ate in supervised mode, i.e. they require many examples in or-
der to provide an effective model. However, obtaining quality
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annotations on histopathological images remains very costly.
For example, in the field of colorectal cancer WSI segmenta-
tion, Qaiser et al. proposed a method based on persistent ho-
mology to classify tumour and non-tumour patches from Hema-
toxylin & Eosin stained histology images [4]. To train their sys-
tem, more than 18,000 annotated patches were needed. At the
same time, unsupervised approaches have shown their interest
in many applications for image analysis, such as remote sensing
[5, 6]. Recently, they have also been applied to histopatholog-
ical WSI analysis for cells segmentation [7] or regions of in-
terest classification [8]. In particular for cancer, the authors in
[9] describe an unsupervised approach for extracting interesting
information from WSI that obtains better accuracy than human
for prognostic prediction of prostate cancer recurrence.

In this paper, we are interested in automatic segmentation in
order to quickly extract regions of interest (tumours for exam-
ple) to make a more precise analysis of these areas only. How-
ever, only few approaches on fully unsupervised segmentation
of WSI have been proposed. The first attempt to segment re-
gions of interest from WSI without any prior information or
examples has been performed in [10]. The authors highlight
tissue morphology in breast cancer histology images by calcu-
lating a set of Gabor filters to discriminate different regions.
In [11], the authors use mathematical morphology to extract
‘virtual-cells’ (e.g. superpixels), for which morphological and
colour features are calculated to then apply a consensus clus-
tering algorithm to identify the different tissues in the image.
More recently, a similar approach has been presented in [12],
adding a semi-supervised self-training classifier to the previous
techniques that enhances the results at the cost of partial super-
vision. All these approaches propose to cluster the image based
on predefined features. However, deep learning approaches,
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particularly via autoencoding architectures, make it possible to
avoid manual definition of features by calculating a condensed
representation of the image in a latent space by applying con-
volutional filters. Unfortunately, as stated in [13], most appli-
cations of autoencoders in digital pathology were developed to
perform cell segmentation or nuclei detection [14, 15], or stain
normalisation [16]. Therefore, we propose here to study the
potential of these approaches for WSI tissue segmentation. The
aim is to try to automatically identify clusters corresponding to
each type of tissue in the WSI that could then be labelled by
pathologists.

In this paper, we present a study on how convolutional au-
toencoders perform on WSI segmentation by comparing differ-
ent approaches. First, different autoencoders architectures are
compared to quantify the importance of hyperparameters of in-
terest (number of convolutional layers, number of convolutions
by layer and size of the latent space). Then, a multi-resolution
approach using an ensemble clustering framework is evaluated,
to see if such ensemble techniques could provide more accurate
results.

2. METHODS

2.1. Convolutional autoencoders

In this section, we explore of the use of convolutional au-
toencoders to cluster WSI histopathological images. For this,
we present several experiments to evaluate the importance of
each hyperparameter.

As shown in Figure 1, a Convolutional AutoEncoder (CAE)
is a deep convolutional neural network composed of two parts:
an encoder and a decoder. The main purpose of the CAE is to
minimise a loss function L, evaluating the difference between
the input and the output of the CAE (usually Mean Squared
Error). Once this function is minimised, we can assume that the
encoder part builds up a suitable summary of the input data, in
the latent space, as the decoder part is capable of reconstructing
an accurate copy of it from this encoded representation.

The encoder is first constituted of the input layer (having the
size of the input image) which is connected to N convolutional
layers of diminishing size, up to an information bottleneck of
size Z, called the latent space. The bottleneck is connected
to a series of N convolutional layers of increasing size, until
reaching the size of the input. This second part is called the
decoder. Each convolution layer is composed of C convolutions
and is followed by three other layers: a batch normalisation, an
activation function (ReLU) and a max pooling of size (2,2).

To perform the clustering, a trained CAE is used to encode
each patch of the whole image. Then, this encoded representa-
tion of the patch (in the latent space) is given as the input of a
clustering algorithm and a cluster is assigned to the patch.

We decided to evaluate the influence of the three hyperpa-
rameters N, Z and C. For each one, different values were tested
while fixing the two others (N =2, Z = 250, C = 10). To eval-
uate the quality of the results, the Adjusted Rand Index (ARI) is
calculated to compare the obtained clustering to the annotations
of the expert. The Rand Index computes a similarity measure

between two clusterings by considering all pairs of samples and
counting pairs that are assigned in the same or different clusters
in the predicted and true clusterings. The score is then nor-
malised into the ARI score by:

ARJ — (RI — Expected RI) )
~ (max(RI) — Expected RI)

Values of the ARI are close to 0 for random labelling inde-
pendently of the number of clusters and samples, and exactly 1
when the clusterings are identical (up to a permutation).

Each CAE was trained over a set of 10,000 different patches
randomly selected. As the result of both the clustering and the
training of the CAE are non-deterministic, due to a high sensi-
tivity to the initial conditions, 10 autoencoders were trained and
the results averaged for each hyperparameter value.

We also investigated the performance of several clustering
algorithms, i.e Kmeans, Agglomerative clustering (AggCl), Gaus-
sian mixture (GM) and also the not too deep clustering method
(N2D) exposed in [17]. A clustering performed directly with
the Kmeans algorithm on the raw data (without any data reduc-
tion by the CAE) has been calculated as a baseline to evaluate
the benefit of encoding the data with the CAE.

2.2. Ensemble clustering

As exposed in [9], both micro-structures and macro-structures
give different information. Pathologists also agree that identi-
fying a single cell is way more difficult without its surrounding
context and they always look at the WSI at lower magnification
(to better capture the context) before zooming in at high mag-
nification. Furthermore, in [18] an example of multi-resolution
lung cancer adenocarcinoma classification using deep learning
shows improvements in the overall accuracy.

Thus, we explored a way to improve the results by using
an ensemble of clustering methods, each focusing on a differ-
ent resolution. The objective is to merge low level information
(context) with high level information (shape of the cells, etc.).
For this, the consensus method proposed in [19] was used. This
method is based on a the evaluation of the similarity between
different clusterings and the definition of corresponding clus-
ters. Then, a multi-view voting approach is computed to pro-
duce a single result representing all clusterings. An example of
the architecture of the approach is depicted in Figure 2.

We explored different configurations, but we only present
the two most representative which highlight how the quality of
the results can be improved by using ensemble clustering. The
first configuration, Epyjires 1S composed of three clustering al-
gorithms (Kmeans) working on the latent space representation
of the image obtained by different CAE trained at different res-
olutions: 10x with 8 clusters, 5x with 6 clusters and 5 x with
8 clusters. As the reconstructed image from the autoencoder
seems to focus more on colour intensity than real structures, a
second ensemble configuration has been tested. To add diver-
sity and to force the final result to focus its attention more on
the structure of the objects, a clustering working on a binary im-
age (by thresholding the intensity of the initial image) has been
computed. Thus, the second configuration (Egyct) is composed
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Figure 2: Architecture of the first ensemble configuration Epyires: tWo CAE trained at different resolutions (10x and 5x) produce
different latent representations that are clustered. The three resulting clusterings are then merged through the multi-view voting

algorithm proposed in [19].

of three clustering algorithms (Kmeans) with the following pa-
rameters: 5x on the binary image with 6 clusters, 5x on the
binary image with 8 clusters and 10x on the initial RGB image
with 6 clusters.

3. EXPERIMENTS AND RESULTS

Our study was performed on 8 WSI of Haematoxylin Eosin
Saffron (HES) stained tissue extracted from a cohort of patients

built within the scope of the AiCOLO project INSERM/Plan
Cancer) studying colon cancer. The images have been pro-
vided by Georges Francois Leclerc Centre (Dijon, France) and
acquired from two different centres. An example is given in
Figure 3a. HES stain distinguishes cell nuclei in purple, from
extracellular matrix and cytoplasm in pink.

All images have been acquired at 20x magnification (cor-
responding to 0.5 um/pixel) but stored at several resolutions in
a pyramidal format. The size of each image is around 90,000 x



(a) Example of a WSI of colon tissue stained with HES (magnifica- (b) Example of clustering with 8 clusters (orange, red and blue clus-

tion: %20, size: 97,920x 55,040 pixels)

ters corresponding to tumour)

Figure 3: Example of (a) a raw WSI and (b) a clustering result of this image.

50,000 pixels. To train autoencoders, 10,000 patches of size
128 x 128 pixels were randomly extracted at 10x resolution
from all images (and 5x for the ensemble approach), as this
seems to be the minimal amount of information required by hu-
man expert to classify the tissue. Meanwhile, sparse manual
annotations of the five classes of tissue, tumour, stroma, outer
layer mucosa (crypts of Lieberkuhn and connective tissue), im-
mune cells, and necrosis, and two classes for background and
artefacts (ink marks, etc.) have been performed by pathologists
on the images (using Cytomine[20]), to be able to evaluate the
relevance of the clustering.

3.1. Evaluation of all hyperparameters of the CAE

First, results obtained without using the latent space repre-
sentation (see Table 1) are worse than all those obtained when
clustering the encoded data. This confirms the interest of using
a CAE for WSI clustering. As shown in Figure 4a, it appears
that the number of convolutions in each layer of convolutions
(hyperparameter C) does not greatly affects the quality of the
autoencoder as only a apart from a slight narrowing of the vari-
ability of the results. It’s quite easy to figure out why: passed
a certain number, additional convolution brings to few comple-
mentary information. Figure 4b shows the evaluation of the
ARI with different number of convolution layers in the archi-
tecture. We can notice an increase of the quality index up to 4
layers and then a brutal drop at 5. This indicates clearly that too
many convolutions (and poolings that downsample the infor-
mation) reduce the information that can further not be properly
processed.

Nonetheless, as seen in Figure 5, the latent space size Z,
seems to greatly influence the pertinence of the CAE. Indeed,
the ARI clearly grows as there is more space to encode the la-
tent representation, as a more precise information can be stored.

Also, the more information is present in the latent representa-
tion, the more classes can easily be differentiated. However, it
is also clear that a too large latent space will not be able to sum-
marise efficiently the information, and thus, will not help the
clustering algorithm to discriminate the different tissues. More-
over, the larger the latent space, the more memory and time are
needed to train the network.

3.2. Comparison of the CAE with the ensemble approach

As seen in the previous experiment, the AR/ tends to give
low scores because we only have very few annotations on each
class of interest. So we decided to compute a second evalu-
ation criterion based on the ability of the clustering to detect
tumours areas in the image, as it is the main class of interest
in our project. To associate the tumour class to a cluster, we
calculated its tumour density (number of labelled tumour pix-
els / number of total labelled pixels in the cluster). All clusters
having a density over 50% are kept as 'tumour’, the others are
labelled as ’not tumour’. Thus, two evaluation criteria have
been calculated on the results and are presented in Table 1: the
ARI as in the previous experiment (see Eq.1) and the F'Score on
the two-classes problem (tumour vs. not tumour) [21].

3.3. Discussion

Classical methods applied on the latent space representation
of the CAE tend to show acceptable results. However, both
ensemble clustering configurations seem to be more efficient in
finding coherent clusters corresponding to the classes of interest
defined by the pathologists.

Among all the exposed methods, Egyyet seems to give the
best results. It tends to confirm the importance of the shape of
the objects on histopathological images. Furthermore, it shows
that even if convolutional autoencoders aim at automatically



Raw data Encoded data

Kmeans Kmeans AggCl GM N2D Emultires Estruct
Image1 039 089 | 048 096 038 094 027 073 043 097 047 096 042 0.88
Image2 0.27 0.68 | 033 0.63 029 0.62 0.19 043 029 068 031 066 046 0.62
Image3 025 0.76 | 039 0.87 035 085 022 076 031 088 037 087 045 091
Image4 0.08 048 | 0.08 050 0.13 0.61 0.05 051 012 055 008 054 0.08 0.75
Image5 0.11 065 | 0.11 064 0.10 060 0.10 0.62 0.11 065 0.12 065 017 0.72
Image6 0.37 068 | 0.52 0.75 051 072 049 067 043 0.76 051 0.77 057 0.75
Image7 0.28 0.68 | 035 0.73 033 0.75 0.14 0.61 037 074 041 076 036 0.84
Image8 0.33 0.63 | 044 0.71 042 0.70 0.07 044 037 069 044 075 045 0.75
Mean 0.26 0.68 | 0.34 072 031 072 0.19 060 030 0.74 034 075 037 0.78
Stdv  0.11 0.12 | 0.16 0.14 0.14 0.12 0.14 0.13 0.13 0.13 0.16 0.13 0.16 0.09

Table 1: Evaluation of the ARI and F'Score of all clustering results obtained with the different methods.

finding the best features to encode images, they can also take
advantage of pre-computed features for some specific tasks.

4. CONCLUSION

In this paper, we compared different configurations of con-
volutional autoencoders in the field of unsupervised learning
for WSI histopathological image segmentation. For this, dif-
ferent CAE architectures have been compared to try to find the
best configuration and to study the influence of each hyperpa-
rameter. Then, we proposed a new approach that uses ensemble
clustering technique to take advantage of multiresolution infor-
mation and structural features in the image. This confirms the
importance of having diversity in an ensemble learning frame-
work and that working at different resolutions at the same time
can really improve the quality of the results.
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Figure 4: Evaluation of the ARI for the two main hyperparameters of the convolutions of the CAE comparing Kmeans clustering on
7, 8,9 and 10 clusters.
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